1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
<HTML>
<!--
-- Copyright (c) Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine 2000
--
-- Distributed under the Boost Software License, Version 1.0.
-- (See accompanying file LICENSE_1_0.txt or copy at
-- http://www.boost.org/LICENSE_1_0.txt)
-->
<Head>
<Title>DFS Visitor</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<BR Clear>
<H1><img src="figs/python.gif" alt="(Python)"/>DFS Visitor Concept</H1>
This concept defines the visitor interface for <a
href="./depth_first_search.html"><tt>depth_first_search()</tt></a>.
Users can define a class with the DFS Visitor interface and pass an
object of the class to <tt>depth_first_search()</tt>, thereby
augmenting the actions taken during the graph search.
<h3>Refinement of</h3>
<a href="../../utility/CopyConstructible.html">Copy Constructible</a>
(copying a visitor should be a lightweight operation).
<h3>Notation</h3>
<Table>
<TR>
<TD><tt>V</tt></TD>
<TD>A type that is a model of DFS Visitor.</TD>
</TR>
<TR>
<TD><tt>vis</tt></TD>
<TD>An object of type <tt>V</tt>.</TD>
</TR>
<TR>
<TD><tt>G</tt></TD>
<TD>A type that is a model of Graph.</TD>
</TR>
<TR>
<TD><tt>g</tt></TD>
<TD>An object of type <tt>G</tt>.</TD>
</TR>
<TR>
<TD><tt>e</tt></TD>
<TD>An object of type <tt>boost::graph_traits<G>::edge_descriptor</tt>.</TD>
</TR>
<TR>
<TD><tt>s,u</tt></TD>
<TD>An object of type <tt>boost::graph_traits<G>::vertex_descriptor</tt>.</TD>
</TR>
</table>
<h3>Associated Types</h3>
none
<p>
<h3>Valid Expressions</h3>
<table border>
<tr>
<th>Name</th><th>Expression</th><th>Return Type</th><th>Description</th>
</tr>
<tr>
<td>Initialize Vertex</td>
<td><tt>vis.initialize_vertex(s, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked on every vertex of the graph before the start of the
graph search.
</td>
</tr>
<tr>
<td>Start Vertex</td>
<td><tt>vis.start_vertex(s, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked on the source vertex once before the start of the
search.
</td>
</tr>
<tr>
<td>Discover Vertex</td>
<td><tt>vis.discover_vertex(u, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked when a vertex is encountered for the first time.
</td>
</tr>
<tr>
<td>Examine Edge</td>
<td><tt>vis.examine_edge(e, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked on every out-edge of each vertex after it is discovered.
</td>
</tr>
<tr>
<td>Tree Edge</td>
<td><tt>vis.tree_edge(e, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked on each edge as it becomes a member of the edges that
form the search tree.</td>
</tr>
<tr>
<td>Back Edge</td>
<td><tt>vis.back_edge(e, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked on the back edges in the graph. For an undirected
graph there is some ambiguity between tree edges and back edges since
the edge <i>(u,v)</i> and <i>(v,u)</i> are the same edge, but both the
<tt>tree_edge()</tt> and <tt>back_edge()</tt> functions will be
invoked. One way to resolve this ambiguity is to record the tree
edges, and then disregard the back-edges that are already marked as
tree edges. An easy way to record tree edges is to record
predecessors at the <tt>tree_edge</tt> event point.
</td>
</tr>
<tr>
<td>Forward or Cross Edge</td>
<td><tt>vis.forward_or_cross_edge(e, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked on forward or cross edges in the graph. In an
undirected graph this method is never called.
</td>
</tr>
<tr>
<td>Finish Vertex</td>
<td><tt>vis.finish_vertex(u, g)</tt></td>
<td><tt>void</tt></td>
<td>
This is invoked on vertex <tt>u</tt> after <tt>finish_vertex</tt> has
been called for all the vertices in the DFS-tree rooted at vertex
<tt>u</tt>. If vertex <tt>u</tt> is a leaf in the DFS-tree, then
the <tt>finish_vertex</tt> function is call on <tt>u</tt> after
all the out-edges of <tt>u</tt> have been examined.
</td>
</tr>
</table>
<h3>Models</h3>
<ul>
<li><a href="./dfs_visitor.html"><tt>dfs_visitor</tt></a>
</ul>
<a name="python"></a>
<h3>Python</h3>
To implement a model of the <tt>DFSVisitor</tt> concept in Python,
create a new class that derives from the <tt>DFSVisitor</tt> type of
the graph, which will be
named <tt><i>GraphType</i>.DFSVisitor</tt>. The events and syntax are
the same as with visitors in C++. Here is an example for the
Python <tt>bgl.Graph</tt> graph type:
<pre>
class count_tree_edges_dfs_visitor(bgl.Graph.DFSVisitor):
def __init__(self, name_map):
bgl.Graph.DFSVisitor.__init__(self)
self.name_map = name_map
def tree_edge(self, e, g):
(u, v) = (g.source(e), g.target(e))
print "Tree edge ",
print self.name_map[u],
print " -> ",
print self.name_map[v]
</pre>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright © 2000-2001</TD><TD>
<A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>,
Indiana University (<A
HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)<br>
<A HREF="http://www.boost.org/people/liequan_lee.htm">Lie-Quan Lee</A>, Indiana University (<A HREF="mailto:llee@cs.indiana.edu">llee@cs.indiana.edu</A>)<br>
<A HREF=http://www.osl.iu.edu/~lums>Andrew Lumsdaine</A>,
Indiana University (<A
HREF="mailto:lums@osl.iu.edu">lums@osl.iu.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>
|