File: vector_of.qbk

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (843 lines) | stat: -rw-r--r-- 32,002 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
[/license

Boost.Bimap

Copyright (c) 2006-2007 Matias Capeletto

Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

]

[/ QuickBook Document version 1.4 ]

[section vector_of Reference]

[section Header "boost/bimap/vector_of.hpp" synopsis]

    namespace boost {
    namespace bimaps {


    template< class KeyType >
    struct vector_of;

    struct vector_of_relation;


    } // namespace bimap
    } // namespace boost


[endsect]

[section vector_of views]

vector_of views are free-order sequences with constant time positional
access and random access iterators. Elements in a vector_of view are by
default sorted according to their order of insertion: this means that new elements
inserted through a different view of the `bimap` are appended to
the end of the vector_of view; additionally, facilities are provided for
further rearrangement of the elements. The public interface of vector_of views
includes that of list_of views, with differences in the complexity
of the operations, plus extra operations for positional access
(`operator[]` and `at()`) and for capacity handling. Validity of iterators and
references to elements is preserved in all operations, regardless of the
capacity status.

As is the case with list_of views, vector_of views have the following
limitations with respect to STL sequence containers:

* vector_of views
are not __SGI_ASSIGNABLE__ (like any other view.)
* Insertions into a vector_of view may fail due to clashings with other views.
This alters the semantics of the operations provided with respect to their analogues
in STL sequence containers.
* Elements in a vector_of view are not mutable, and can only be changed by
means of replace and modify member functions.

Having these restrictions into account, vector of views are models of
__SGI_RANDOM_ACCESS_CONTAINER__ and __SGI_BACK_INSERTION_SEQUENCE__. Although these views
do not model __SGI_FRONT_INSERTION_SEQUENCE__, because front insertion and deletion
take linear time, front operations are nonetheless provided to match the interface
of list_of views. We only describe those types and operations that are either
not present in the concepts modeled or do not exactly conform to the requirements
for these types of containers.


    namespace boost {
    namespace bimaps {
    namespace views {

    template< ``['-implementation defined parameter list-]`` >
    class ``['-implementation defined view name-]``
    {
        public:

        // types

        typedef ``['-unspecified-]`` value_type;
        typedef ``['-unspecified-]`` allocator_type;
        typedef ``['-unspecified-]`` reference;
        typedef ``['-unspecified-]`` const_reference;
        typedef ``['-unspecified-]`` iterator;
        typedef ``['-unspecified-]`` const_iterator;
        typedef ``['-unspecified-]`` size_type;
        typedef ``['-unspecified-]`` difference_type;
        typedef ``['-unspecified-]`` pointer;
        typedef ``['-unspecified-]`` const_pointer;
        typedef ``['-unspecified-]`` reverse_iterator;
        typedef ``['-unspecified-]`` const_reverse_iterator;

        typedef ``['-unspecified-]`` info_type;

        // construct / copy / destroy

        this_type & operator=(this_type & x);

        template< class InputIterator >
        void ``[link reference_vector_of_assign_iterator_iterator assign]``(InputIterator first, InputIterator last);

        void ``[link reference_vector_of_assign_size_value assign]``(size_type n, const value_type & value);

        allocator_type get_allocator() const;

        // iterators

        iterator               begin();
        const_iterator         begin() const;

        iterator               end();
        const_iterator         end() const;

        reverse_iterator       rbegin();
        const_reverse_iterator rbegin() const;

        reverse_iterator       rend();
        const_reverse_iterator rend() const;

        // capacity

        bool      empty() const;

        size_type size() const;

        size_type max_size() const;

        size_type ``[link reference_vector_of_capacity capacity]``() const;

        void ``[link reference_vector_of_reserve_size reserve]``(size_type m);

        void ``[link reference_vector_of_resize_size_value resize]``(size_type n, const value_type & x = value_type());

        // access

        const_reference operator[](size_type n) const;

        const_reference at(size_type n) const;

        const_reference front() const;

        const_reference back() const;

        // modifiers

        std::pair<iterator,bool> ``[link reference_vector_of_push_front_value push_front]``(const value_type & x);
        void                     pop_front();

        std::pair<iterator,bool> ``[link reference_vector_of_push_back_value push_back]``(const value_type & x);
        void                     pop_back();

        std::pair<iterator,bool> ``[link reference_vector_of_insert_iterator_value insert]``(iterator position, const value_type & x);

        void ``[link reference_vector_of_insert_iterator_size_value insert]``(iterator position, size_type m, const value_type & x);

        template< class InputIterator>
        void ``[link reference_vector_of_insert_iterator_iterator_iterator insert]``(iterator position, InputIterator first, InputIterator last);

        iterator ``[link reference_vector_of_erase_iterator erase]``(iterator position);
        iterator ``[link reference_vector_of_erase_iterator_iterator erase]``(iterator first, iterator last);

        bool ``[link reference_vector_of_replace_iterator_value replace]``(iterator position, const value_type & x);

        // Only in map views
        // {

          template< class CompatibleKey >
          bool ``[link reference_vector_of_replace_key_iterator_key replace_key]``(iterator position, const CompatibleKey & x);

          template< class CompatibleData >
          bool ``[link reference_vector_of_replace_data_iterator_data replace_data]``(iterator position, const CompatibleData & x);

          template< class KeyModifier >
          bool ``[link reference_vector_of_modify_key_iterator_modifier modify_key]``(iterator position, KeyModifier mod);

          template< class DataModifier >
          bool ``[link reference_vector_of_modify_data_iterator_modifier modify_data]``(iterator position, DataModifier mod);

        // }


        void clear();

        // list operations

        void ``[link reference_vector_of_splice_iterator_this splice]``(iterator position, this_type & x);
        void ``[link reference_vector_of_splice_iterator_this_iterator splice]``(iterator position, this_type & x, iterator i);
        void ``[link reference_vector_of_splice_iterator_this_iterator_iterator splice]``(
            iterator position, this_type & x, iterator first, iterator last);

        void ``[link reference_vector_of_remove_value remove]``(const value_type & value);

        template< class Predicate >
        void ``[link reference_vector_of_remove_if_predicate remove_if]``(Predicate pred);

        void ``[link reference_vector_of_unique unique]``();

        template< class BinaryPredicate >
        void ``[link reference_vector_of_unique_predicate unique]``(BinaryPredicate binary_pred);

        void ``[link reference_vector_of_merge_this merge]``(this_type & x);

        template< typename Compare >
        void ``[link reference_vector_of_merge_this_compare merge]``(this_type & x, Compare comp);

        void ``[link reference_vector_of_sort sort]``();

        template< typename Compare >
        void ``[link reference_vector_of_sort_compare sort]``(Compare comp);

        void ``[link reference_vector_of_reverse reverse]``();

        // rearrange operations

        void ``[link reference_vector_of_relocate_iterator_iterator relocate]``(iterator position, iterator i);
        void ``[link reference_vector_of_relocate_iterator_iterator_iterator relocate]``(iterator position, iterator first, iterator last);
    };

    // view comparison

    bool operator==(const this_type & v1, const this_type & v2 );
    bool operator< (const this_type & v1, const this_type & v2 );
    bool operator!=(const this_type & v1, const this_type & v2 );
    bool operator> (const this_type & v1, const this_type & v2 );
    bool operator>=(const this_type & v1, const this_type & v2 );
    bool operator<=(const this_type & v1, const this_type & v2 );

    } // namespace views
    } // namespace bimap
    } // namespace boost



In the case of a `bimap< vector_of<Left>, ... >`

In the set view:

    typedef signature-compatible with relation< Left, ... > key_type;
    typedef signature-compatible with relation< Left, ... > value_type;

In the left map view:

    typedef  Left  key_type;
    typedef  ...   data_type;

    typedef signature-compatible with std::pair< Left, ... > value_type;

In the right map view:

    typedef  ...  key_type;
    typedef  Left data_type;

    typedef signature-compatible with std::pair< ... , Left > value_type;


[#vector_of_complexity_signature]

[section Complexity signature]

Here and in the descriptions of operations of `vector_of` views, we adopt
the scheme outlined in the
[link complexity_signature_explanation complexity signature section].
The complexity signature of `vector_of` view is:

* copying: `c(n) = n * log(n)`,
* insertion: `i(n) = 1` (amortized constant),
* hinted insertion: `h(n) = 1` (amortized constant),
* deletion: `d(n) = m`, where m is the distance from the deleted element to the
end of the sequence,
* replacement: `r(n) = 1` (constant),
* modifying: `m(n) = 1` (constant).

The following expressions are also used as a convenience for writing down some
of the complexity formulas:

[blurb
`shl(a,b) = a+b` if a is nonzero, 0 otherwise.
`rel(a,b,c) =` if `a<b`, `c-a`, else `a-b`,
]

(`shl` and `rel` stand for ['shift left] and ['relocate], respectively.)

[endsect]

[section Instantiation types]

`vector_of` views are instantiated internally to `bimap` and specified
by means of the collection type specifiers and the bimap itself.
Instantiations are dependent on the following types:

* `Value` from `vector_of`,
* `Allocator` from `bimap`,

[endsect]

[section Constructors, copy and assignment]

As explained in the views concepts section,
views do not have public constructors or destructors.
Assignment, on the other hand, is provided.

    this_type & operator=(const this_type & x);

* [*Effects: ] `a=b;`
where a and b are the `bimap` objects to which `*this` and
`x` belong, respectively.
* [*Returns: ] `*this`.


[#reference_vector_of_assign_iterator_iterator]

    template< class InputIterator >
    void assign(InputIterator first, InputIterator last);

* [*Requires: ] `InputIterator` is a model of __SGI_INPUT_ITERATOR__ over elements
of type `value_type` or a type convertible to `value_type`. `first` and `last` are
not iterators into any view of the `bimap` to which this
view belongs. `last` is reachable from `first`.
* [*Effects: ] `clear(); insert(end(),first,last);`


[#reference_vector_of_assign_size_value]

    void assign(size_type n, const value_type & value);

* [*Effects: ] `clear(); for(size_type i = 0; i < n; ++n) push_back(v);`

[endsect]

[section Capacity operations]

[#reference_vector_of_capacity]

    size_type capacity() const;

* [*Returns:] The total number of elements `c` such that, when `size() < c`,
back insertions happen in constant time (the general case as described by
i(n) is ['amortized] constant time.) 
* [*Note:] Validity of iterators and references to elements is preserved
in all insertions, regardless of the capacity status.


[#reference_vector_of_reserve_size]

    void reserve(size_type m);

* [*Effects:] If the previous value of `capacity()` was greater than or equal
to `m`, nothing is done; otherwise, the internal capacity is changed so that
`capacity()>=m`.
* [*Complexity:] If the capacity is not changed, constant; otherwise O(n).
* [*Exception safety:] If the capacity is not changed, nothrow; otherwise, strong.


[#reference_vector_of_resize_size_value]

    void resize(size_type n, const value_type & x = value_type());

* [*Effects: ] `if( n > size() ) insert(end(), n-size(), x);`
`else if( n<size() ) erase(begin()+n,end());`
* [*Note:] If an expansion is requested, the size of the view is not guaranteed
to be n after this operation (other views may ban insertions.)


[endsect]

[section Modifiers]

[#reference_vector_of_push_front_value]

    std::pair<iterator,bool> push_front(const value_type & x);

* [*Effects:] Inserts x at the beginning of the sequence if no other view
of the `bimap` bans the insertion.
* [*Returns:] The return value is a pair `p`. `p.second` is `true` if and only if
insertion took place. On successful insertion, `p.first` points to the element
inserted; otherwise, `p.first` points to an element that caused the insertion
to be banned. Note that more than one element can be causing insertion not
to be allowed.
* [link vector_of_complexity_signature [*Complexity:]] O(n+I(n)).
* [*Exception safety:] Strong.


[#reference_vector_of_push_back_value]

    std::pair<iterator,bool> push_back(const value_type & x);

* [*Effects:] Inserts `x` at the end of the sequence if no other view of
the `bimap` bans the insertion.
* [*Returns:] The return value is a pair `p`. `p.second` is `true` if and only
if insertion took place. On successful insertion, `p.first` points to the
element inserted; otherwise, `p.first` points to an element that caused
the insertion to be banned. Note that more than one element can be
causing insertion not to be allowed.
* [link vector_of_complexity_signature [*Complexity:]] O(I(n)).
* [*Exception safety:] Strong.


[#reference_vector_of_insert_iterator_value]

    std::pair<iterator,bool> insert(iterator position, const value_type & x);

* [*Requires: ] `position` is a valid iterator of the view.
* [*Effects:] Inserts `x` before position if insertion is allowed by all
other views of the `bimap`.
* [*Returns:] The return value is a pair `p`. `p.second` is `true` if and only
if insertion took place. On successful insertion, `p.first` points to the
element inserted; otherwise, `p.first` points to an element that caused the
insertion to be banned. Note that more than one element can be causing
insertion not to be allowed.
* [link vector_of_complexity_signature [*Complexity:]] O(shl(end()-position,1) + I(n)).
* [*Exception safety:] Strong.


[#reference_vector_of_insert_iterator_size_value]

    void insert(iterator position, size_type m, const value_type & x);

* [*Requires: ] `position` is a valid iterator of the view.
* [*Effects: ] `for(size_type i = 0; i < m; ++i) insert(position, x);`
* [link vector_of_complexity_signature
[*Complexity:]] O(shl(end()-position,m) + m*I(n+m)).


[#reference_vector_of_insert_iterator_iterator_iterator]

    template< class InputIterator >
    void insert(iterator position, InputIterator first, InputIterator last);

* [*Requires: ] `position` is a valid iterator of the view. `InputIterator`
is a model of __SGI_INPUT_ITERATOR__ over elements of type `value_type` or a type
convertible to `value_type`. `first` and `last` are not iterators into any view
of the `bimap` to which this view belongs. `last` is reachable
from `first`.
* [*Effects: ] `while(first!=last)insert(position,*first++);`
* [link vector_of_complexity_signature
[*Complexity:]] O(shl(end()-position,m) + m*I(n+m)), where m is the number
of elements in `[first,last)`.
* [*Exception safety:] Basic.


[#reference_vector_of_erase_iterator]

    iterator erase(iterator position);

* [*Requires: ] `position` is a valid dereferenceable iterator of the view.
* [*Effects:] Deletes the element pointed to by `position`.
* [*Returns:] An iterator pointing to the element immediately following the
one that was deleted, or `end()` if no such element exists.
* [link vector_of_complexity_signature [*Complexity:]] O(D(n)).
* [*Exception safety:] nothrow.


[#reference_vector_of_erase_iterator_iterator]

    iterator erase(iterator first, iterator last);

* [*Requires: ] `[first,last)` is a valid range of the view.
* [*Effects:] Deletes the elements in `[first,last)`.
* [*Returns:] last.
* [link vector_of_complexity_signature
[*Complexity:]] O(m*D(n)), where m is the number of elements in `[first,last)`.
* [*Exception safety:] nothrow.


[#reference_vector_of_replace_iterator_value]

    bool replace(iterator position, const value_type & x);

* [*Requires: ] `position` is a valid dereferenceable iterator of the view.
* [*Effects:] Assigns the value x to the element pointed to by position into
the `bimap` to which the view belongs if replacing is allowed
by all other views of the `bimap`.
* [*Postconditions:] Validity of position is preserved in all cases.
* [*Returns: ] `true` if the replacement took place, `false` otherwise.
* [link vector_of_complexity_signature
[*Complexity:]] O(R(n)).
* [*Exception safety:] Strong. If an exception is thrown by some user-provided
operation the `bimap` to which the view belongs remains in its
original state.



[#reference_vector_of_replace_key_iterator_key]

    template< class CompatibleKey >
    bool replace_key(iterator position, const CompatibleKey & x);

* [*Requires: ] `position` is a valid dereferenceable iterator of the set view.
`CompatibleKey` can be assigned to `key_type`.
* [*Effects:] Assigns the value `x` to `e.first`, where `e` is the element pointed 
to by `position` into the `bimap` to which the set view belongs if replacing is allowed by
all other views of the `bimap`.
* [*Postconditions:] Validity of position is preserved in all cases.
* [*Returns: ] `true` if the replacement took place, `false` otherwise.
* [link vector_of_complexity_signature
[*Complexity:]] O(R(n)).
* [*Exception safety:] Strong. If an exception is thrown by some user-provided
operation, the `bimap` to which the set view belongs remains in
its original state.


[#reference_vector_of_replace_data_iterator_data]

    template< class CompatibleData >
    bool replace_data(iterator position, const CompatibleData & x);

* [*Requires: ] `position` is a valid dereferenceable iterator of the set view.
`CompatibleKey` can be assigned to `data_type`.
* [*Effects:] Assigns the value `x` to `e.second`, where `e` is the element pointed 
to by `position` into the `bimap` to which the set view belongs if replacing is allowed by
all other views of the `bimap`.
* [*Postconditions:] Validity of position is preserved in all cases.
* [*Returns: ] `true` if the replacement took place, `false` otherwise.
* [link vector_of_complexity_signature
[*Complexity:]] O(R(n)).
* [*Exception safety:] Strong. If an exception is thrown by some user-provided
operation, the `bimap` to which the set view belongs remains in
its original state.


[#reference_vector_of_modify_key_iterator_modifier]

    template< class KeyModifier >
    bool modify_key(iterator position, KeyModifier mod);

* [*Requires: ] `KeyModifier` is a model of __SGI_UNARY_FUNCTION__ accepting arguments of
type: `key_type&`; `position` is a valid dereferenceable iterator of the view.
* [*Effects:] Calls `mod(e.first)` where e is the element pointed to by position and 
rearranges `*position` into all the views of the `bimap`.
If the rearrangement fails, the element is erased.
It is successful if the rearrangement is allowed by all other views of the `bimap`.
* [*Postconditions:] Validity of `position` is preserved if the operation succeeds.
* [*Returns: ] `true` if the operation succeeded, `false` otherwise.
* [link vector_of_complexity_signature
[*Complexity:]] O(M(n)).
* [*Exception safety:] Basic. If an exception is thrown by some user-provided
operation (except possibly mod), then the element pointed to by position is erased.
* [*Note:] Only provided for map views. 


[#reference_vector_of_modify_data_iterator_modifier]

    template< class DataModifier >
    bool modify_data(iterator position, DataModifier mod);

* [*Requires: ] `DataModifier` is a model of __SGI_UNARY_FUNCTION__ accepting arguments of
type: `data_type&`; `position` is a valid dereferenceable iterator of the view.
* [*Effects:] Calls `mod(e.second)` where e is the element pointed to by position and 
rearranges `*position` into all the views of the `bimap`.
If the rearrangement fails, the element is erased.
It is successful if the rearrangement is allowed by all other views of the `bimap`.
* [*Postconditions:] Validity of `position` is preserved if the operation succeeds.
* [*Returns: ] `true` if the operation succeeded, `false` otherwise.
* [link vector_of_complexity_signature
[*Complexity:]] O(M(n)).
* [*Exception safety:] Basic. If an exception is thrown by some user-provided
operation (except possibly mod), then the element pointed to by position is erased.
* [*Note:] Only provided for map views. 

[/
[#reference_vector_of_modify_iterator_modifier]

    template< class Modifier >
    bool modify(iterator position, Modifier mod);

* [*Requires: ] `Modifier` is a model of __SGI_BINARY_FUNCTION__ accepting arguments of
type: `first_type&` and `second_type&` for ['Map View] or `left_type&` and `right_type&`
for ['Set View]; `position` is a valid dereferenceable iterator of the view.
* [*Effects:] Calls `mod(e.first,e.second)` for ['Map View:] or calls `mod(e.left,e.right)`
for ['Set View] where e is the element pointed to by `position` and
rearranges `*position` into all the views of the `bimap`.
Rearrangement on `vector_of` views does not change the position of the
element with respect to the view; rearrangement on other views may or
might not suceed. If the rearrangement fails, the element is erased.
* [*Postconditions:] Validity of `position` is preserved if the operation succeeds.
* [*Returns: ] `true` if the operation succeeded, `false` otherwise.
* [link vector_of_complexity_signature [*Complexity:]] O(M(n)).
* [*Exception safety:] Basic. If an exception is thrown by some user-provided
operation (except possibly `mod`), then the element pointed to by position
is erased.
]


[endsect]

[section List operations]

`vector_of` views replicate the interface of `list_of` views, which
in turn includes the list operations provided by `std::list`. The syntax and
behavior of these operations exactly matches those of `list_of` views, but
the associated complexity bounds differ in general.


[#reference_vector_of_splice_iterator_this]

    void splice(iterator position, this_type & x);

* [*Requires: ] `position` is a valid iterator of the view. `&x!=this`.
* [*Effects:] Inserts the contents of `x` before position, in the same order
as they were in `x`. Those elements successfully inserted are erased from `x`.
* [link vector_of_complexity_signature
[*Complexity:]] O(shl(end()-position,x.size()) + x.size()*I(n+x.size()) + x.size()*D(x.size())).
* [*Exception safety:] Basic.


[#reference_vector_of_splice_iterator_this_iterator]

    void splice(iterator position, this_type & x,iterator i);

* [*Requires: ] `position` is a valid iterator of the view. `i` is a valid
dereferenceable iterator `x`.
* [*Effects:] Inserts the element pointed to by `i` before `position`: if
insertion is successful, the element is erased from `x`. In the special
case `&x==this`, no copy or deletion is performed, and the operation is
always successful. If `position==i`, no operation is performed.
* [*Postconditions:] If `&x==this`, no iterator or reference is invalidated.
* [link vector_of_complexity_signature
[*Complexity:]] If `&x==this`, O(rel(position,i,i+1));
otherwise O(shl(end()-position,1) + I(n) + D(n)).
* [*Exception safety:] If `&x==this`, nothrow; otherwise, strong.


[#reference_vector_of_splice_iterator_this_iterator_iterator]

    void splice(iterator position, this_type & x, iterator first, iterator last);

* [*Requires: ] `position` is a valid iterator of the view. `first` and
`last` are valid iterators of `x`. `last` is reachable from `first`. `position` is
not in the range `[first,last)`.
* [*Effects:] For each element in the range `[first,last)`, insertion is
tried before `position`; if the operation is successful, the element is
erased from `x`. In the special case `&x==this`, no copy or deletion is
performed, and insertions are always successful.
* [*Postconditions:] If `&x==this`, no iterator or reference is invalidated.
* [link vector_of_complexity_signature
[*Complexity:]] If `&x==this`, O(rel(position,first,last));
otherwise O(shl(end()-position,m) + m*I(n+m) + m*D(x.size()))
where m is the number of elements in `[first,last)`.
* [*Exception safety:] If `&x==this`, nothrow; otherwise, basic.


[#reference_vector_of_remove_value]

    void remove(const value_type & value);

* [*Effects:] Erases all elements of the view which compare equal to `value`.
* [link vector_of_complexity_signature
[*Complexity:]] O(n + m*D(n)), where m is the number of elements erased.
* [*Exception safety:] Basic.


[#reference_vector_of_remove_if_predicate]

    template< class Predicate >
    void remove_if(Predicate pred);

* [*Effects:] Erases all elements `x` of the view for which `pred(x)` holds.
* [link vector_of_complexity_signature
[*Complexity:]] O(n + m*D(n)), where m is the number of elements erased.
* [*Exception safety:] Basic.


[#reference_vector_of_unique]

    void unique();

* [*Effects:] Eliminates all but the first element from every consecutive
group of equal elements referred to by the iterator `i` in the range
`[first+1,last)` for which `*i==*(i-1)`.
* [link vector_of_complexity_signature
[*Complexity:]] O(n + m*D(n)), where m is the number of elements erased.
* [*Exception safety:] Basic.


[#reference_vector_of_unique_predicate]

    template< class BinaryPredicate >
    void unique(BinaryPredicate binary_pred); 

* [*Effects:] Eliminates all but the first element from every consecutive
group of elements referred to by the iterator i in the range `[first+1,last)`
for which `binary_pred(*i, *(i-1))` holds.
* [link vector_of_complexity_signature
[*Complexity:]] O(n + m*D(n)), where m is the number of elements erased.
* [*Exception safety:] Basic.


[#reference_vector_of_merge_this]

    void merge(this_type & x);

* [*Requires: ] `std::less<value_type>` is a __SGI_STRICT_WEAK_ORDERING__ over
`value_type`. Both the view and `x` are sorted according to `std::less<value_type>`.
* [*Effects:] Attempts to insert every element of x into the corresponding
position of the view (according to the order). Elements successfully
inserted are erased from `x`. The resulting sequence is stable, i.e. equivalent
elements of either container preserve their relative position. In the special
case `&x==this`, no operation is performed.
* [*Postconditions:] Elements in the view and remaining elements in `x` are
sorted. Validity of iterators to the view and of non-erased elements of `x`
references is preserved.
* [link vector_of_complexity_signature
[*Complexity:]] If `&x==this`, constant;
otherwise O(n + x.size()*I(n+x.size()) + x.size()*D(x.size())).
* [*Exception safety:] If `&x==this`, nothrow; otherwise, basic.


[#reference_vector_of_merge_this_compare]

    template< class Compare >
    void merge(this_type & x, Compare comp);

* [*Requires: ] `Compare` is a __SGI_STRICT_WEAK_ORDERING__ over `value_type`.
Both the view and `x` are sorted according to comp.
* [*Effects:] Attempts to insert every element of `x` into the corresponding
position of the view (according to `comp`). Elements successfully inserted
are erased from `x`. The resulting sequence is stable, i.e. equivalent
elements of either container preserve their relative position. In the
special case `&x==this`, no operation is performed.
* [*Postconditions:] Elements in the view and remaining elements in `x` are
sorted according to `comp`. Validity of iterators to the view and of
non-erased elements of `x` references is preserved.
* [link vector_of_complexity_signature
[*Complexity:]] If `&x==this`, constant;
otherwise O(n + x.size()*I(n+x.size()) + x.size()*D(x.size())).
* [*Exception safety:] If `&x==this`, nothrow; otherwise, basic.


[#reference_vector_of_sort]

    void sort();

* [*Requires: ] `std::less<value_type>` is a __SGI_STRICT_WEAK_ORDERING__ over `value_type`.
* [*Effects:] Sorts the view according to `std::less<value_type>`.
The sorting is stable, i.e. equivalent elements preserve their relative position.
* [*Postconditions:] Validity of iterators and references is preserved.
* [*Complexity:] O(n*log(n)).
* [*Exception safety:] Basic.


[#reference_vector_of_sort_compare]

    template< class Compare >
    void sort(Compare comp);

* [*Requires:] Compare is a __SGI_STRICT_WEAK_ORDERING__ over `value_type`.
* [*Effects:] Sorts the view according to `comp`. The sorting is stable, i.e.
equivalent elements preserve their relative position.
* [*Postconditions:] Validity of iterators and references is preserved.
* [*Complexity:] O(n*log(n)).
* [*Exception safety:] Basic.


[#reference_vector_of_reverse]

    void reverse();

* [*Effects:] Reverses the order of the elements in the view.
* [*Postconditions:] Validity of iterators and references is preserved.
* [*Complexity:] O(n).
* [*Exception safety:] nothrow.


[endsect]

[section Rearrange operations]

These operations, without counterpart in `std::list` (although splice provides
partially overlapping functionality), perform individual and global repositioning
of elements inside the index.


[#reference_vector_of_relocate_iterator_iterator]

    void relocate(iterator position, iterator i);

* [*Requires: ] `position` is a valid iterator of the view. `i` is a valid
dereferenceable iterator of the view.
* [*Effects:] Inserts the element pointed to by `i` before `position`.
If `position==i`, no operation is performed.
* [*Postconditions:] No iterator or reference is invalidated.
* [*Complexity:] Constant.
* [*Exception safety:] nothrow.


[#reference_vector_of_relocate_iterator_iterator_iterator]

    void relocate(iterator position, iterator first, iterator last);

* [*Requires: ] `position` is a valid iterator of the view. `first` and `last` are
valid iterators of the view. `last` is reachable from `first`. `position` is not
in the range `[first,last)`.
* [*Effects:] The range of elements `[first,last)` is repositioned just before
`position`.
* [*Postconditions:] No iterator or reference is invalidated.
* [*Complexity:] Constant.
* [*Exception safety:] nothrow.


[endsect]


[section Serialization]

Views cannot be serialized on their own, but only as part of the `bimap`
into which they are embedded. In describing the additional preconditions and guarantees
associated to `vector_of` views with respect to serialization of their embedding
containers, we use the concepts defined in the `bimap` serialization section.

[blurb [*Operation:] saving of a `bimap` b to an output archive (XML archive) ar.]

* [*Requires:] No additional requirements to those imposed by the container.


[blurb [*Operation:] loading of a `bimap` b' from an input archive (XML archive) ar.]

* [*Requires:] No additional requirements to those imposed by the container.
* [*Postconditions:] On successful loading, each of the elements of `[begin(), end())` is a
restored copy of the corresponding element in `[m.get<i>().begin(), m.get<i>().end())`,
where `i` is the position of the `vector_of` view in the container.



[blurb [*Operation:] saving of an `iterator` or `const_iterator` `it` to an output archive (XML archive) ar.]

* [*Requires: ] `it` is a valid iterator of the view. The associated `bimap`
has been previously saved.



[blurb [*Operation:] loading of an `iterator` or `const_iterator` `it`' from an input archive (XML archive) ar.]

* [*Postconditions:] On successful loading, if it was dereferenceable then `*it`' is the
restored copy of `*it`, otherwise `it`'`==end()`.
* [*Note:] It is allowed that it be a `const_iterator` and the restored `it`' an `iterator`,
or viceversa.


[endsect]
[endsect]


[endsect]