1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=iso-8859-1">
<TITLE>Boost Graph Library: Maximum (Minimum) cycle ratio</TITLE>
<META NAME="CREATED" CONTENT="20061218;17562954">
<META NAME="CHANGEDBY" CONTENT="Dmitry Bufistov">
<META NAME="CHANGED" CONTENT="20070128;20552300">
<!-- -- Copyright 2007 Technical University of Catalonia
--
-- Use, modification and distribution is subject to the Boost Software
-- License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
-- http://www.boost.org/LICENSE_1_0.txt)
--
-- Authors: Dmitry Bufistov
-- Andrey Parfenov
-->
<STYLE>
<!--
@page { size: 3.5cm 2.5cm }
TD P { color: #000000 }
H1 { color: #000000 }
P { color: #000000 }
PRE { color: #000000 }
H3 { color: #000000 }
BLOCKQUOTE { color: #000000 }
A:link { color: #0000ee }
A:visited { color: #551a8b }
-->
</STYLE>
</HEAD>
<BODY TEXT="#000000" LINK="#0000ee" VLINK="#551a8b" BGCOLOR="#ffffff" DIR="LTR">
<P><IMG SRC="../../..//boost.png" NAME="graphics1" ALT="C++ Boost" ALIGN=BOTTOM WIDTH=277 HEIGHT=86 BORDER=0>
</P>
<H1><TT>maximum(minimum)_cycle_ratio</TT>
</H1>
<I>// non-named parameter version</I>
<!--template <typename <A HREF="Graph.html">TGraph</A>,
typename TVertexIndexMap,
typename TWeight1EdgeMap,
typename TWeight2EdgeMap >
double maximum_cycle_ratio_good_graph(const TGraph& g, TVertexIndexMap vim, TWeight1EdgeMap ew1m, TWeight2EdgeMap ew2m,
typename std::vector<typename boost::graph_traits<TGraph>::edge_descriptor>* pcc = 0);
<br/>
<PRE>template <typename <A HREF="Graph.html">TGraph</A>,
typename TWeight1EdgeMap,
typename TWeight2EdgeMap >
double maximum_cycle_ratio1(const TGraph& g, TWeight1EdgeMap ewm, TWeight2EdgeMap ew2m,
typename std::vector<typename boost::graph_traits<TGraph>::edge_descriptor>* pcc = 0,
typename boost::property_traits<TWeight1EdgeMap>::value_type minus_infinity =
-(std::numeric_limits<int>::max)());
</PRE>-->
<P>
<PRE>template <typename <A HREF="Graph.html">TGraph</A>,
typename TVertexIndexMap,
typename TWeight1EdgeMap,
typename TWeight2EdgeMap >
double maximum_cycle_ratio(const TGraph& g, TVertexIndexMap vim, TWeight1EdgeMap ewm, TWeight2EdgeMap ew2m,
typename std::vector<typename boost::graph_traits<TGraph>::edge_descriptor>* pcc = 0,
typename boost::property_traits<TWeight1EdgeMap>::value_type minus_infinity =
-(std::numeric_limits<int>::max)());
</PRE>
</P>
<P>
<PRE>template <typename <A HREF="Graph.html">TGraph</A>,
typename TVertexIndexMap,
typename TWeight1EdgeMap,
typename TWeight2EdgeMap,
typename TEdgeIndexMap >
double minimum_cycle_ratio(const TGraph& g, TVertexIndexMap vim, TWeight1EdgeMap ewm, TWeight2EdgeMap ew2m, TEdgeIndexMap eim,
typename std::vector<typename boost::graph_traits<TGraph>::edge_descriptor>* pcc = 0,
typename boost::property_traits<TWeight1EdgeMap>::value_type plus_infinity =
(std::numeric_limits<int>::max)());
</PRE>
</P>
The <I>maximum_cycle_ratio()</I> function calculates the maximum cycle ratio of a weighted directed multigraph <I>g=(V,E,W1,W2)</I>, where <i>V</i> is a vertex set, <i>E</i> is an edge set, W1 and W2 are edge weight functions, W2 is nonnegative. <i>Multigraph</i> is a graph that can have multiple edges between its vertices. The calculated maximum cycle ratio will be the return value of the function. The <I>maximal_cycle_ratio()</I> returns <I>minus_infinity</I> if graph has no cycles. The value of the <i>minus_infinity</i> parameter should be small enough to garanty that <i>g</i> has at leat one cycle with greater ratio.
</P>
<P>Let every edge <I>e</I> have two weights <I>W1(e)</I> and <I>W2(e)</I>. </SPAN> Let <I>c</I> <SPAN STYLE="font-style: normal">be a cycle of a graph</SPAN> <I>g</I>. <SPAN STYLE="font-style: normal">The <i>cycle ratio</i> (<I>cr(c)</I>) is defined as:</SPAN></P>
<P><IMG SRC="figs/cr.jpg" NAME="graphics2" ALT="Cycle ratio definition" ALIGN=LEFT WIDTH=295 HEIGHT=82 BORDER=0><BR CLEAR=LEFT><BR><BR>
The <I>maximum (minimum) cycle ratio</I> (mcr) is the maximum (minimum) cycle ratio of all cycles of the graph.
Cycle calls <I>critical</I> if its ratio is equal to <I>mcr</I>. </P>If the <i>pcc</i> parameter is not zero then one critical cycle will be written to the corresponding std::vector of edge descriptors. The edges in the vector stored in the way that *pcc[0], *ppc[1],...,*ppc[n] is a correct path.</P>
<!--<P STYLE="margin-bottom: 0cm">
For every directed multigraph <I>G=(V,E)</I> there is a «good» multigraph G'=(V',E'),
such that <I>mcr(G)== mcr(G').</I> G' can be constructed from G by
adding one "sink" <SPAN STYLE="font-style: normal">vertex </SPAN><I> u </I><SPAN STYLE="font-style: normal">and</SPAN><I>
num_vertex(G)+ 1 </I><SPAN STYLE="font-style: normal">edges</SPAN><I>
(v, u) </I><SPAN STYLE="font-style: normal">for all vertices</SPAN><I>
v </I><SPAN STYLE="font-style: normal">in</SPAN><I> V</I> <SPAN STYLE="font-style: normal">(including
self loop <I>sl=(u,u)</I>). The weights of the self loop </SPAN><I>W1(sl),
W2(sl) </I><SPAN STYLE="font-style: normal">should be set to «<I>minus
infinity»</I> and 1 correspondingly. The <I>make_graph_good()</I>
function from <A HREF="../example/cycle_ratio_example.cpp">cycle_ratio_example.cpp</A>
implement this transformation. Based on <I>make_graph_good()</I>
function one can write <I>maximum_cycle_ratio()</I> function that would work
for all directed multigraphs, returning minus infinity if graph has
no cycles, the usage example file <A HREF="../example/cycle_ratio_example.cpp">cycle_ratio_example.cpp</A>
contains implementation of this function (also more or less general version of <I>minimal_cycle_ratio()</I> function) and some usage examples. </SPAN>
</P>-->
For a graph <i>G=(V,E,W1,W2)</i> let <i>G'=(V,E,-W1,W2)</i> be a graph with opposite <i>W1</i> function, then the minimum cycle ratio of <i>G</i> is the opposite maximum cycle ratio of <i>G'</i>.
The <i>minimum_cycle_ratio()</i> function just calls the <i>maximum_cycle_ratio()</i> with the opposite <i>W1</i> function, so if the type value of the <i>W1</i> weight is integral then it must be signed.
<P>
The algorithm is due to Howard's iteration policy algorithm, descibed in
<A HREF="./cochet-terrasson98numerical.pdf">[1]</A>.
Ali Dasdan, Sandy S. Irani and Rajesh K.Gupta in their paper
<A HREF="./dasdan-dac99.pdf">Efficient Algorithms for Optimum Cycle Mean and Optimum Cost to Time Ratio
Problems</A>state that this is the most efficient algorithm to the time being (1999).</P>
<H3>
Where Defined</H3>
<P STYLE="background: transparent"><TT><A HREF="../../../boost/graph/howard_cycle_ratio.hpp">boost/graph/howard_cycle_ratio.hpp</A></TT>
</P>
<H3>Parameters</H3>
<P>IN: <FONT FACE="Courier New, monospace">const TGraph& g </FONT>
</P>
<BLOCKQUOTE>A directed weighted multigraph.
The graph's type must be a model of <A HREF="VertexListGraph.html">VertexListGraph</A>
and <A HREF="IncidenceGraph.html">IncidenceGraph</A>
</BLOCKQUOTE>
<P>IN: <FONT FACE="Courier New, monospace" COLOR="#000000">TVertexIndexMap vim</FONT>
</P>
<BLOCKQUOTE>Maps each vertex of the graph to a unique integer in the
range [0, num_vertices(g)).
</BLOCKQUOTE>
<P>IN: <FONT FACE="Courier New, monospace">TWeight1EdgeMap ew1m</FONT>
</P>
<BLOCKQUOTE>
The W1 edge weight function. For <i>minimum_cycle_ratio()</i> if the type value of the ew1m is integral then it must be signed.
</BLOCKQUOTE>
<P>IN: <FONT FACE="Courier New, monospace">TWeight2EdgeMap ew2m</FONT>
</P>
<BLOCKQUOTE>The W2 edge weight function. Must be nonnegative.</BLOCKQUOTE>
<P>IN: <FONT FACE="Courier New, monospace"><FONT COLOR="#000000">TEdgeIndexMap eim</FONT></FONT>
</P>
<BLOCKQUOTE>Maps each edge of the graph <I>g</I> to a unique integer
in the range <TT>[0, num_edges(g)). <FONT FACE="Times New Roman, serif"></FONT></TT></BLOCKQUOTE>
<P>IN: <FONT FACE="Courier New, monospace"><FONT COLOR="#000000">boost::property_traits<TWeight1EdgeMap>::value_type minus_infinity</FONT></FONT>
</P>
<BLOCKQUOTE>Small enough value to garanty that <i>g</i> has at least one cycle with greater ratio</BLOCKQUOTE>
<P>IN: <FONT FACE="Courier New, monospace"><FONT COLOR="#000000">boost::property_traits<TWeight1EdgeMap>::value_type plus_infinity</FONT></FONT>
</P>
<BLOCKQUOTE>Big enough value to garanty that <i>g</i> has at least one cycle with less ratio. Expression -plus_infinity must be well defined.</BLOCKQUOTE>
<P>OUT: <FONT FACE="Courier New, monospace">std::vector<typename
boost::graph_traits<TGraph>::edge_descriptor>* pcc</FONT></P>
<BLOCKQUOTE>An edge descriptors of one critical cycle will be stored in the corresponding std::vector. Default value is 0.</BLOCKQUOTE>
<BLOCKQUOTE STYLE="margin-left: 0cm">
The all maps must be a models of <A HREF="../..//property_map/ReadablePropertyMap.html">Readable
Property Map</A></BLOCKQUOTE>
<H3>Complexity</H3>
<P>There is no known precise upper bound for the time complexity of the
algorithm. Imperical time complexity is <I>O(E)</I>, where the
constant tends to be pretty small. Space complexity is also <I>O(E)</I>.
</P>
<H3>Example</H3>
<P>The program in <A HREF="../example/cycle_ratio_example.cpp">cycle_ratio_example.cpp</A>
generates random graph and computes its maximum cycle ratio.
</P>
<HR>
<TABLE CELLPADDING=2 CELLSPACING=2>
<TR VALIGN=TOP>
<TD>
<P>Copyright © 2000-2006</P>
</TD>
<TD>
<P><A HREF="http://www.lsi.upc.edu/~dmitry">Dmitry
Bufistov</A>, Universitat Politecnica de Cataluña</P>
</TD>
</TR>
</TABLE>
<P><BR><BR>
</P>
</BODY>
</HTML>
|