1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
<HTML>
<!-- Copyright 2007 Aaron Windsor
--
-- Distributed under the Boost Software License, Version 1.0.
-- (See accompanying file LICENSE_1_0.txt or copy at
-- http://www.boost.org/LICENSE_1_0.txt)
--
-->
<Head>
<Title>Boost Graph Library: Boyer-Myrvold Planarity Testing/Embedding</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<BR Clear>
<H1>Boyer-Myrvold Planarity Testing/Embedding</H1>
<p>
A graph is <a href="./planar_graphs.html#planar"><i>planar</i></a> if it can
be drawn in two-dimensional space without any of its edges crossing. Such a
drawing of a planar graph is called a
<a href="./planar_graphs.html#plane_drawing"><i>plane drawing</i></a>. Each
plane drawing belongs to an equivalence class called a <i>planar embedding</i>
<a href="#1">[1]</a> that is defined by the clockwise ordering of adjacent
edges around each vertex in the graph. A planar embedding is a convenient
intermediate representation of an actual drawing of a planar graph, and many
planar graph drawing algorithms are formulated as functions mapping a planar
embedding to a plane drawing.
<br>
<br>
<table align="center" class="image">
<caption align="bottom"><h5>A planar graph (top left), along with a planar
embedding of that graph (bottom left) can be used to create a plane drawing
(right) by embedding edges around each vertex in the order in which they
appear in the planar embedding.
</h5></caption>
<tr><td>
<img src="./figs/embedding_illustration.png">
</td></tr>
<tr></tr>
<tr></tr>
</table>
<br>
<p>
The function <tt>boyer_myrvold_planarity_test</tt> implements the planarity
testing/embedding algorithm of Boyer and Myrvold
[<a href="./bibliography.html#boyermyrvold04">70</a>].
<tt>boyer_myrvold_planarity_test</tt> returns <tt>true</tt> if the input graph
is planar and <tt>false</tt> otherwise. As a side-effect of this test, a planar
embedding can be constructed if the graph is planar or a minimal set of edges
that form a <a href = "./planar_graphs.html#kuratowskisubgraphs">Kuratowski
subgraph</a> can be found if the graph is not planar.
<tt>boyer_myrvold_planarity_test</tt> uses named parameter arguments (courtesy
of the <a href="../../parameter/doc/html/index.html">Boost.Parameter</a>
library) to specify what the function actually does. Some examples are:
<ul>
<li>Testing whether or not a graph is planar:
<pre>
bool is_planar = boyer_myrvold_planarity_test(g);
</pre>
<li>Computing a planar embedding for a graph if it is planar, otherwise finding
a set of edges that forms an obstructing Kuratowski subgraph:
<pre>
if (boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding = embedding_pmap,
boyer_myrvold_params::kuratowski_subgraph = out_itr
)
)
{
//do something with the embedding in embedding_pmap
}
else
{
//do something with the kuratowski subgraph output to out_itr
}
</pre>
</ul>
<p>
The parameters passed to <tt>boyer_myrvold_planarity_test</tt> in the examples
above do more than just carry the data structures used for input and output -
the algorithm is optimized at compile time based on which parameters are
present. A complete list of parameters accepted and their interactions are
described below.
<p>
<tt>boyer_myrvold_planarity_test</tt> accepts as input any undirected graph,
even those with self-loops and multiple edges.
However, many planar graph drawing algorithms make additional restrictions
on the structure of the input graph - for example, requiring that the input
graph is connected, biconnected, or even maximal planar (triangulated.)
Fortunately, any planar graph on <i>n</i> vertices that lacks one of these
properties can be augmented with additional edges so that it satisfies that
property in <i>O(n)</i> time - the functions
<tt><a href="./make_connected.html">make_connected</a></tt>,
<tt><a href="./make_biconnected_planar.html">make_biconnected_planar</a></tt>,
and <tt><a href="./make_maximal_planar.html">make_maximal_planar</a></tt>
exist for this purpose. If the graph drawing algorithm you're using requires,
say, a biconnected graph, then you must make your input graph biconnected
<i>before</i> passing it into <tt>boyer_myrvold_planarity_test</tt> so that the
computed planar embedding includes these additional edges. This may require
more than one call to <tt>boyer_myrvold_planarity_test</tt> depending on the
structure of the graph you begin with, since both
<tt>make_biconnected_planar</tt> and <tt>make_maximal_planar</tt> require a
planar embedding of the existing graph as an input parameter.
<p><p>
The named parameters accepted by <tt>boyer_myrvold_planarity_test</tt> are:
<ul>
<li><b><tt>graph</tt></b> : The input graph - this is the only required
parameter.
<li><b><tt>vertex_index_map</tt></b> : A mapping from vertices of the input
graph to indexes in the range <tt>[0..num_vertices(g))</tt>. If this parameter
is not provided, the vertex index map is assumed to be available as an interior
property of the graph, accessible by calling <tt>get(vertex_index, g)</tt>.
<li><b><tt>edge_index_map</tt></b>: A mapping from the edges of the input graph
to indexes in the range <tt>[0..num_edges(g))</tt>. This parameter is only
needed if the <tt>kuratowski_subgraph</tt> argument is provided. If the
<tt>kuratowski_subgraph</tt> argument is provided and this parameter is not
provided, the EdgeIndexMap is assumed to be available as an interior property
accessible by calling <tt>get(edge_index, g)</tt>.
<li><b><tt>embedding</tt></b> : If the graph is planar, this will be populated
with a mapping from vertices to the clockwise order of neighbors in the planar
embedding.
<li><b><tt>kuratowski_subgraph</tt></b> : If the graph is not planar, a minimal
set of edges that form the obstructing Kuratowski subgraph will be written to
this iterator.
</ul>
These named parameters all belong to the namespace
<tt>boyer_myrvold_params</tt>. See below for more information on the concepts
required for these arguments.
<H3>Verifying the output</H3>
Whether or not the input graph is planar, <tt>boyer_myrvold_planarity_test</tt>
can produce a certificate that can be automatically checked to verify that the
function is working properly.
<p>
If the graph is planar, a planar embedding can be produced. The
planar embedding can be verified by passing it to a plane drawing routine
(such as <tt><a href="straight_line_drawing.html">
chrobak_payne_straight_line_drawing</a></tt>) and using the function
<tt><a href="is_straight_line_drawing.html">is_straight_line_drawing</a></tt>
to verify that the resulting graph is planar.
<p>
If the graph is not planar, a set of edges that forms a Kuratowski subgraph in
the original graph can be produced. This set of edges can be passed to the
function <tt><a href="is_kuratowski_subgraph.html">is_kuratowski_subgraph</a>
</tt> to verify that they can be contracted into a <i>K<sub>5</sub></i> or
<i>K<sub>3,3</sub></i>. <tt>boyer_myrvold_planarity_test</tt> chooses the set
of edges forming the Kuratowski subgraph in such a way that the contraction to
a <i>K<sub>5</sub></i> or <i>K<sub>3,3</sub></i> can be done by a simple
deterministic process which is described in the documentation to
<tt>is_kuratowski_subgraph</tt>.
<H3>Where Defined</H3>
<P>
<a href="../../../boost/graph/boyer_myrvold_planar_test.hpp">
<TT>boost/graph/boyer_myrvold_planar_test.hpp</TT>
</a>
<H3>Parameters</H3>
IN: <tt>Graph& g</tt>
<blockquote>
Any undirected graph. The graph type must be a model of
<a href="VertexAndEdgeListGraph.html">VertexAndEdgeListGraph</a> and
<a href="IncidenceGraph.html">IncidenceGraph</a>.
</blockquote>
OUT <tt>PlanarEmbedding embedding</tt>
<blockquote>
Must model the <a href="PlanarEmbedding.html">PlanarEmbedding</a> concept.
</blockquote>
IN <tt>OutputIterator kuratowski_subgraph</tt>
<blockquote>
An OutputIterator which accepts values of the type
<tt>graph_traits<Graph>::edge_descriptor</tt>
</blockquote>
IN <tt>VertexIndexMap vm</tt>
<blockquote>
A <a href="../../property_map/ReadablePropertyMap.html">Readable Property Map
</a> that maps vertices from <tt>g</tt> to distinct integers in the range
<tt>[0, num_vertices(g) )</tt><br>
<b>Default</b>: <tt>get(vertex_index,g)</tt><br>
</blockquote>
IN <tt>EdgeIndexMap em</tt>
<blockquote>
A <a href="../../property_map/ReadablePropertyMap.html">Readable Property Map
</a> that maps edges from <tt>g</tt> to distinct integers in the range
<tt>[0, num_edges(g) )</tt><br>
<b>Default</b>: <tt>get(edge_index,g)</tt>, but this parameter is only used if
the <tt>kuratowski_subgraph_iterator</tt> is provided.<br>
</blockquote>
<H3>Complexity</H3>
Assuming that both the vertex index and edge index supplied take time
<i>O(1)</i> to return an index and there are <i>O(n)</i>
total self-loops and parallel edges in the graph, most combinations of
arguments given to
<tt>boyer_myrvold_planarity_test</tt> result in an algorithm that runs in time
<i>O(n)</i> for a graph with <i>n</i> vertices and <i>m</i> edges. The only
exception is when Kuratowski subgraph isolation is requested for a dense graph
(a graph with <i>n = o(m)</i>) - the running time will be <i>O(n+m)</i>
<a href = "#2">[2]</a>.
<H3>Examples</H3>
<P>
<ul>
<li><a href="../example/simple_planarity_test.cpp">A simple planarity test</a>
<li><a href="../example/kuratowski_subgraph.cpp">Isolating a Kuratowski
Subgraph</a>
<li><a href="../example/straight_line_drawing.cpp">Using a planar embedding to
create a straight line drawing</a>
</ul>
<h3>See Also</h3>
<a href="./planar_graphs.html">Planar Graphs in the Boost Graph Library</a>
<h3>Notes</h3>
<p><a name="1">[1] A planar embedding is also called a <i>combinatorial
embedding</i>.
<p><a name="2">[2] The algorithm can still be made to run in time <i>O(n)</i>
for this case, if needed. <a href="planar_graphs.html#EulersFormula">Euler's
formula</a> implies that a planar graph with <i>n</i> vertices can have no more
than <i>3n - 6</i> edges, which means that any non-planar graph on <i>n</i>
vertices has a subgraph of only <i>3n - 5</i> edges that contains a Kuratowski
subgraph. So, if you need to find a Kuratowski subgraph of a graph with more
than <i>3n - 5</i> edges in time <i>O(n)</i>, you can create a subgraph of the
original graph consisting of any arbitrary <i>3n - 5</i> edges and pass that
graph to <tt>boyer_myrvold_planarity_test</tt>.
<br>
<HR>
Copyright © 2007 Aaron Windsor (<a href="mailto:aaron.windsor@gmail.com">
aaron.windsor@gmail.com</a>)
</BODY>
</HTML>
|