File: gursoy_atun_layout.html

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (462 lines) | stat: -rw-r--r-- 17,381 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
<HTML>
<!--
  -- Copyright (c) 2004 Trustees of Indiana University
  --
  -- Distributed under the Boost Software License, Version 1.0.
  -- (See accompanying file LICENSE_1_0.txt or copy at
  -- http://www.boost.org/LICENSE_1_0.txt)
  -->
<Head>
<Title>Boost Graph Library: G&uuml;rsoy-Atun Layout</Title>
<script language="JavaScript" type="text/JavaScript">
<!--
function address(host, user) {
        var atchar = '@';
        var thingy = user+atchar+host;
        thingy = '<a hre' + 'f=' + "mai" + "lto:" + thingy + '>' + user+atchar+host + '</a>';
        document.write(thingy);
}
//-->
</script>
</head>


<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b" 
        ALINK="#ff0000"> 
<IMG SRC="../../../boost.png" 
     ALT="C++ Boost" width="277" height="86"> 

<BR Clear>

<TT>gursoy_atun_layout</TT>
</H1>

<P>

<h3>Synopsis</h3>
<PRE>
<em>// Non-named parameter version</em>
template&lt;typename VertexListAndIncidenceGraph,  typename Topology,
	 typename PositionMap, typename VertexIndexMap, 
         typename EdgeWeightMap&gt;
void
gursoy_atun_layout(const VertexListAndIncidenceGraph&amp; g,
                   const Topology&amp; space,
		   PositionMap position,
		   int nsteps = num_vertices(g),
		   double diameter_initial = sqrt((double)num_vertices(g)),
		   double diameter_final = 1,
		   double learning_constant_initial = 0.8,
		   double learning_constant_final = 0.2,
		   VertexIndexMap vertex_index_map = get(vertex_index, g),
                   EdgeWeightMap weight = dummy_property_map());

<em>// Named parameter version</em>
template&lt;typename VertexListAndIncidenceGraph, typename Topology,
         typename PositionMap, typename P, typename T, typename R&gt;
void 
gursoy_atun_layout(const VertexListAndIncidenceGraph&amp; g,  
                   const Topology&amp; space,
                   PositionMap position,
                   const bgl_named_params&lt;P,T,R&gt;&amp; params = <em>all defaults</em>);

<em>// Topologies</em>
template&lt;std::size_t Dims&gt; class <a href="#convex_topology">convex_topology</a>;
template&lt;std::size_t Dims, typename RandomNumberGenerator = minstd_rand&gt; class <a href="#hypercube_topology">hypercube_topology</a>;
template&lt;typename RandomNumberGenerator = minstd_rand&gt; class <a href="#square_topology">square_topology</a>;
template&lt;typename RandomNumberGenerator = minstd_rand&gt; class <a href="#cube_topology">cube_topology</a>;
template&lt;std::size_t Dims, typename RandomNumberGenerator = minstd_rand&gt; class <a href="#ball_topology">ball_topology</a>;
template&lt;typename RandomNumberGenerator = minstd_rand&gt; class <a href="#circle_topology">circle_topology</a>;
template&lt;typename RandomNumberGenerator = minstd_rand&gt; class <a href="#sphere_topology">sphere_topology</a>;
template&lt;typename RandomNumberGenerator = minstd_rand&gt; class <a href="#heart_topology">heart_topology</a>;
</PRE>

<h3>Description</h3>

<P> This algorithm&nbsp;[<A HREF="bibliography.html#gursoy00">60</A>]
performs layout of directed graphs, either weighted or unweighted. This
algorithm is very different from the <a
href="kamada_kawai_spring_layout.html">Kamada-Kawai</a> and <a
href="fruchterman_reingold.html">Fruchterman-Reingold</a> algorithms,
because it does not explicitly strive to layout graphs in a visually
pleasing manner. Instead, it attempts to distribute the vertices
uniformly within a <em>topology</em> (e.g., rectangle, sphere, heart shape),
keeping vertices close to their neighbors. The algorithm itself is
based on <a
href="http://davis.wpi.edu/~matt/courses/soms/">Self-Organizing
Maps</a>.

<p> <a href="#topologies">Various topologies</a> are provided that
produce different, interesting results. The <a
href="#square_topology">square topology</a> can be used for normal
display of graphs or distributing vertices for parallel computation on
a process array, for instance. Other topologies, such as the <a
href="#sphere_topology">sphere topology</a> (or N-dimensional <a
href="#ball_topology">ball topology</a>) make sense for different
problems, whereas the <a href="#heart_topology">heart topology</a> is
just plain fun. One can also <a href="#topology-concept">define a
topology</a> to suit other particular needs. <br>

<a href="#square_topology"><img src="figs/ga-square.png"></a>
<a href="#heart_topology"><img src="figs/ga-heart.png"></a>
<a href="#circle_topology"><img src="figs/ga-circle.png"></a>


<h3>Where Defined</h3>

<a href="../../../boost/graph/gursoy_atun_layout.hpp"><tt>boost/graph/gursoy_atun_layout.hpp</tt></a>

<h3>Parameters</h3>

IN: <tt>const Graph&amp; g</tt> 
<blockquote>
  The graph object on which the algorithm will be applied.  The type
  <tt>Graph</tt> must be a model of <a
  href="./VertexAndEdgeListGraph.html">Vertex List Graph</a> and <a
  href="IncidenceGraph.html">Incidence Graph</a>.
</blockquote>

IN: <tt>const Topology&amp; space</tt>
<blockquote>
  The topology on which the graph will be layed out. The type must
  model the <a href="#topology-concept">Topology</a> concept.
</blockquote>

OUT: <tt>PositionMap position</tt>
<blockquote>
  The property map that stores the position of each vertex. The type
  <tt>PositionMap</tt> must be a model of <a
  href="../../property_map/LvaluePropertyMap.html">Lvalue Property
  Map</a> such that the vertex descriptor type of <tt>Graph</tt> is
  convertible to its key type. Its value type must be the type of a
  point in the topology.
</blockquote>

IN: <tt>int nsteps</tt>
<blockquote>
  The number of iterations to perform.<br>
  <b>Default</b>: <tt>num_vertices(g)</tt>
</blockquote>

IN: <tt>double diameter_initial</tt>
<blockquote>
  When a vertex is selected to be updated, all vertices that are
  reachable from that vertex within a certain diameter (in graph
  terms) will also be updated. This diameter begins at
  <tt>diameter_initial</tt> in the first iteration and ends at
  <tt>diameter_final</tt> in the last iteration, progressing
  exponentially. Generally the diameter decreases, in a manner similar to
  the cooling schedule in <a
href="fruchterman_reingold.html">Fruchterman-Reingold</a>. The
diameter should typically decrease in later iterations, so this value
should not be less than <tt>diameter_final</tt>.<br>
  <b>Default</b>: <tt>sqrt((double)num_vertices(g))</tt>
</blockquote>

IN: <tt>double diameter_final</tt>
<blockquote>
  The final value of the diameter.<br>
  <b>Default</b>: 1.0
</blockquote>

IN: <tt>double learning_constant_initial</tt>
<blockquote>
  The learning rate affects how far vertices can moved to rearrange
  themselves in a given iteration. The learning rate progresses
  linearly from the initial value to the final value, both of which
  should be between 0 and 1. The learning rate should typically
  decrease, so the initial value should not exceed the final
  value.<br> <b>Default</b>: 0.8
</blockquote>

IN: <tt>double learning_constant_final</tt>
<blockquote>
  The final learning rate constant.<br>
  <b>Default</b>: 0.2
</blockquote>

IN: <tt>VertexIndexMap vertex_index_map</tt> 
<blockquote>
  This maps each vertex to an integer in the range <tt>[0,
    num_vertices(g))</tt>. 
  The type <tt>VertexIndexMap</tt> must be a model of <a
  href="../../property_map/ReadablePropertyMap.html">Readable Property
  Map</a>. The value type of the map must be an integer type. The
  vertex descriptor type of the graph needs to be usable as the key
  type of the map.<br>
<b>Default:</b> <tt>get(vertex_index, g)</tt>
    Note: if you use this default, make sure your graph has
    an internal <tt>vertex_index</tt> property. For example,
    <tt>adjacenty_list</tt> with <tt>VertexList=listS</tt> does
    not have an internal <tt>vertex_index</tt> property.
</blockquote>

IN: <tt>EdgeWeightMap weight</tt> 
<blockquote>
  This maps each edge to an weight.
    num_vertices(g))</tt>. This is only necessary when no
    displacement map is provided. 
  The type <tt>EdgeWeightMap</tt> must be a model of <a
  href="../../property_map/ReadablePropertyMap.html">Readable Property
  Map</a>. The value type of the map must be an floating-point type
  compatible with <tt>double</tt>. The edge descriptor type of the
  graph needs to be usable as the key type of the map. When this map
  is a <tt>dummy_property_map</tt>, the algorithm assumes the graph is
  unweighted.<br>
<b>Default:</b> <tt>dummy_property_map()</tt>
</blockquote>

<h3>Named Parameters</h3>

IN: <tt>iterations(int n)</tt>
<blockquote>
Executes the algorithm for <em>n</em> iterations.<br>
<b>Default:</b> <tt>num_vertices(g)</tt>
</blockquote>

IN: <tt>diameter_range(std::pair<T, T> range)</tt>
<blockquote>
Range specifying the parameters (<tt>diameter_initial</tt>, <tt>diameter_final</tt>). <br>
<b>Default:</b> <tt>std::make_pair(sqrt((double)num_vertices(g)), 1.0)</tt>
</blockquote>

IN: <tt>learning_constant_range(std::pair<T, T> range)</tt>
<blockquote>
Range specifying the parameters (<tt>learning_constant_initial</tt>, <tt>learning_constant_final</tt>). <br>
<b>Default:</b> <tt>std::make_pair(0.8, 0.2)</tt>
</blockquote>

IN: <tt>edge_weight(EdgeWeightMap weight)</tt>
<blockquote>
Equivalent to the non-named <tt>weight</tt> parameter.<br>
<b>Default:</b> <tt>dummy_property_map()</tt>
</blockquote>

IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt> 
<blockquote>
Equivalent to the non-named <tt>vertex_index_map</tt> parameter.<br>
<b>Default:</b> <tt>get(vertex_index, g)</tt>
    Note: if you use this default, make sure your graph has
    an internal <tt>vertex_index</tt> property. For example,
    <tt>adjacenty_list</tt> with <tt>VertexList=listS</tt> does
    not have an internal <tt>vertex_index</tt> property.
</blockquote>

<a name="topologies"><h3>Topologies</h3></a>
A topology is a description of a space on which layout can be
performed. Some common two, three, and multidimensional topologies
are provided, or you may create your own so long as it meets the
requirements of the <a href="#topology-concept">Topology concept</a>.

<a name="topology-concept"><h4>Topology Concept</h4></a> Let
<tt>Topology</tt> be a model of the Topology concept and let
<tt>space</tt> be an object of type <tt>Topology</tt>. <tt>p1</tt> and
<tt>p2</tt> are objects of associated type <tt>point_type</tt> (see
below). The following expressions must be valid:

<table border="1">
  <tr>
    <th>Expression</th>
    <th>Type</th>
    <th>Description</th>
  </tr>
  <tr>
    <td><tt>Topology::point_type</tt></td>
    <td>type</td>
    <td>The type of points in the space.</td>
  </tr>
  <tr>
    <td><tt>space.random_point()</tt></td>
    <td>point_type</td>
    <td>Returns a random point (usually uniformly distributed) within
    the space.</td>
  </tr>
  <tr>
    <td><tt>space.distance(p1, p2)</tt></td>
    <td>double</td>
    <td>Get a quantity representing the distance between <tt>p1</tt>
    and <tt>p2</tt> using a path going completely inside the space.
    This only needs to have the same &lt; relation as actual
    distances, and does not need to satisfy the other properties of a
    norm in a Banach space.</td>
  </tr>
  <tr>
    <td><tt>space.move_position_toward(p1, fraction, p2)</tt></td>
    <td>point_type</td>
    <td>Returns a point that is a fraction of the way from <tt>p1</tt>
    to <tt>p2</tt>, moving along a "line" in the space according to
    the distance measure. <tt>fraction</tt> is a <tt>double</tt>
    between 0 and 1, inclusive.</td>
  </tr>
</table>

<a name="convex_topology"><h3>Class template <tt>convex_topology</tt></h3></a>

<p>Class template <tt>convex_topology</tt> implements the basic
distance and point movement functions for any convex topology in
<tt>Dims</tt> dimensions. It is not itself a topology, but is intended
as a base class that any convex topology can derive from. The derived
topology need only provide a suitable <tt>random_point</tt> function
that returns a random point within the space.

<pre>
template&lt;std::size_t Dims&gt;
class convex_topology 
{
  struct point 
  {
    point() { }
    double& operator[](std::size_t i) {return values[i];}
    const double& operator[](std::size_t i) const {return values[i];}

  private:
    double values[Dims];
  };

 public:
  typedef point point_type;

  double distance(point a, point b) const;
  point move_position_toward(point a, double fraction, point b) const;
};
</pre>

<a name="hypercube_topology"><h3>Class template <tt>hypercube_topology</tt></h3></a>

<p>Class template <tt>hypercube_topology</tt> implements a
<tt>Dims</tt>-dimensional hypercube. It is a convex topology whose
points are drawn from a random number generator of type
<tt>RandomNumberGenerator</tt>. The <tt>hypercube_topology</tt> can
be constructed with a given random number generator; if omitted, a
new, default-constructed random number generator will be used. The
resulting layout will be contained within the hypercube, whose sides
measure 2*<tt>scaling</tt> long (points will fall in the range
[-<tt>scaling</tt>, <tt>scaling</tt>] in each dimension). 

<pre>
template&lt;std::size_t Dims, typename RandomNumberGenerator = minstd_rand&gt;
class hypercube_topology : public <a href="#convex_topology">convex_topology</a>&lt;Dims&gt;
{
public:
  explicit hypercube_topology(double scaling = 1.0);
  hypercube_topology(RandomNumberGenerator& gen, double scaling = 1.0);
  point_type random_point() const;
};
</pre>

<a name="square_topology"><h3>Class template <tt>square_topology</tt></h3></a>

<p>Class template <tt>square_topology</tt> is a two-dimensional
hypercube topology.

<pre>
template&lt;typename RandomNumberGenerator = minstd_rand&gt;
class square_topology : public <a href="#hypercube_topology">hypercube_topology</a>&lt;2, RandomNumberGenerator&gt;
{
 public:
  explicit square_topology(double scaling = 1.0);
  square_topology(RandomNumberGenerator& gen, double scaling = 1.0);
};
</pre>

<a name="cube_topology"><h3>Class template <tt>cube_topology</tt></h3></a>

<p>Class template <tt>cube_topology</tt> is a two-dimensional
hypercube topology.

<pre>
template&lt;typename RandomNumberGenerator = minstd_rand&gt;
class cube_topology : public <a href="#hypercube_topology">hypercube_topology</a>&lt;3, RandomNumberGenerator&gt;
{
 public:
  explicit cube_topology(double scaling = 1.0);
  cube_topology(RandomNumberGenerator& gen, double scaling = 1.0);
};
</pre>

<a name="ball_topology"><h3>Class template <tt>ball_topology</tt></h3></a>

<p>Class template <tt>ball_topology</tt> implements a
<tt>Dims</tt>-dimensional ball. It is a convex topology whose points
are drawn from a random number generator of type
<tt>RandomNumberGenerator</tt> but reside inside the ball. The
<tt>ball_topology</tt> can be constructed with a given random number
generator; if omitted, a new, default-constructed random number
generator will be used. The resulting layout will be contained within
the ball with the given <tt>radius</tt>.

<pre>
template&lt;std::size_t Dims, typename RandomNumberGenerator = minstd_rand&gt;
class ball_topology : public <a href="#convex_topology">convex_topology</a>&lt;Dims&gt;
{
public:
  explicit ball_topology(double radius = 1.0);
  ball_topology(RandomNumberGenerator& gen, double radius = 1.0); 
  point_type random_point() const;
};
</pre>

<a name="circle_topology"><h3>Class template <tt>circle_topology</tt></h3></a>

<p>Class template <tt>circle_topology</tt> is a two-dimensional
ball topology.

<pre>
template&lt;typename RandomNumberGenerator = minstd_rand&gt;
class circle_topology : public <a href="#ball_topology">ball_topology</a>&lt;2, RandomNumberGenerator&gt;
{
 public:
  explicit circle_topology(double radius = 1.0);
  circle_topology(RandomNumberGenerator& gen, double radius = 1.0);
};
</pre>

<a name="sphere_topology"><h3>Class template <tt>sphere_topology</tt></h3></a>

<p>Class template <tt>sphere_topology</tt> is a two-dimensional
ball topology.

<pre>
template&lt;typename RandomNumberGenerator = minstd_rand&gt;
class sphere_topology : public <a href="#ball_topology">ball_topology</a>&lt;3, RandomNumberGenerator&gt;
{
 public:
  explicit sphere_topology(double radius = 1.0);
  sphere_topology(RandomNumberGenerator& gen, double radius = 1.0);
};
</pre>

<a name="heart_topology"><h3>Class template <tt>heart_topology</tt></h3></a>

<p>Class template <tt>heart_topology</tt> is topology in the shape of
a heart. It serves as an example of a non-convex, nontrivial topology
for layout. 

<pre>
template&lt;typename RandomNumberGenerator = minstd_rand&gt;
class heart_topology 
{
 public:
  typedef <em>unspecified</em> point_type;

  heart_topology();
  heart_topology(RandomNumberGenerator& gen);
  point_type random_point() const;
  double distance(point_type a, point_type b) const;
  point_type move_position_toward(point_type a, double fraction, point_type b) const;
};
</pre>

<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy; 2004</TD><TD>
Jeremiah Willcock, Indiana University (<script language="Javascript">address("osl.iu.edu", "jewillco")</script>)<br>
<A HREF="http://www.boost.org/people/doug_gregor.html">Doug Gregor</A>, Indiana University (<script language="Javascript">address("cs.indiana.edu", "dgregor")</script>)<br>
  <A HREF=http://www.osl.iu.edu/~lums>Andrew Lumsdaine</A>,
Indiana University (<script language="Javascript">address("osl.iu.edu", "lums")</script>)
</TD></TR></TABLE>

</BODY>
</HTML>