1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).
//------------------------------------------------------------------------------
//
// This example implements interfaces.
//
// Detailed description
// ====================
//
// An interface is a collection of member function prototypes that may be
// implemented by classes. Objects of classes that implement the interface can
// then be assigned to an interface variable through which the interface's
// functions can be called.
//
// Interfaces are a feature of the Java programming language [Gosling] and the
// most obvious way to model interfaces in C++ is (multiple) inheritance.
// Using inheritance for this purpose, however, is neither the most efficient
// nor the most flexible solution, because:
//
// - all functions must be virtual,
//
// => a function that calls another function of the interface must do so
// via virtual dispatch (as opposed to inlining)
// => a class can not implement an interface's (overloaded) function via
// a function template
//
// - inhertitance is intrusive
//
// => object size increases
// => client's are always polymorphic
// => dependencies cause tighter coupling
//
// Fortunately it is possible to eliminate all the drawbacks mentioned above
// based on an alternative implementation proposed by David Abrahams.
// We'll add some detail to the original scheme (see [Abrahams]) such as
// support for overloaded and const qualified functions.
// The implementation in this example uses Boost.FunctionTypes to shift
// metaprogramming code from the preprocessor into templates, to reduce
// preprocessing time and increase maintainability.
//
//
// Limitations
// ===========
//
// There is no lifetime management as implemented by the Boost candidate
// Interfaces library (see [Turkanis]).
//
// This example does not compile with Visual C++. Template argument deduction
// from the result of the address-of operator does not work properly with this
// compiler. It is possible to partially work around the problem, but it isn't
// done here for the sake of readability.
//
//
// Bibliography
// ============
//
// [Gosling] Gosling, J., Joy, B., Steele, G. The Java Language Specification
// http://java.sun.com/docs/books/jls/third_edition/html/interfaces.html
//
// [Abrahams] Abrahams, D. Proposal: interfaces, Post to newsgroup comp.std.c++
// http://groups.google.com/group/comp.std.c++/msg/85af30a61bf677e4
//
// [Turkanis] Turkanis, J., Diggins, C. Boost candidate Interfaces library
// http://www.kangaroologic.com/interfaces/libs/interfaces/doc/index.html
#include <cstddef>
#include <boost/function_types/function_pointer.hpp>
#include <boost/function_types/member_function_pointer.hpp>
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/utility/addressof.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/joint_view.hpp>
#include <boost/mpl/single_view.hpp>
#include <boost/mpl/transform_view.hpp>
#include <boost/preprocessor/seq/seq.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/preprocessor/seq/elem.hpp>
#include <boost/preprocessor/seq/size.hpp>
#include <boost/preprocessor/tuple/elem.hpp>
#include <boost/preprocessor/arithmetic/dec.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/facilities/empty.hpp>
#include <boost/preprocessor/facilities/identity.hpp>
#include <boost/preprocessor/punctuation/comma_if.hpp>
#include <boost/preprocessor/iteration/local.hpp>
#include <boost/preprocessor/repetition/enum.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
#include "detail/param_type.hpp"
namespace example
{
namespace ft = boost::function_types;
namespace mpl = boost::mpl;
using namespace mpl::placeholders;
// join a single type and an MPL-sequence
// in some ways similar to mpl::push_front (but mpl::push_front requires
// an MPL Extensible Sequence and this template does not)
template<typename T, typename Seq>
struct concat_view
: mpl::joint_view<mpl::single_view<T>, Seq>
{ };
// metafunction returning a function pointer type for a vtable entry
template<typename Inf>
struct vtable_entry
: ft::function_pointer
< concat_view< typename Inf::result, mpl::transform_view<
typename Inf::params, param_type<_> > > >
{ };
// the expression '& member<MetaInfo,Tag>::wrap<& Class::Function> ' in an
// assignment context binds the member function Function of Class with the
// properties described by MetaInfo and Tag to the corresponding vtable
// entry
template<typename Inf, typename Tag>
struct member
{
typedef typename ft::member_function_pointer
< concat_view<typename Inf::result,typename Inf::params>,Tag
>::type
mem_func_ptr;
typedef typename mpl::at_c<typename Inf::params,0>::type context;
template<mem_func_ptr MemFuncPtr>
static typename Inf::result wrap(void* c)
{
return (reinterpret_cast<context*>(c)->*MemFuncPtr)();
}
template<mem_func_ptr MemFuncPtr, typename T0>
static typename Inf::result wrap(void* c, T0 a0)
{
return (reinterpret_cast<context*>(c)->*MemFuncPtr)(a0);
}
template<mem_func_ptr MemFuncPtr, typename T0, typename T1>
static typename Inf::result wrap(void* c, T0 a0, T1 a1)
{
return (reinterpret_cast<context*>(c)->*MemFuncPtr)(a0,a1);
}
// continue with the preprocessor (the scheme should be clear, by now)
#define BOOST_PP_LOCAL_MACRO(n) \
template<mem_func_ptr MemFuncPtr, BOOST_PP_ENUM_PARAMS(n,typename T)> \
static typename Inf::result wrap(void* c, \
BOOST_PP_ENUM_BINARY_PARAMS(n,T,a)) \
{ \
return (reinterpret_cast<context*>(c)->*MemFuncPtr)( \
BOOST_PP_ENUM_PARAMS(n,a) ); \
}
#define BOOST_PP_LOCAL_LIMITS (3,BOOST_FT_MAX_ARITY-1)
#include BOOST_PP_LOCAL_ITERATE()
};
// extract a parameter by index
template<typename Inf, std::size_t Index>
struct param
: param_type< typename mpl::at_c< typename Inf::params,Index>::type >
{ };
}
// the interface definition on the client's side
#define BOOST_EXAMPLE_INTERFACE(name,def) \
class name \
{ \
struct vtable \
{ \
BOOST_EXAMPLE_INTERFACE__MEMBERS(def,VTABLE) \
}; \
\
vtable const * ptr_vtable; \
void * ptr_that; \
\
template<class T> struct vtable_holder \
{ \
static vtable const val_vtable; \
}; \
\
public: \
\
template<class T> \
inline name (T & that) \
: ptr_vtable(& vtable_holder<T>::val_vtable) \
, ptr_that(boost::addressof(that)) \
{ } \
\
BOOST_EXAMPLE_INTERFACE__MEMBERS(def,FUNCTION) \
}; \
\
template<typename T> \
name ::vtable const name ::vtable_holder<T>::val_vtable \
= { BOOST_EXAMPLE_INTERFACE__MEMBERS(def,INIT_VTABLE) }
#ifdef BOOST_PP_NIL // never defined -- a comment with syntax highlighting
BOOST_EXAMPLE_INTERFACE( interface_x,
(( a_func, (void)(int), const_qualified ))
(( another_func, (int), non_const ))
);
// expands to:
class interface_x
{
struct vtable
{
// meta information for first function
template<typename T = void*> struct inf0
{
typedef void result;
typedef ::boost::mpl::vector< T, int > params;
};
// function pointer with void* context pointer and parameters optimized
// for forwarding
::example::vtable_entry<inf0<> >::type func0;
// second function
template<typename T = void*> struct inf1
{
typedef int result;
typedef ::boost::mpl::vector< T > params;
};
::example::vtable_entry<inf1<> >::type func1;
};
// data members
vtable const * ptr_vtable;
void * ptr_that;
// this template is instantiated for every class T this interface is created
// from, causing the compiler to emit an initialized vtable for this type
// (see aggregate assignment, below)
template<class T> struct vtable_holder
{
static vtable const val_vtable;
};
public:
// converting ctor, creates an interface from an arbitrary class
template<class T>
inline interface_x (T & that)
: ptr_vtable(& vtable_holder<T>::val_vtable)
, ptr_that(boost::addressof(that))
{ }
// the member functions from the interface definition, parameters are
// optimized for forwarding
inline vtable::inf0<> ::result a_func (
::example::param<vtable::inf0<>,1>::type p0) const
{
return ptr_vtable-> func0(ptr_that , p0);
}
inline vtable::inf1<> ::result another_func ()
{
return ptr_vtable-> func1(ptr_that );
}
};
template<typename T>
interface_x ::vtable const interface_x ::vtable_holder<T>::val_vtable =
{
// instantiate function templates that wrap member function pointers (which
// are known at compile time) by taking their addresses in assignment to
// function pointer context
& ::example::member< vtable::inf0<T>, ::example::ft:: const_qualified >
::template wrap < &T:: a_func >
, & ::example::member< vtable::inf1<T>, ::example::ft:: non_const >
::template wrap < &T:: another_func >
};
#endif
// preprocessing code details
// iterate all of the interface's members and invoke a macro (prefixed with
// BOOST_EXAMPLE_INTERFACE_)
#define BOOST_EXAMPLE_INTERFACE__MEMBERS(seq,macro) \
BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq), \
BOOST_EXAMPLE_INTERFACE__ ## macro,seq)
// extract signature sequence from entry
#define BOOST_EXAMPLE_INTERFACE__VTABLE(z,i,seq) \
BOOST_EXAMPLE_INTERFACE__VTABLE_I(z,i, \
BOOST_PP_TUPLE_ELEM(3,1,BOOST_PP_SEQ_ELEM(i,seq)))
// split the signature sequence result/params and insert T at the beginning of
// the params part
#define BOOST_EXAMPLE_INTERFACE__VTABLE_I(z,i,seq) \
BOOST_EXAMPLE_INTERFACE__VTABLE_II(z,i, \
BOOST_PP_SEQ_HEAD(seq),(T)BOOST_PP_SEQ_TAIL(seq))
// emit the meta information structure and function pointer declaration
#define BOOST_EXAMPLE_INTERFACE__VTABLE_II(z,i,result_type,param_types) \
template<typename T = void*> \
struct BOOST_PP_CAT(inf,i) \
{ \
typedef result_type result; \
typedef ::boost::mpl::vector< BOOST_PP_SEQ_ENUM(param_types) > params; \
}; \
::example::vtable_entry<BOOST_PP_CAT(inf,i)<> >::type BOOST_PP_CAT(func,i);
// extract tuple entry from sequence and precalculate the name of the function
// pointer variable
#define BOOST_EXAMPLE_INTERFACE__INIT_VTABLE(z,i,seq) \
BOOST_EXAMPLE_INTERFACE__INIT_VTABLE_I(i,seq,BOOST_PP_CAT(func,i), \
BOOST_PP_SEQ_ELEM(i,seq))
// emit a function pointer expression that encapsulates the corresponding
// member function of T
#define BOOST_EXAMPLE_INTERFACE__INIT_VTABLE_I(i,seq,func,desc) \
BOOST_PP_COMMA_IF(i) & ::example::member< BOOST_PP_CAT(vtable::inf,i)<T>, \
::example::ft:: BOOST_PP_TUPLE_ELEM(3,2,desc) >::template wrap \
< &T:: BOOST_PP_TUPLE_ELEM(3,0,desc) >
// extract tuple entry from sequence
#define BOOST_EXAMPLE_INTERFACE__FUNCTION(z,i,seq) \
BOOST_EXAMPLE_INTERFACE__FUNCTION_I(z,i,BOOST_PP_SEQ_ELEM(i,seq))
// precalculate function name, arity, name of meta info structure and cv-
// qualifiers
#define BOOST_EXAMPLE_INTERFACE__FUNCTION_I(z,i,desc) \
BOOST_EXAMPLE_INTERFACE__FUNCTION_II(z,i, \
BOOST_PP_TUPLE_ELEM(3,0,desc), \
BOOST_PP_DEC(BOOST_PP_SEQ_SIZE(BOOST_PP_TUPLE_ELEM(3,1,desc))), \
BOOST_PP_CAT(vtable::inf,i)<>, \
BOOST_PP_CAT(BOOST_EXAMPLE_INTERFACE___,BOOST_PP_TUPLE_ELEM(3,2,desc)) \
)
// emit the definition for a member function of the interface
#define BOOST_EXAMPLE_INTERFACE__FUNCTION_II(z,i,name,arity,types,cv) \
inline types ::result name \
(BOOST_PP_ENUM_ ## z (arity,BOOST_EXAMPLE_INTERFACE__PARAM,types)) cv() \
{ \
return ptr_vtable-> BOOST_PP_CAT(func,i)(ptr_that \
BOOST_PP_ENUM_TRAILING_PARAMS_Z(z,arity,p)); \
}
// emit a parameter of the function definition
#define BOOST_EXAMPLE_INTERFACE__PARAM(z,j,types) \
::example::param<types,BOOST_PP_INC(j)>::type BOOST_PP_CAT(p,j)
// helper macros to map 'const_qualified' to 'const' an 'non_const' to ''
#define BOOST_EXAMPLE_INTERFACE___const_qualified BOOST_PP_IDENTITY(const)
#define BOOST_EXAMPLE_INTERFACE___non_const BOOST_PP_EMPTY
|