1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
[/==============================================================================
Copyright (C) 2001-2007 Joel de Guzman, Dan Marsden, Tobias Schwinger
Use, modification and distribution is subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
===============================================================================/]
[section Tuple]
The TR1 technical report describes extensions to the C++ standard library.
Many of these extensions will be considered for the next
iteration of the C++ standard. TR1 describes a tuple type, and
support for treating `std::pair` as a type of tuple.
Fusion provides full support for the __tr1__tuple__ interface, and the extended
uses of `std::pair` described in the TR1 document.
[section Class template tuple]
Fusion's implementation of the __tr1__tuple__ is also a fusion __forward_sequence__.
As such the fusion tuple type provides a lot of functionality beyond that required by TR1.
Currently tuple is basically a synonym for __vector__, although this may be changed
in future releases of fusion.
[heading Synopsis]
template<
typename T1 = __unspecified__,
typename T2 = __unspecified__,
...
typename TN = __unspecified__>
class tuple;
/tuple.hpp>
[section Construction]
[heading Description]
The __tr1__tuple__ type provides a default constructor, a constructor that takes initializers for all of its elements, a copy constructor, and a converting copy constructor. The details of the various constructors are described in this section.
[heading Specification]
[variablelist Notation
[[`T1 ... TN`, `U1 ... UN`][Tuple element types]]
[[`P1 ... PN`] [Parameter types]]
[[`Ti`, `Ui`] [The type of the `i`th element of a tuple]]
[[`Pi`] [The type of the `i`th parameter]]
]
tuple();
[*Requirements]: Each `Ti` is default constructable.
[*Semantics]: Default initializes each element of the tuple.
tuple(P1,P2,...,PN);
[*Requirements]: Each `Pi` is `Ti` if `Ti` is a reference type, `const Ti&` otherwise.
[*Semantics]: Copy initializes each element with the corresponding parameter.
tuple(const tuple& t);
[*Requirements]: Each `Ti` should be copy constructable.
[*Semantics]: Copy constructs each element of `*this` with the corresponding element of `t`.
template<typename U1, typename U2, ..., typename UN>
tuple(const tuple<U1, U2, ..., UN>& t);
[*Requirements]: Each `Ti` shall be constructible from the corresponding `Ui`.
[*Semantics]: Constructs each element of `*this` with the corresponding element of `t`.
[endsect]
[section Tuple creation functions]
[heading Description]
TR1 describes 2 utility functions for creating __tr1__tuple__s. `make_tuple` builds a tuple out of it's argument list, and `tie` builds a tuple of references to it's arguments. The details of these creation functions are described in this section.
[heading Specification]
template<typename T1, typename T2, ..., typename TN>
tuple<V1, V2, ..., VN> make_tuple(const T1& t1, const T2& t2, ..., const TN& tn);
Where `Vi` is `X&` if the cv-unqualified type `Ti` is `reference_wrapper<X>`, otherwise `Vi` is `Ti`.
[*Returns]: `tuple<V1, V2, ..., VN>(t1, t2, ..., tN)`
template<typename T1, typename T2, ..., typename TN>
tuple<T1&, T2&, ..., TN&> tie(T1& t1, T2& t2, ..., TN& tn);
[*Returns]: tuple<T1&, T2&, ..., TN&>(t1, t2, ..., tN). When argument `ti` is `ignore`, assigning any value to the corresponding tuple element has has no effect.
[endsect]
[section Tuple helper classes]
[heading Description]
The __tr1__tuple__ provides 2 helper traits, for compile time access to the tuple size, and the element types.
[heading Specification]
tuple_size<T>::value
[*Requires]: `T` is any fusion sequence type, including `tuple`.
[*Type]: __mpl_integral_constant__
[*Value]: The number of elements in the sequence. Equivalent to `__result_of_size__<T>::type`.
tuple_element<I, T>::type
[*Requires]: `T` is any fusion sequence type, including `tuple`. `0 <= I < N` or the program is ill formed.
[*Value]: The type of the `I`th element of `T`. Equivalent to `__result_of_value_at__<I,T>::type`.
[endsect]
[section Element access]
[heading Description]
The __tr1__tuple__ provides the `get` function to provide access to it's elements by zero based numeric index.
[heading Specification]
template<int I, T>
RJ get(T& t);
[*Requires]: `0 < I <= N`. The program is ill formed if `I` is out of bounds.
`T` is any fusion sequence type, including `tuple`.
[*Return type]: `RJ` is equivalent to `__result_of_at_c__<I,T>::type`.
[*Returns]: A reference to the `I`th element of `T`.
template<int I, typename T>
PJ get(T const& t);
[*Requires]: `0 < I <= N`. The program is ill formed if `I` is out of bounds.
`T` is any fusion sequence type, including `tuple`.
[*Return type]: `PJ` is equivalent to `__result_of_at_c__<I,T>::type`.
[*Returns]: A const reference to the `I`th element of `T`.
[endsect]
[section Relational operators]
[heading Description]
The __tr1__tuple__ provides the standard boolean relational operators.
[heading Specification]
[variablelist Notation
[[`T1 ... TN`, `U1 ... UN`][Tuple element types]]
[[`P1 ... PN`] [Parameter types]]
[[`Ti`, `Ui`] [The type of the `i`th element of a tuple]]
[[`Pi`] [The type of the `i`th parameter]]
]
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator==(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) == __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `true` if and only if `__tuple_get__<i>(lhs) == __tuple_get__<i>(rhs)` for all `i`.
For any 2 zero length tuples `e` and `f`, `e == f` returns `true`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator<(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) < __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns the lexicographical comparison of between `lhs` and `rhs`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator!=(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) == __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `!(lhs == rhs)`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator<=(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(rhs) < __tuple_get__<i>(lhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `!(rhs < lhs)`
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator>(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(rhs) < __tuple_get__<i>(lhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `rhs < lhs`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator>=(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) < __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `!(lhs < rhs)`.
[endsect]
[endsect]
[section Pairs]
[heading Description]
The __tr1__tuple__ interface is specified to provide uniform access to `std::pair` as if it were a 2 element tuple.
[heading Specification]
tuple_size<std::pair<T1, T2> >::value
[*Type]: An __mpl_integral_constant__
[*Value]: Returns 2, the number of elements in a pair.
tuple_element<0, std::pair<T1, T2> >::type
[*Type]: `T1`
[*Value]: Returns the type of the first element of the pair
tuple_element<1, std::pair<T1, T2> >::type
[*Type]: `T2`
[*Value]: Returns thetype of the second element of the pair
template<int I, typename T1, typename T2>
P& get(std::pair<T1, T2>& pr);
template<int I, typename T1, typename T2>
const P& get(const std::pair<T1, T2>& pr);
[*Type]: If `I == 0` `P` is `T1`, else if `I == 1` `P` is `T2` else the program is ill-formed.
[*Returns: `pr.first` if `I == 0` else `pr.second`.
[endsect]
[endsect]
|