1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
<HTML>
<!--
-- Copyright (c) Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine 2000
--
-- Distributed under the Boost Software License, Version 1.0.
-- (See accompanying file LICENSE_1_0.txt or copy at
-- http://www.boost.org/LICENSE_1_0.txt)
-->
<Head>
<Title>Boost Graph Library: Incremental Connected Components</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<BR Clear>
<H1>Incremental Connected Components</H1>
<P>
This section describes a family of functions and classes that work
together to calculate the connected components of an undirected graph.
The algorithm used here is based on the disjoint-sets (fast
union-find) data structure [<A
HREF="bibliography.html#clr90">8</A>,<A
HREF="bibliography.html#tarjan83:_data_struct_network_algo">27</A>]
which is a good method to use for situations where the graph is
growing (edges are being added) and the connected components
information needs to be updated repeatedly. This method does not cover
the situation where edges are both added and removed from the graph,
hence it is called <b><i>incremental</i></b><a
href="bibliography.html#eppstein97:dynamic_graph">[42]</a> (and not
fully dynamic). The disjoint-sets class is described in Section <A
HREF="../../disjoint_sets/disjoint_sets.html">Disjoint Sets</A>.
<P>
The following five operations are the primary functions that you will
use to calculate and maintain the connected components. The objects
used here are a graph <TT>g</TT>, a disjoint-sets structure <TT>ds</TT>,
and vertices <TT>u</TT> and <TT>v</TT>.
<P>
<UL>
<LI><TT>initialize_incremental_components(g, ds)</TT>
<BR>
Basic initialization of the disjoint-sets structure. Each
vertex in the graph <TT>g</TT> is in its own set.
</LI>
<LI><TT>incremental_components(g, ds)</TT>
<BR>
The connected components are calculated based on the edges in the graph
<TT>g</TT> and the information is embedded in <TT>ds</TT>.
</LI>
<LI><TT>ds.find_set(v)</TT>
<BR>
Extracts the component information for vertex <TT>v</TT> from the
disjoint-sets.
</LI>
<LI><TT>ds.union_set(u, v)</TT>
<BR>
Update the disjoint-sets structure when edge <i>(u,v)</i> is added to the graph.
</LI>
</UL>
<P>
<H3>Complexity</H3>
<P>
The time complexity for the whole process is <i>O(V + E
alpha(E,V))</i> where <i>E</i> is the total number of edges in the
graph (by the end of the process) and <i>V</i> is the number of
vertices. <i>alpha</i> is the inverse of Ackermann's function which
has explosive recursively exponential growth. Therefore its inverse
function grows <I>very</I> slowly. For all practical purposes
<i>alpha(m,n) <= 4</i> which means the time complexity is only
slightly larger than <i>O(V + E)</i>.
<P>
<H3>Example</H3>
<P>
Maintain the connected components of a graph while adding edges using
the disjoint-sets data structure. The full source code for this
example can be found in <a
href="../example/incremental_components.cpp"><TT>examples/incremental_components.cpp</TT></a>.
<P>
<PRE>
typedef adjacency_list <vecS, vecS, undirectedS> Graph;
typedef graph_traits<Graph>::vertex_descriptor Vertex;
typedef graph_traits<Graph>::vertices_size_type size_type;
const int N = 6;
Graph G(N);
std::vector<size_type> rank(num_vertices(G));
std::vector<Vertex> parent(num_vertices(G));
typedef size_type* Rank;
typedef Vertex* Parent;
disjoint_sets<Rank, Parent> ds(&rank[0], &parent[0]);
initialize_incremental_components(G, ds);
incremental_components(G, ds);
graph_traits<Graph>::edge_descriptor e;
bool flag;
boost::tie(e,flag) = add_edge(0, 1, G);
ds.union_set(0,1);
boost::tie(e,flag) = add_edge(1, 4, G);
ds.union_set(1,4);
boost::tie(e,flag) = add_edge(4, 0, G);
ds.union_set(4,0);
boost::tie(e,flag) = add_edge(2, 5, G);
ds.union_set(2,5);
cout << "An undirected graph:" << endl;
print_graph(G, get(vertex_index, G));
cout << endl;
graph_traits<Graph>::vertex_iterator i,end;
for (boost::tie(i, end) = vertices(G); i != end; ++i)
cout << "representative[" << *i << "] = " <<
ds.find_set(*i) << endl;;
cout << endl;
typedef component_index<unsigned int> Components;
Components components(&parent[0], &parent[0] + parent.size());
for (Components::size_type c = 0; c < components.size(); ++c) {
cout << "component " << c << " contains: ";
Components::value_type::iterator
j = components[c].begin(),
jend = components[c].end();
for ( ; j != jend; ++j)
cout << *j << " ";
cout << endl;
}
</PRE>
<P>
<hr>
<p>
<H2><A NAME="sec:initialize-incremental-components"></A>
<TT>initialize_incremental_components</TT>
</H2>
<P>
<DIV ALIGN="left">
<TABLE CELLPADDING=3 border>
<TR><TH ALIGN="LEFT"><B>Graphs:</B></TH>
<TD ALIGN="LEFT">undirected</TD>
</TR>
<TR><TH ALIGN="LEFT"><B>Properties:</B></TH>
<TD ALIGN="LEFT">rank, parent (in disjoint-sets)</TD>
</TR>
<TR><TH ALIGN="LEFT"><B>Complexity:</B></TH>
<TD></TD>
</TR>
</TABLE>
</DIV>
<P>
<PRE>
template <class VertexListGraph, class DisjointSets>
void initialize_incremental_components(VertexListGraph& G, DisjointSets& ds)
</PRE>
<P>
This prepares the disjoint-sets data structure for the incremental
connected components algorithm by making each vertex in the graph a
member of its own component (or set).
<P>
<H3>Where Defined</H3>
<P>
<a href="../../../boost/graph/incremental_components.hpp"><TT>boost/graph/incremental_components.hpp</TT></a>
<p>
<hr>
<P>
<H2><A NAME="sec:incremental-components"></A>
<TT>incremental_components</TT>
</H2>
<P>
<DIV ALIGN="left">
<TABLE CELLPADDING=3 border>
<TR><TH ALIGN="LEFT"><B>Graphs:</B></TH>
<TD ALIGN="LEFT">undirected</TD>
</TR>
<TR><TH ALIGN="LEFT"><B>Properties:</B></TH>
<TD ALIGN="LEFT">rank, parent (in disjoint-sets)</TD>
</TR>
<TR><TH ALIGN="LEFT"><B>Complexity:</B></TH>
<TD ALIGN="LEFT"><i>O(E)</i></TD>
</TR>
</TABLE>
</DIV>
<p>
<PRE>
template <class EdgeListGraph, class DisjointSets>
void incremental_components(EdgeListGraph& g, DisjointSets& ds)
</PRE>
<P>
This function calculates the connected components of the graph,
embedding the results in the disjoint-sets data structure.
<P>
<H3>Where Defined</H3>
<P>
<a href="../../../boost/graph/incremental_components.hpp"><TT>boost/graph/incremental_components.hpp</TT></a>
<P>
<H3>Requirements on Types</H3>
<P>
<UL>
<LI>The graph type must be a model of <a href="./EdgeListGraph.html">EdgeListGraph</a>.
</LI>
</UL>
<P>
<hr>
<p>
<H2><A NAME="sec:same-component">
<TT>same_component</TT></A>
</H2>
<P>
<DIV ALIGN="left">
<TABLE CELLPADDING=3 border>
<TR><TH ALIGN="LEFT"><B>Properties:</B></TH>
<TD ALIGN="LEFT">rank, parent (in disjoint-sets)</TD>
</TR>
<TR><TH ALIGN="LEFT"><B>Complexity:</B></TH>
<TD ALIGN="LEFT"><i>O(alpha(E,V))</i></TD>
</TR>
</TABLE>
</DIV>
<P>
<PRE>
template <class Vertex, class DisjointSet>
bool same_component(Vertex u, Vertex v, DisjointSet& ds)
</PRE>
<P>
This function determines whether <TT>u</TT> and <TT>v</TT> are in the same
component.
<P>
<H3>Where Defined</H3>
<P>
<a href="../../../boost/graph/incremental_components.hpp"><TT>boost/graph/incremental_components.hpp</TT></a>
<P>
<H3>Requirements on Types</H3>
<P>
<UL>
<LI><TT>Vertex</TT> must be compatible with the rank and parent
property maps of the <TT>DisjointSets</TT> data structure.
</LI>
</UL>
<P>
<hr>
<p>
<H2><A NAME="sec:component-index"></A>
<TT>component_index</TT>
</H2>
<p>
<PRE>
component_index<Index>
</PRE>
<P>
The is a class that provides an STL container-like view for the
components of the graph. Each component is a container-like object,
and the <TT>component_index</TT> object provides access to the
component objects via <TT>operator[]</TT>. A <TT>component_index</TT>
object is initialized with the parents property in the disjoint-sets
calculated from the <TT>incremental_components()</TT> function.
<P>
<H3>Where Defined</H3>
<P>
<a href="../../../boost/graph/incremental_components.hpp"><TT>boost/graph/incremental_components.hpp</TT></a>
<P>
<H3>Members</H3>
<P>
<table border>
<tr>
<th>Member</th> <th>Description</th>
</tr>
<tr>
<td><tt>size_type</tt></td>
<td>The type used for representing the number of components.</td>
</tr>
<tr>
<td><tt>value_type</tt></td>
<td>
The type for a component object. The component type has the following members.
</td>
</tr>
<tr>
<td><tt>value_type::value_type</tt></td>
<td>
The value type of a component object is a vertex ID.
</td>
</tr>
<tr>
<td><tt>value_type::iterator</tt></td>
<td>
This iterator can be used to traverse all of the vertices
in the component. This iterator dereferences to give a vertex ID.
</td>
</tr>
<tr>
<td><tt>value_type::const_iterator</tt></td>
<td>
The const iterator.
</td>
</tr>
<tr>
<td><tt>value_type::iterator value_type::begin() const</tt></td>
<td>
Return an iterator pointing to the first vertex in the component.
</td>
</tr>
<tr>
<td><tt>value_type::iterator value_type::end() const</tt></td>
<td>
Return an iterator pointing past the end of the last vertex in the
component.
</td>
<tr>
<tr>
<td>
<tt>
template <class ComponentsContainer>
component_index(const ComponentsContainer& c)
</tt>
</td>
<td>
Construct the <TT>component_index</TT> using the information
from the components container <TT>c</TT> which was the result
of executing <TT>connected_components_on_edgelist</TT>.
</td>
</tr>
<tr>
<td><tt>value_type operator[](size_type i)</tt></td>
<td>
Returns the <TT>i</TT>th component in the graph.
</td>
</tr>
<tr>
<td><tt>size_type component_index::size()</tt></td>
<td>
Returns the number of components in the graph.
</td>
</table>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright © 2000-2001</TD><TD>
<A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>,
Indiana University (<A
HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)<br>
<A HREF="http://www.boost.org/people/liequan_lee.htm">Lie-Quan Lee</A>, Indiana University (<A HREF="mailto:llee@cs.indiana.edu">llee@cs.indiana.edu</A>)<br>
<A HREF=http://www.osl.iu.edu/~lums>Andrew Lumsdaine</A>,
Indiana University (<A
HREF="mailto:lums@osl.iu.edu">lums@osl.iu.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>
|