File: do_the_bind.cpp

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (237 lines) | stat: -rw-r--r-- 8,063 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*=============================================================================
    Copyright (c) 2006-2007 Tobias Schwinger
  
    Use modification and distribution are subject to the Boost Software 
    License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt).

    Problem:

    How to "do the Bind?"

    This recipe shows how to implement a function binder, similar to 
    Boost.Bind based on the Functional module of Fusion.

    It works as follows:

    'bind' is a global, stateless function object. It is implemented in
    fused form (fused_binder) and transformed into a variadic function 
    object. When called, 'bind' returns another function object, which
    holds the arguments of the call to 'bind'. It is, again, implemented 
    in fused form (fused_bound_function) and transformed into unfused
    form. 
==============================================================================*/

#include <boost/fusion/functional/invocation/invoke.hpp>
#include <boost/fusion/functional/adapter/unfused_generic.hpp>
#include <boost/fusion/functional/adapter/unfused_rvalue_args.hpp>
#include <boost/fusion/support/deduce_sequence.hpp>

#include <boost/fusion/sequence/intrinsic/at.hpp>
#include <boost/fusion/mpl.hpp>
#include <boost/fusion/sequence/intrinsic/front.hpp>
#include <boost/fusion/sequence/intrinsic/empty.hpp>
#include <boost/fusion/algorithm/transformation/transform.hpp>
#include <boost/fusion/algorithm/transformation/pop_front.hpp>

#include <boost/type_traits/remove_reference.hpp>

#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/int.hpp>

#include <boost/ref.hpp>
#include <iostream>
#include <typeinfo>

namespace impl
{
    namespace fusion = boost::fusion;
    namespace traits = boost::fusion::traits;
    namespace result_of = boost::fusion::result_of;
    namespace mpl = boost::mpl;
    using mpl::placeholders::_;

    // Placeholders (we inherit from mpl::int_, so we can use placeholders
    // as indices for fusion::at, later) 
    template <int I> struct placeholder : mpl::int_<I> { };

    // A traits class to find out whether T is a placeholeder
    template <typename T> struct is_placeholder              : mpl::false_  { };
    template <int I> struct is_placeholder< placeholder<I> > : mpl::true_   { };
    template <int I> struct is_placeholder< placeholder<I> & > : mpl::true_   { };
    template <int I> struct is_placeholder< placeholder<I> const   > : mpl::true_   { };
    template <int I> struct is_placeholder< placeholder<I> const & > : mpl::true_   { };

    // This class template provides a Polymorphic Function Object to be used
    // with fusion::transform. It is applied to the sequence of arguments that
    // describes the binding and holds a reference to the sequence of arguments 
    // from the final call. 
    template<class FinalArgs> struct argument_transform
    {
        FinalArgs const & ref_final_args;
    public:

        explicit argument_transform(FinalArgs const & final_args)
            : ref_final_args(final_args)
        { }

        // A placeholder? Replace it with an argument from the final call...
        template <int Index>
        inline typename result_of::at_c<FinalArgs const, Index>::type
        operator()(placeholder<Index> const &) const
        {
            return fusion::at_c<Index>(this->ref_final_args);
        }
        // ...just return the bound argument, otherwise.
        template <typename T> inline T & operator()(T & bound) const
        {
            return bound;
        }

        template <typename Signature>
        struct result;

        template <class Self, typename T>
        struct result< Self (T) >
            : mpl::eval_if< is_placeholder<T>, 
                result_of::at<FinalArgs,typename boost::remove_reference<T>::type>,
                mpl::identity<T>
            >
        { };
    };

    // Fused implementation of the bound function, the function object 
    // returned by bind
    template <class BindArgs> class fused_bound_function 
    {
        typedef typename traits::deduce_sequence<BindArgs>::type bound_args;

        bound_args fsq_bind_args;
    public:

        fused_bound_function(BindArgs const & bind_args)
          : fsq_bind_args(bind_args)
        { }

        template <typename Signature>
        struct result;

        template <class FinalArgs>
        struct result_impl
            : result_of::invoke< typename result_of::front<bound_args>::type,
                typename result_of::transform<
                    typename result_of::pop_front<bound_args>::type,
                    argument_transform<FinalArgs> const 
                >::type
            >
        { }; 

        template <class Self, class FinalArgs>
        struct result< Self (FinalArgs) >
            : result_impl< typename boost::remove_reference<FinalArgs>::type > 
        { };

        template <class FinalArgs>
        inline typename result_impl<FinalArgs>::type 
        operator()(FinalArgs const & final_args) const
        {
            return fusion::invoke( fusion::front(this->fsq_bind_args),
                fusion::transform( fusion::pop_front(this->fsq_bind_args),
                    argument_transform<FinalArgs>(final_args) ) );
        }
        // Could add a non-const variant - omitted for readability

    };

    // Fused implementation of the 'bind' function
    struct fused_binder
    {
        template <class Signature>
        struct result;

        template <class BindArgs>
        struct result_impl
        {
            // We have to transform the arguments so they are held by-value
            // in the returned function. 
            typedef fusion::unfused_generic< 
                fused_bound_function<BindArgs> > type;
        };

        template <class Self, class BindArgs>
        struct result< Self (BindArgs) >
            : result_impl< typename boost::remove_reference<BindArgs>::type >
        { };

        template <class BindArgs>
        inline typename result_impl< BindArgs >::type 
        operator()(BindArgs & bind_args) const
        {
            return typename result< void(BindArgs) >::type(bind_args);
        }
    };

    // The binder's unfused type. We use unfused_rvalue_args to make that
    // thing more similar to Boost.Bind. Because of that we have to use 
    // Boost.Ref (below in the sample code)
    typedef fusion::unfused_rvalue_args<fused_binder> binder;
}

// Placeholder globals
impl::placeholder<0> const _1_ = impl::placeholder<0>();
impl::placeholder<1> const _2_ = impl::placeholder<1>();
impl::placeholder<2> const _3_ = impl::placeholder<2>();
impl::placeholder<3> const _4_ = impl::placeholder<3>();

// The bind function is a global, too
impl::binder const bind = impl::binder();


// OK, let's try it out:

struct func
{
    typedef int result_type;

    inline int operator()() const
    {
        std::cout << "operator()" << std::endl;
        return 0;
    }

    template <typename A> 
    inline int operator()(A const & a) const
    {
        std::cout << "operator()(A const & a)" << std::endl;
        std::cout << "  a = " << a << "  A = " << typeid(A).name() << std::endl;
        return 1;
    }

    template <typename A, typename B> 
    inline int operator()(A const & a, B & b) const
    {
        std::cout << "operator()(A const & a, B & b)" << std::endl;
        std::cout << "  a = " << a << "  A = " << typeid(A).name() << std::endl;
        std::cout << "  b = " << b << "  B = " << typeid(B).name() << std::endl;
        return 2;
    }
};

int main()
{
    func f;
    int value = 42;
    using boost::ref;

    int errors = 0;
    errors += !( bind(f)() == 0);
    errors += !( bind(f,"Hi")() == 1);
    errors += !( bind(f,_1_)("there.") == 1);
    errors += !( bind(f,"The answer is",_1_)(value) == 2);
    errors += !( bind(f,_1_,ref(value))("Really?") == 2);
    errors += !( bind(f,_1_,_2_)("Dunno. If there is an answer, it's",value) == 2);

    return !! errors;
}