1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Boost: mem_fn.hpp documentation</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="white" style="MARGIN-LEFT: 5%; MARGIN-RIGHT: 5%">
<table border="0" width="100%">
<tr>
<td width="277"><A href="../../index.htm"> <img src="../../boost.png" alt="boost.png (6897 bytes)" width="277" height="86" border="0"></A>
</td>
<td align="center">
<h1>mem_fn.hpp</h1>
</td>
</tr>
<tr>
<td colspan="2" height="64"> </td>
</tr>
</table>
<h2>Contents</h2>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Purpose">Purpose</a></h3>
<h3 style="MARGIN-LEFT: 20pt"><a href="#FAQ">Frequently Asked Questions</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q1">Can <b>mem_fn</b> be used instead of the
standard <b>std::mem_fun[_ref]</b> adaptors?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b>
with <b>mem_fn</b> in my existing code?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q3">Does <b>mem_fn</b> work with COM methods?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL
defined automatically?</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Interface">Interface</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Synopsis">Synopsis</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#CommonRequirements">Common requirements</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#get_pointer">get_pointer</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#mem_fn">mem_fn</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Implementation">Implementation</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Files">Files</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Dependencies">Dependencies</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#NumberOfArguments">Number of Arguments</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#stdcall">"__stdcall", "__cdecl" and
"__fastcall" Support</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Acknowledgements">Acknowledgements</a></h3>
<h2><a name="Purpose">Purpose</a></h2>
<p>
<b>boost::mem_fn</b> is a generalization of the standard functions <b>std::mem_fun</b>
and <b>std::mem_fun_ref</b>. It supports member function pointers with more
than one argument, and the returned function object can take a pointer, a
reference, or a smart pointer to an object instance as its first argument. <STRONG>mem_fn</STRONG>
also supports pointers to data members by treating them as functions taking no
arguments and returning a (const) reference to the member.
</p>
<p>
The purpose of <b>mem_fn</b> is twofold. First, it allows users to invoke a
member function on a container with the familiar
</p>
<pre>
std::for_each(v.begin(), v.end(), boost::mem_fn(&Shape::draw));
</pre>
<p>
syntax, even when the container stores smart pointers.
</p>
<p>
Second, it can be used as a building block by library developers that want to
treat a pointer to member function as a function object. A library might define
an enhanced <b>for_each</b> algorithm with an overload of the form:
</p>
<pre>
template<class It, class R, class T> void for_each(It first, It last, R (T::*pmf) ())
{
std::for_each(first, last, boost::mem_fn(pmf));
}
</pre>
<p>
that will allow the convenient syntax:
</p>
<pre>
for_each(v.begin(), v.end(), &Shape::draw);
</pre>
<p>
When documenting the feature, the library author will simply state:
</p>
<h4 style="MARGIN-LEFT: 20pt">template<class It, class R, class T> void
for_each(It first, It last, R (T::*pmf) ());</h4>
<p style="MARGIN-LEFT: 20pt">
<b>Effects:</b> equivalent to std::for_each(first, last, boost::mem_fn(pmf));
</p>
<p>
where <b>boost::mem_fn</b> can be a link to this page. See <a href="bind.html">the
documentation of <b>bind</b></a> for an example.
</p>
<p>
<b>mem_fn</b> takes one argument, a pointer to a member, and returns a function
object suitable for use with standard or user-defined algorithms:
</p>
<pre>
struct X
{
void f();
};
void g(std::vector<X> & v)
{
std::for_each(v.begin(), v.end(), boost::mem_fn(&X::f));
};
void h(std::vector<X *> const & v)
{
std::for_each(v.begin(), v.end(), boost::mem_fn(&X::f));
};
void k(std::vector<boost::shared_ptr<X> > const & v)
{
std::for_each(v.begin(), v.end(), boost::mem_fn(&X::f));
};
</pre>
<p>
The returned function object takes the same arguments as the input member
function plus a "flexible" first argument that represents the object instance.
</p>
<p>
When the function object is invoked with a first argument <b>x</b> that is
neither a pointer nor a reference to the appropriate class (<b>X</b> in the
example above), it uses <tt>get_pointer(x)</tt> to obtain a pointer from <b>x</b>.
Library authors can "register" their smart pointer classes by supplying an
appropriate <b>get_pointer</b> overload, allowing <b>mem_fn</b> to recognize
and support them.
</p>
<p>
[Note: <b>get_pointer</b> is not restricted to return a pointer. Any object
that can be used in a member function call expression <tt>(x->*pmf)(...)</tt>
will work.]
</p>
<p>
[Note: the library uses an unqualified call to <b>get_pointer</b>. Therefore,
it will find, through argument-dependent lookup, <b>get_pointer</b> overloads
that are defined in the same namespace as the corresponding smart pointer
class, in addition to any <b>boost::get_pointer</b> overloads.]
</p>
<p>
All function objects returned by <b>mem_fn</b> expose a <b>result_type</b> typedef
that represents the return type of the member function. For data members, <STRONG>result_type</STRONG>
is defined as the type of the member.
</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<h3><a name="Q1">Can <b>mem_fn</b> be used instead of the standard <b>std::mem_fun[_ref]</b>
adaptors?</a></h3>
<p>
Yes. For simple uses, <b>mem_fn</b> provides additional functionality that the
standard adaptors do not. Complicated expressions that use <b>std::bind1st</b>, <b>std::bind2nd</b>
or <a href="../compose/index.htm"><b>Boost.Compose</b></a> along with the
standard adaptors can be rewritten using <a href="bind.html"><b>boost::bind</b></a>
that automatically takes advantage of <b>mem_fn</b>.
</p>
<h3><a name="Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b> with <b>mem_fn</b>
in my existing code?</a></h3>
<p>
No, unless you have good reasons to do so. <b>mem_fn</b> is not 100% compatible
with the standard adaptors, although it comes pretty close. In particular, <b>mem_fn</b>
does not return objects of type <b>std::[const_]mem_fun[1][_ref]_t</b>, as the
standard adaptors do, and it is not possible to fully describe the type of the
first argument using the standard <b>argument_type</b> and <b>first_argument_type</b>
nested typedefs. Libraries that need adaptable function objects in order to
function might not like <b>mem_fn</b>.
</p>
<h3><a name="Q3">Does <b>mem_fn</b> work with COM methods?</a></h3>
<p>
Yes, if you <a href="#stdcall">#define BOOST_MEM_FN_ENABLE_STDCALL</a>.
</p>
<h3><a name="Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL defined automatically?</a></h3>
<p>
Non-portable extensions, in general, should default to off to prevent vendor
lock-in. Had BOOST_MEM_FN_ENABLE_STDCALL been defined automatically, you could
have accidentally taken advantage of it without realizing that your code is,
perhaps, no longer portable. In addition, it is possible for the default
calling convention to be __stdcall, in which case enabling __stdcall support
will result in duplicate definitions.
</p>
<h2><a name="Interface">Interface</a></h2>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>
namespace boost
{
template<class T> T * <a href="#get_pointer_1">get_pointer</a>(T * p);
template<class R, class T> <i>unspecified-1</i> <a href="#mem_fn_1">mem_fn</a>(R (T::*pmf) ());
template<class R, class T> <i>unspecified-2</i> <a href="#mem_fn_2">mem_fn</a>(R (T::*pmf) () const);
template<class R, class T> <i>unspecified-2-1</i> <a href="#mem_fn_2_1">mem_fn</a>(R T::*pm);
template<class R, class T, class A1> <i>unspecified-3</i> <a href="#mem_fn_3">mem_fn</a>(R (T::*pmf) (A1));
template<class R, class T, class A1> <i>unspecified-4</i> <a href="#mem_fn_4">mem_fn</a>(R (T::*pmf) (A1) const);
template<class R, class T, class A1, class A2> <i>unspecified-5</i> <a href="#mem_fn_5">mem_fn</a>(R (T::*pmf) (A1, A2));
template<class R, class T, class A1, class A2> <i>unspecified-6</i> <a href="#mem_fn_6">mem_fn</a>(R (T::*pmf) (A1, A2) const);
// implementation defined number of additional overloads for more arguments
}
</pre>
<h3><a name="CommonRequirements">Common requirements</a></h3>
<p>
All <tt><i>unspecified-N</i></tt> types mentioned in the Synopsis are <b>CopyConstructible</b>
and <b>Assignable</b>. Their copy constructors and assignment operators do not
throw exceptions. <tt><i>unspecified-N</i>::result_type</tt> is defined as the
return type of the member function pointer passed as an argument to <b>mem_fn</b>
(<b>R</b> in the Synopsis.) <tt><i>unspecified-2-1</i>::result_type</tt> is
defined as <tt>R</tt>.
</p>
<h3><a name="get_pointer">get_pointer</a></h3>
<h4><a name="get_pointer_1">template<class T> T * get_pointer(T * p)</a></h4>
<blockquote>
<p>
<b>Returns:</b> <tt>p</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="mem_fn">mem_fn</a></h3>
<h4><a name="mem_fn_1">template<class R, class T> <i>unspecified-1</i> mem_fn(R
(T::*pmf) ())</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i> is an l-value of type <STRONG>T </STRONG>
or derived, <tt>(get_pointer(t)->*pmf)()</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_2">template<class R, class T> <i>unspecified-2</i> mem_fn(R
(T::*pmf) () const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]<STRONG> </STRONG></EM>or derived, <tt>(get_pointer(t)->*pmf)()</tt>
otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_2_1">template<class R, class T> <i>unspecified-2-1</i> mem_fn(R
T::*pm)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>t.*pm</tt> when <i>t</i> is of type <STRONG>T</STRONG> <EM>[const]<STRONG>
</STRONG></EM>or derived, <tt>get_pointer(t)->*pm</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_3">template<class R, class T, class A1> <i>unspecified-3</i> mem_fn(R
(T::*pmf) (A1))</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1)</i></tt>
is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i> is an l-value of type <STRONG>T
</STRONG>or derived, <tt>(get_pointer(t)->*pmf)(a1)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_4">template<class R, class T, class A1> <i>unspecified-4</i> mem_fn(R
(T::*pmf) (A1) const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1)</i></tt>
is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]<STRONG> </STRONG></EM>or derived, <tt>(get_pointer(t)->*pmf)(a1)</tt>
otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_5">template<class R, class T, class A1, class A2> <i>unspecified-5</i>
mem_fn(R (T::*pmf) (A1, A2))</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1, a2)</i></tt>
is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i> is an l-value of type <STRONG>
T</STRONG> or derived, <tt>(get_pointer(t)->*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_6">template<class R, class T, class A1, class A2> <i>unspecified-6</i>
mem_fn(R (T::*pmf) (A1, A2) const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1, a2)</i></tt>
is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]</EM> or derived, <tt>(get_pointer(t)->*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h2><a name="Implementation">Implementation</a></h2>
<h3><a name="Files">Files</a></h3>
<ul>
<li>
<a href="../../boost/mem_fn.hpp">boost/mem_fn.hpp</a>
(main header)
<li>
<a href="../../boost/bind/mem_fn_cc.hpp">boost/bind/mem_fn_cc.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="../../boost/bind/mem_fn_vw.hpp">boost/bind/mem_fn_vw.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="../../boost/bind/mem_fn_template.hpp">boost/bind/mem_fn_template.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="test/mem_fn_test.cpp">libs/bind/test/mem_fn_test.cpp</a>
(test)
<li>
<a href="test/mem_fn_derived_test.cpp">libs/bind/test/mem_fn_derived_test.cpp</a>
(test with derived objects)
<li>
<a href="test/mem_fn_fastcall_test.cpp">libs/bind/test/mem_fn_fastcall_test.cpp</a>
(test for __fastcall)
<li>
<a href="test/mem_fn_stdcall_test.cpp">libs/bind/test/mem_fn_stdcall_test.cpp</a>
(test for __stdcall)
<li>
<a href="test/mem_fn_void_test.cpp">libs/bind/test/mem_fn_void_test.cpp</a> (test
for void returns)</li>
</ul>
<h3><a name="Dependencies">Dependencies</a></h3>
<ul>
<li>
<a href="../config/config.htm">Boost.Config</a></li>
</ul>
<h3><a name="NumberOfArguments">Number of Arguments</a></h3>
<p>
This implementation supports member functions with up to eight arguments. This
is not an inherent limitation of the design, but an implementation detail.
</p>
<h3><a name="stdcall">"__stdcall", "__cdecl" and "__fastcall" Support</a></h3>
<p>
Some platforms allow several types of member functions that differ by their <b>calling
convention</b> (the rules by which the function is invoked: how are
arguments passed, how is the return value handled, and who cleans up the stack
- if any.)
</p>
<p>
For example, Windows API functions and COM interface member functions use a
calling convention known as <b>__stdcall</b>. Borland VCL components use <STRONG>__fastcall</STRONG>.
UDK, the component model of OpenOffice.org, uses <STRONG>__cdecl</STRONG>.
</p>
<p>
To use <b>mem_fn</b> with <b>__stdcall</b> member functions, <b>#define</b> the
macro <b>BOOST_MEM_FN_ENABLE_STDCALL</b> before including, directly or
indirectly, <b><boost/mem_fn.hpp></b>.
</p>
<P>To use <B>mem_fn</B> with <B>__fastcall</B> member functions, <B>#define</B> the
macro <B>BOOST_MEM_FN_ENABLE_FASTCALL</B> before including <B><boost/mem_fn.hpp></B>.
</P>
<P>To use <B>mem_fn</B> with <B>__cdecl</B> member functions, <B>#define</B> the
macro <B>BOOST_MEM_FN_ENABLE_CDECL</B> before including <B><boost/mem_fn.hpp></B>.
</P>
<P><STRONG>It is best to define these macros in the project options, via -D on the
command line, or as the first line in the translation unit (.cpp file) where
mem_fn is used.</STRONG> Not following this rule can lead to obscure errors
when a header includes mem_fn.hpp before the macro has been defined.</P>
<P>[Note: this is a non-portable extension. It is not part of the interface.]
</P>
<p>
[Note: Some compilers provide only minimal support for the <b>__stdcall</b> keyword.]
</p>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>
Rene Jager's initial suggestion of using traits classes to make <b>mem_fn</b> adapt
to user-defined smart pointers inspired the <b>get_pointer</b>-based design.
</p>
<p>
Numerous improvements were suggested during the formal review period by Richard
Crossley, Jens Maurer, Ed Brey, and others. Review manager was Darin Adler.
</p>
<p>
Steve Anichini pointed out that COM interfaces use <b>__stdcall</b>.
</p>
<p>
Dave Abrahams modified <b>bind</b> and <b>mem_fn</b> to support void returns on
deficient compilers.
</p>
<p>Daniel Boelzle pointed out that UDK uses <STRONG>__cdecl</STRONG>.<br>
<br>
<br>
<small>Copyright 2001, 2002 by Peter Dimov and Multi Media Ltd. Copyright
2003-2005 Peter Dimov. Distributed under the Boost Software License, Version
1.0. See accompanying file <A href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</A> or
copy at <A href="http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</A>.</small></p>
</body>
</html>
|