File: isomorphism-impl-v2.w

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (1067 lines) | stat: -rw-r--r-- 37,812 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
\documentclass[11pt]{report}

%\input{defs}
\usepackage{math}
\usepackage{jweb}
\usepackage{lgrind}
\usepackage{times}
\usepackage{fullpage}
\usepackage{graphicx}

\newif\ifpdf
\ifx\pdfoutput\undefined
   \pdffalse
\else
   \pdfoutput=1
   \pdftrue
\fi

\ifpdf
  \usepackage[
              pdftex,
              colorlinks=true, %change to true for the electronic version
              linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue
              ]{hyperref}
\fi

\ifpdf
  \newcommand{\stlconcept}[1]{\href{http://www.sgi.com/tech/stl/#1.html}{{\small \textsf{#1}}}}
  \newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}}
  \newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}}
  \newcommand{\myhyperref}[2]{\hyperref[#1]{#2}}
  \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}}
\else
  \newcommand{\myhyperref}[2]{#2}
  \newcommand{\bglconcept}[1]{{\small \textsf{#1}}}
  \newcommand{\pmconcept}[1]{{\small \textsf{#1}}}
  \newcommand{\stlconcept}[1]{{\small \textsf{#1}}}
  \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}}
\fi

\newcommand{\code}[1]{{\small{\em \textbf{#1}}}}


\newcommand{\isomorphic}{\cong}

\begin{document}

\title{An Implementation of Isomorphism Testing}
\author{Jeremy G. Siek}

\maketitle

\section{Introduction}

This paper documents the implementation of the \code{isomorphism()}
function of the Boost Graph Library.  The implementation was by Jeremy
Siek with algorithmic improvements and test code from Douglas Gregor
and Brian Osman.  The \code{isomorphism()} function answers the
question, ``are these two graphs equal?''  By \emph{equal} we mean
the two graphs have the same structure---the vertices and edges are
connected in the same way. The mathematical name for this kind of
equality is \emph{isomorphism}.

More precisely, an \emph{isomorphism} is a one-to-one mapping of the
vertices in one graph to the vertices of another graph such that
adjacency is preserved. Another words, given graphs $G_{1} =
(V_{1},E_{1})$ and $G_{2} = (V_{2},E_{2})$, an isomorphism is a
function $f$ such that for all pairs of vertices $a,b$ in $V_{1}$,
edge $(a,b)$ is in $E_{1}$ if and only if edge $(f(a),f(b))$ is in
$E_{2}$.

Both graphs must be the same size, so let $N = |V_1| = |V_2|$. The
graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists
between the two graphs, which we denote by $G_1 \isomorphic G_2$.

In the following discussion we will need to use several notions from
graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of graph
$G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$.  An
\emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$
consists of the vertices in $V_s$, which is a subset of $V$, and every
edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$.  We use
the notation $E[V_s]$ to mean the edges in $G[V_s]$.

In some places we express a function as a set of pairs, so the set $f
= \{ \pair{a_1}{b_1}, \ldots, \pair{a_n}{b_n} \}$
means $f(a_i) = b_i$ for $i=1,\ldots,n$.

\section{Exhaustive Backtracking Search}
\label{sec:backtracking}

The algorithm used by the \code{isomorphism()} function is, at
first approximation, an exhaustive search implemented via
backtracking.  The backtracking algorithm is a recursive function. At
each stage we will try to extend the match that we have found so far.
So suppose that we have already determined that some subgraph of $G_1$
is isomorphic to a subgraph of $G_2$.  We then try to add a vertex to
each subgraph such that the new subgraphs are still isomorphic to one
another. At some point we may hit a dead end---there are no vertices
that can be added to extend the isomorphic subgraphs. We then
backtrack to previous smaller matching subgraphs, and try extending
with a different vertex choice. The process ends by either finding a
complete mapping between $G_1$ and $G_2$ and return true, or by
exhausting all possibilities and returning false.

We consider the vertices of $G_1$ for addition to the matched subgraph
in a specific order, so assume that the vertices of $G_1$ are labeled
$1,\ldots,N$ according to that order. As we will see later, a good
ordering of the vertices is by DFS discover time.  Let $G_1[k]$ denote
the subgraph of $G_1$ induced by the first $k$ vertices, with $G_1[0]$
being an empty graph. We also consider the edges of $G_1$ in a
specific order. We always examine edges in the current subgraph
$G_1[k]$ first, that is, edges $(u,v)$ where both $u \leq k$ and $v
\leq k$. This ordering of edges can be acheived by sorting the edges
according to number of the larger of the source and target vertex.

Each step of the backtracking search examines an edge $(u,v)$ of $G_1$
and decides whether to continue or go back. There are three cases to
consider:

\begin{enumerate}

\item $i \leq k \Land j \leq k$. Both $i$ and $j$ are in $G_1[k]$.  We
check to make sure the $(f(i),f(j)) \in E_2[S]$.

\item $i \leq k \Land j > k$. $i$ is in the matched subgraph $G_1[k]$,
but $j$ is not. We are about to increment $k$ try to grow the matched
subgraph to include $j$. However, first we need to finalize our check
of the isomorphism between subgraphs $G_1[k]$ and $G_2[S]$.  At this
point we are guaranteed to have seen all the edges to and from vertex $k$
(because the edges are sorted), and in previous steps we have checked
that for each edge incident on $k$ in $G_1[k]$ there is a matching
edge in $G_2[S]$.  However we have not checked that for each edge
incident on $f(k)$ in $E_2[S]$, there is a matching edge in $E_1[k]$
(we need to check the ``only if'' part of the ``if and only if'').
Therefore we scan through all the edges $(u,v)$ incident on $f(k)$ and
make sure that $(f^{-1}(u),f^{-1}(v)) \in E_1[k]$. Once this check has
been performed, we add $f(k)$ to $S$, we increment $k$ (so now $k=j$),
and then try assigning the new $k$ to any of the eligible vertices in
$V_2 - S$. More about what ``eligible'' means later.

\item $i > k \Land j \leq k$. This case will not occur due to the DFS
numbering of the vertices. There is an edge $(i,j)$ so $i$ must be
less than $j$.

\item $i > k \Land j > k$. Neither $i$ or $j$ is in the matched
subgraph $G_1[k]$. This situation only happens at the very beginning
of the search, or when $i$ and $j$ are not reachable from any of the
vertices in $G_1[k]$. This means the smaller of $i$ and $j$ must be
the root of a DFS tree. We assign $r$ to any of the eligible vertices
in $V_2 - S$, and then proceed as if we were in Case 2.

\end{enumerate}



@d Match function
@{
bool match(edge_iter iter)
{
if (iter != ordered_edges.end()) {
    ordered_edge edge = *iter;
    size_type k_num = edge.k_num;
    vertex1_t k = dfs_vertices[k_num];
    vertex1_t u;
    if (edge.source != -1) // might be a ficticious edge
        u = dfs_vertices[edge.source];
    vertex1_t v = dfs_vertices[edge.target];
    if (edge.source == -1) { // root node
        @<$v$ is a DFS tree root@>
    } else if (f_assigned[v] == false) {
        @<$v$ is an unmatched vertex, $(u,v)$ is a tree edge@>
    } else {
        @<Check to see if there is an edge in $G_2$ to match $(u,v)$@>
    }
} else 
    return true;
return false;
} // match()
@}






The basic idea will be to examine $G_1$ one edge at a time, trying to
create a vertex mapping such that each edge matches one in $G_2$.  We
are going to consider the edges of $G_1$ in a specific order, so we
will label the edges $0,\ldots,|E_1|-1$.

At each stage of the recursion we
start with an isomorphism $f_{k-1}$ between $G_1[k-1]$ and a subgraph
of $G_2$, which we denote by $G_2[S]$, so $G_1[k-1] \isomorphic
G_2[S]$. The vertex set $S$ is the subset of $V_2$ that corresponds
via $f_{k-1}$ to the first $k-1$ vertices in $G_1$.

We also order the edges of $G_1$



We try to extend the isomorphism by finding a vertex $v \in V_2 - S$
that matches with vertex $k$. If a matching vertex is found, we have a
new isomorphism $f_k$ with $G_1[k] \isomorphic G_2[S \union \{ v \}]$.




\begin{tabbing}
IS\=O\=M\=O\=RPH($k$, $S$, $f_{k-1}$) $\equiv$ \\
\>\textbf{if} ($k = |V_1|+1$) \\
\>\>\textbf{return} true \\
\>\textbf{for} each vertex $v \in V_2 - S$ \\
\>\>\textbf{if} (MATCH($k$, $v$)) \\
\>\>\>$f_k = f_{k-1} \union \pair{k}{v}$ \\
\>\>\>ISOMORPH($k+1$, $S \union \{ v \}$, $f_k$)\\
\>\>\textbf{else}\\
\>\>\>\textbf{return} false \\
\\
ISOMORPH($0$, $G_1$, $\emptyset$, $G_2$)
\end{tabbing}

The basic idea of the match operation is to check whether $G_1[k]$ is
isomorphic to $G_2[S \union \{ v \}]$. We already know that $G_1[k-1]
\isomorphic G_2[S]$ with the mapping $f_{k-1}$, so all we need to do
is verify that the edges in $E_1[k] - E_1[k-1]$ connect vertices that
correspond to the vertices connected by the edges in $E_2[S \union \{
v \}] - E_2[S]$. The edges in $E_1[k] - E_1[k-1]$ are all the
out-edges $(k,j)$ and in-edges $(j,k)$ of $k$ where $j$ is less than
or equal to $k$ according to the ordering.  The edges in $E_2[S \union
\{ v \}] - E_2[S]$ consists of all the out-edges $(v,u)$ and
in-edges $(u,v)$ of $v$ where $u \in S$.

\begin{tabbing}
M\=ATCH($k$, $v$) $\equiv$ \\
\>$out_k \leftarrow \forall (k,j) \in E_1[k] - E_1[k-1] \Big( (v,f(j)) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\
\>$in_k \leftarrow \forall (j,k) \in E_1[k] - E_1[k-1] \Big( (f(j),v) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\
\>$out_v \leftarrow \forall (v,u) \in E_2[S \union \{ v \}] - E_2[S] \Big( (k,f^{-1}(u)) \in E_1[k] - E_1[k-1] \Big)$ \\
\>$in_v \leftarrow \forall (u,v) \in E_2[S \union \{ v \}] - E_2[S] \Big( (f^{-1}(u),k) \in E_1[k] - E_1[k-1] \Big)$ \\
\>\textbf{return} $out_k \Land in_k \Land out_v \Land in_v$ 
\end{tabbing}

The problem with the exhaustive backtracking algorithm is that there
are $N!$ possible vertex mappings, and $N!$ gets very large as $N$
increases, so we need to prune the search space. We use the pruning
techniques described in
\cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo}
that originated in
\cite{sussenguth65:_isomorphism,unger64:_isomorphism}.

\section{Vertex Invariants}
\label{sec:vertex-invariants}

One way to reduce the search space is through the use of \emph{vertex
invariants}. The idea is to compute a number for each vertex $i(v)$
such that $i(v) = i(v')$ if there exists some isomorphism $f$ where
$f(v) = v'$. Then when we look for a match to some vertex $v$, we only
need to consider those vertices that have the same vertex invariant
number. The number of vertices in a graph with the same vertex
invariant number $i$ is called the \emph{invariant multiplicity} for
$i$.  In this implementation, by default we use the out-degree of the
vertex as the vertex invariant, though the user can also supply there
own invariant function. The ability of the invariant function to prune
the search space varies widely with the type of graph.

As a first check to rule out graphs that have no possibility of
matching, one can create a list of computed vertex invariant numbers
for the vertices in each graph, sort the two lists, and then compare
them.  If the two lists are different then the two graphs are not
isomorphic.  If the two lists are the same then the two graphs may be
isomorphic.

Also, we extend the MATCH operation to use the vertex invariants to
help rule out vertices.

\section{Vertex Order}

A good choice of the labeling for the vertices (which determines the
order in which the subgraph $G_1[k]$ is grown) can also reduce the
search space. In the following we discuss two labeling heuristics.

\subsection{Most Constrained First}

Consider the most constrained vertices first.  That is, examine
lower-degree vertices before higher-degree vertices. This reduces the
search space because it chops off a trunk before the trunk has a
chance to blossom out. We can generalize this to use vertex
invariants. We examine vertices with low invariant multiplicity
before examining vertices with high invariant multiplicity.

\subsection{Adjacent First}

The MATCH operation only considers edges when the other vertex already
has a mapping defined. This means that the MATCH operation can only
weed out vertices that are adjacent to vertices that have already been
matched. Therefore, when choosing the next vertex to examine, it is
desirable to choose one that is adjacent a vertex already in $S_1$.

\subsection{DFS Order, Starting with Lowest Multiplicity}

For this implementation, we combine the above two heuristics in the
following way. To implement the ``adjacent first'' heuristic we apply
DFS to the graph, and use the DFS discovery order as our vertex
order. To comply with the ``most constrained first'' heuristic we
order the roots of our DFS trees by invariant multiplicity.



\section{Implementation}

The following is the public interface for the \code{isomorphism}
function. The input to the function is the two graphs $G_1$ and $G_2$,
mappings from the vertices in the graphs to integers (in the range
$[0,|V|)$), and a vertex invariant function object. The output of the
function is an isomorphism $f$ if there is one. The \code{isomorphism}
function returns true if the graphs are isomorphic and false
otherwise. The invariant parameters are function objects that compute
the vertex invariants for vertices of the two graphs.  The
\code{max\_invariant} parameter is to specify one past the largest
integer that a vertex invariant number could be (the invariants
numbers are assumed to span from zero to the number).  The
requirements on type template parameters are described below in the
``Concept checking'' part.


@d Isomorphism function interface
@{
template <typename Graph1, typename Graph2, typename IsoMapping, 
          typename Invariant1, typename Invariant2,
          typename IndexMap1, typename IndexMap2>
bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f, 
                 Invariant1 invariant1, Invariant2 invariant2, 
                 std::size_t max_invariant,
                 IndexMap1 index_map1, IndexMap2 index_map2)
@}


The function body consists of the concept checks followed by a quick
check for empty graphs or graphs of different size and then construct
an algorithm object. We then call the \code{test\_isomorphism} member
function, which runs the algorithm.  The reason that we implement the
algorithm using a class is that there are a fair number of internal
data structures required, and it is easier to make these data members
of a class and make each section of the algorithm a member
function. This relieves us from the burden of passing lots of
arguments to each function, while at the same time avoiding the evils
of global variables (non-reentrant, etc.).


@d Isomorphism function body
@{
{
    @<Concept checking@>
    @<Quick return based on size@>
    detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1, Invariant2, 
        IndexMap1, IndexMap2> 
        algo(G1, G2, f, invariant1, invariant2, max_invariant, 
             index_map1, index_map2);
    return algo.test_isomorphism();
}
@}


\noindent If there are no vertices in either graph, then they are
trivially isomorphic. If the graphs have different numbers of vertices
then they are not isomorphic.

@d Quick return based on size
@{
if (num_vertices(G1) != num_vertices(G2))
    return false;
if (num_vertices(G1) == 0 && num_vertices(G2) == 0)
    return true;
@}

We use the Boost Concept Checking Library to make sure that the type
arguments to the function fulfill there requirements. The graph types
must model the \bglconcept{VertexListGraph} and
\bglconcept{AdjacencyGraph} concepts. The vertex invariants must model
the \stlconcept{AdaptableUnaryFunction} concept, with a vertex as
their argument and an integer return type.  The \code{IsoMapping} type
that represents the isomorphism $f$ must be a
\pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to
vertices in $G_2$. The two other index maps are
\pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to
unsigned integers.


@d Concept checking
@{
// Graph requirements
function_requires< VertexListGraphConcept<Graph1> >();
function_requires< EdgeListGraphConcept<Graph1> >();
function_requires< VertexListGraphConcept<Graph2> >();
function_requires< BidirectionalGraphConcept<Graph2> >();

typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
typedef typename graph_traits<Graph1>::vertices_size_type size_type;

// Vertex invariant requirement
function_requires< AdaptableUnaryFunctionConcept<Invariant1,
  size_type, vertex1_t> >();
function_requires< AdaptableUnaryFunctionConcept<Invariant2,
  size_type, vertex2_t> >();

// Property map requirements
function_requires< ReadWritePropertyMapConcept<IsoMapping, vertex1_t> >();
typedef typename property_traits<IsoMapping>::value_type IsoMappingValue;
BOOST_STATIC_ASSERT((is_same<IsoMappingValue, vertex2_t>::value));

function_requires< ReadablePropertyMapConcept<IndexMap1, vertex1_t> >();
typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value));

function_requires< ReadablePropertyMapConcept<IndexMap2, vertex2_t> >();
typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value));
@}

The following is the outline of the isomorphism algorithm class.  The
class is templated on all of the same parameters of the
\code{isomorphism} function, and all of the parameter values are
stored in the class as data members, in addition to the internal data
structures.

@d Isomorphism algorithm class
@{
template <typename Graph1, typename Graph2, typename IsoMapping,
  typename Invariant1, typename Invariant2,
  typename IndexMap1, typename IndexMap2>
class isomorphism_algo
{
    @<Typedefs for commonly used types@>
    @<Data members for the parameters@>
    @<Ordered edge class@>
    @<Internal data structures@>
    friend struct compare_multiplicity;
    @<Invariant multiplicity comparison functor@>
    @<DFS visitor to record vertex and edge order@>
public:
    @<Isomorphism algorithm constructor@>
    @<Test isomorphism member function@>
private:
    @<Match function@>
};
@}

The interesting parts of this class are the \code{test\_isomorphism}
function, and the \code{match} function. We focus on those in in the
following sections, and mention the other parts of the class when
needed (and a few are left to the appendix).

The \code{test\_isomorphism} function does all of the setup required
of the algorithm. This consists of sorting the vertices according to
invariant multiplicity, and then by DFS order.  The edges are then
sorted by the DFS order of vertices incident on the edges. More
details about this to come. The last step of this function is to
invoke the recursive \code{match} function which performs the
backtracking search.


@d Test isomorphism member function
@{
bool test_isomorphism()
{
    @<Quick return if the vertex invariants do not match up@>
    @<Sort vertices according to invariant multiplicity@>
    @<Order vertices and edges by DFS@>
    @<Sort edges according to vertex DFS order@>

    return this->match(ordered_edges.begin());
}
@}

As discussed in \S\ref{sec:vertex-invariants}, we can quickly rule out
the possibility of any isomorphism between two graphs by checking to
see if the vertex invariants can match up. We sort both vectors of vertex
invariants, and then check to see if they are equal.

@d Quick return if the vertex invariants do not match up
@{
{
    std::vector<invar1_value> invar1_array;
    BGL_FORALL_VERTICES_T(v, G1, Graph1)
        invar1_array.push_back(invariant1(v));
    std::sort(invar1_array.begin(), invar1_array.end());

    std::vector<invar2_value> invar2_array;
    BGL_FORALL_VERTICES_T(v, G2, Graph2)
        invar2_array.push_back(invariant2(v));
    std::sort(invar2_array.begin(), invar2_array.end());

    if (!std::equal(invar1_array.begin(), invar1_array.end(), invar2_array.begin()))
        return false;
}
@}

Next we compute the invariant multiplicity, the number of vertices
with the same invariant number. The \code{invar\_mult} vector is
indexed by invariant number. We loop through all the vertices in the
graph to record the multiplicity. We then order the vertices by their
invariant multiplicity.  This will allow us to search the more
constrained vertices first.

@d Sort vertices according to invariant multiplicity
@{
std::vector<vertex1_t> V_mult;
BGL_FORALL_VERTICES_T(v, G1, Graph1)
    V_mult.push_back(v);
{
    std::vector<size_type> multiplicity(max_invariant, 0);
    BGL_FORALL_VERTICES_T(v, G1, Graph1)
        ++multiplicity[invariant1(v)];

    std::sort(V_mult.begin(), V_mult.end(), compare_multiplicity(*this, &multiplicity[0]));
}
@}

\noindent The definition of the \code{compare\_multiplicity} predicate
is shown below. This predicate provides the glue that binds
\code{std::sort} to our current purpose.

@d Invariant multiplicity comparison functor
@{
struct compare_multiplicity
{
    compare_multiplicity(isomorphism_algo& algo, size_type* multiplicity)
        : algo(algo), multiplicity(multiplicity) { }
    bool operator()(const vertex1_t& x, const vertex1_t& y) const {
        return multiplicity[algo.invariant1(x)] < multiplicity[algo.invariant1(y)];
    }
    isomorphism_algo& algo;
    size_type* multiplicity;
};
@}

\subsection{Backtracking Search and Matching}






\subsection{Ordering by DFS Discover Time}

To implement the ``visit adjacent vertices first'' heuristic, we order
the vertices according to DFS discover time. This will give us the
order that the subgraph $G_1[k]$ will be expanded. As described in
\S\ref{sec:backtracking}, when trying to match $k$ with some vertex
$v$ in $V_2 - S$, we need to examine the edges in $E_1[k] -
E_1[k-1]$. It would be nice if we had the edges of $G_1$ arranged so
that when we are interested in vertex $k$, the edges in $E_1[k] -
E_1[k-1]$ are easy to find. This can be achieved by creating an array
of edges sorted by the DFS number of the larger of the source and
target vertex. The following array of ordered edges corresponds
to the graph in Figure~\ref{fig:edge-order}.

\begin{tabular}{cccccccccc}
      &0&1&2&3&4&5&6&7&8\\ \hline
source&0&1&1&3&3&4&4&5&6\\
target&1&2&3&1&2&3&5&6&4
\end{tabular}

The backtracking algorithm will scan through the edge array from left
to right to extend isomorphic subgraphs, and move back to the right
when a match fails. We will want to 










For example, suppose we have already matched the vertices
\{0,1,2\}, and 



\vizfig{edge-order}{Vertices with DFS numbering. The DFS trees are the solid edges.}

@c edge-order.dot
@{
digraph G {
size="3,2"
ratio=fill
node[shape=circle]
0 -> 1[style=bold]
1 -> 2[style=bold]
1 -> 3[style=bold]
3 -> 1[style=dashed]
3 -> 2[style=dashed]
4 -> 3[style=dashed]
4 -> 5[style=bold]
5 -> 6[style=bold]
6 -> 4[style=dashed]
}
@}




We implement the outer-loop of the DFS here, instead of calling the
\code{depth\_first\_search} function, because we want the roots of the
DFS tree's to be ordered by invariant multiplicity. We call
\code{depth\_\-first\_\-visit} to implement the recursive portion of
the DFS. The \code{record\_dfs\_order} adapts the DFS to record the
order in which DFS discovers the vertices, storing the results in in
the \code{dfs\_vertices} and \code{ordered\_edges} arrays. We then
create the \code{dfs\_number} array which provides a mapping from
vertex to DFS number, and renumber the edges with the DFS numbers.

@d Order vertices and edges by DFS
@{
std::vector<default_color_type> color_vec(num_vertices(G1));
safe_iterator_property_map<std::vector<default_color_type>::iterator, IndexMap1>
     color_map(color_vec.begin(), color_vec.size(), index_map1);
record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);
typedef color_traits<default_color_type> Color;
for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) {
    if (color_map[*u] == Color::white()) {
	dfs_visitor.start_vertex(*u, G1);
	depth_first_visit(G1, *u, dfs_visitor, color_map);
    }
}
// Create the dfs_number array and dfs_number_map
dfs_number_vec.resize(num_vertices(G1));
dfs_number = make_safe_iterator_property_map(dfs_number_vec.begin(),
	                  dfs_number_vec.size(), index_map1);
size_type n = 0;
for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v)
    dfs_number[*v] = n++;

// Renumber ordered_edges array according to DFS number
for (edge_iter e = ordered_edges.begin(); e != ordered_edges.end(); ++e) {
    if (e->source >= 0)
      e->source = dfs_number_vec[e->source];
    e->target = dfs_number_vec[e->target];
}
@}

\noindent The definition of the \code{record\_dfs\_order} visitor
class is as follows. EXPLAIN ficticious edges

@d DFS visitor to record vertex and edge order
@{
struct record_dfs_order : default_dfs_visitor
{
    record_dfs_order(std::vector<vertex1_t>& v, std::vector<ordered_edge>& e) 
	: vertices(v), edges(e) { }

    void start_vertex(vertex1_t v, const Graph1&) const {
        edges.push_back(ordered_edge(-1, v));
    }
    void discover_vertex(vertex1_t v, const Graph1&) const {
        vertices.push_back(v);
    }
    void examine_edge(edge1_t e, const Graph1& G1) const {
        edges.push_back(ordered_edge(source(e, G1), target(e, G1)));
    }
    std::vector<vertex1_t>& vertices;
    std::vector<ordered_edge>& edges;
};
@}


Reorder the edges so that all edges belonging to $G_1[k]$
appear before any edges not in $G_1[k]$, for $k=1,...,n$.

The order field needs a better name. How about k?

@d Sort edges according to vertex DFS order
@{
std::stable_sort(ordered_edges.begin(), ordered_edges.end());
// Fill in i->k_num field
if (!ordered_edges.empty()) {
  ordered_edges[0].k_num = 0;
  for (edge_iter i = next(ordered_edges.begin()); i != ordered_edges.end(); ++i)
      i->k_num = std::max(prior(i)->source, prior(i)->target);
}
@}






@d Typedefs for commonly used types
@{
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
typedef typename graph_traits<Graph1>::edge_descriptor edge1_t;
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
typedef typename Invariant1::result_type invar1_value;
typedef typename Invariant2::result_type invar2_value;
@}

@d Data members for the parameters
@{
const Graph1& G1;
const Graph2& G2;
IsoMapping f;
Invariant1 invariant1;
Invariant2 invariant2;
std::size_t max_invariant;
IndexMap1 index_map1;
IndexMap2 index_map2;
@}

@d Internal data structures
@{
std::vector<vertex1_t> dfs_vertices;
typedef std::vector<vertex1_t>::iterator vertex_iter;
std::vector<size_type> dfs_number_vec;
safe_iterator_property_map<typename std::vector<size_type>::iterator, IndexMap1>
   dfs_number;
std::vector<ordered_edge> ordered_edges;
typedef std::vector<ordered_edge>::iterator edge_iter;

std::vector<vertex1_t> f_inv_vec;
safe_iterator_property_map<typename std::vector<vertex1_t>::iterator,
    IndexMap2> f_inv;

std::vector<char> f_assigned_vec;
safe_iterator_property_map<typename std::vector<char>::iterator,
    IndexMap1> f_assigned;

std::vector<char> f_inv_assigned_vec;
safe_iterator_property_map<typename std::vector<char>::iterator,
    IndexMap2> f_inv_assigned;

int num_edges_incident_on_k;
@}

@d Isomorphism algorithm constructor
@{
isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,
		 Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant,
		 IndexMap1 index_map1, IndexMap2 index_map2)
    : G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2),
      max_invariant(max_invariant),
      index_map1(index_map1), index_map2(index_map2)
{
    f_assigned_vec.resize(num_vertices(G1));
    f_assigned = make_safe_iterator_property_map
	(f_assigned_vec.begin(), f_assigned_vec.size(), index_map1);
    f_inv_vec.resize(num_vertices(G1));
    f_inv = make_safe_iterator_property_map
	(f_inv_vec.begin(), f_inv_vec.size(), index_map2);

    f_inv_assigned_vec.resize(num_vertices(G1));
    f_inv_assigned = make_safe_iterator_property_map
	(f_inv_assigned_vec.begin(), f_inv_assigned_vec.size(), index_map2);
}
@}




@d Degree vertex invariant functor
@{
template <typename InDegreeMap, typename Graph>
class degree_vertex_invariant
{
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::degree_size_type size_type;
public:
    typedef vertex_t argument_type;
    typedef size_type result_type;

    degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)
        : m_in_degree_map(in_degree_map), m_g(g) { }

    size_type operator()(vertex_t v) const {
        return (num_vertices(m_g) + 1) * out_degree(v, m_g)
            + get(m_in_degree_map, v);
    }
    // The largest possible vertex invariant number
    size_type max() const { 
        return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g);
    }
private:
    InDegreeMap m_in_degree_map;
    const Graph& m_g;
};
@}



ficticiuos edges for the DFS tree roots
Use \code{ordered\_edge} instead of \code{edge1\_t} so that we can create ficticious
edges for the DFS tree roots.

@d Ordered edge class
@{
struct ordered_edge {
    ordered_edge(int s, int t) : source(s), target(t) { }

    bool operator<(const ordered_edge& e) const {
        using namespace std;
        int m1 = max(source, target);
        int m2 = max(e.source, e.target);
        // lexicographical comparison of (m1,source,target) and (m2,e.source,e.target)
        return make_pair(m1, make_pair(source, target)) < make_pair(m2, make_pair(e.source, e.target));
    }
    int source;
    int target;
    int k_num;
};
@}






\subsection{Recursive Match Function}





@d $v$ is a DFS tree root
@{
// Try all possible mappings
BGL_FORALL_VERTICES_T(y, G2, Graph2) {
    if (invariant1(v) == invariant2(y) && f_inv_assigned[y] == false) {
        f[v] = y; f_assigned[v] = true;
        f_inv[y] = v; f_inv_assigned[y] = true;
        num_edges_incident_on_k = 0;
        if (match(next(iter)))
            return true;
        f_assigned[v] = false;
        f_inv_assigned[y] = false;
    }
}
@}

Growing the subgraph.

@d $v$ is an unmatched vertex, $(u,v)$ is a tree edge
@{
@<Count out-edges of $f(k)$ in $G_2[S]$@>
@<Count in-edges of $f(k)$ in $G_2[S]$@>
if (num_edges_incident_on_k != 0)
    return false;
@<Assign $v$ to some vertex in $V_2 - S$@>
@}
@d Count out-edges of $f(k)$ in $G_2[S]$
@{
BGL_FORALL_ADJACENT_T(f[k], w, G2, Graph2)
    if (f_inv_assigned[w] == true)
        --num_edges_incident_on_k;
@}

@d Count in-edges of $f(k)$ in $G_2[S]$
@{
for (std::size_t jj = 0; jj < k_num; ++jj) {
    vertex1_t j = dfs_vertices[jj];
    BGL_FORALL_ADJACENT_T(f[j], w, G2, Graph2)
        if (w == f[k])
            --num_edges_incident_on_k;
}
@}

@d Assign $v$ to some vertex in $V_2 - S$
@{
BGL_FORALL_ADJACENT_T(f[u], y, G2, Graph2)
    if (invariant1(v) == invariant2(y) && f_inv_assigned[y] == false) {
        f[v] = y; f_assigned[v] = true;
        f_inv[y] = v; f_inv_assigned[y] = true;
        num_edges_incident_on_k = 1;
        if (match(next(iter)))
            return true;
        f_assigned[v] = false;
        f_inv_assigned[y] = false;
    }
@}



@d Check to see if there is an edge in $G_2$ to match $(u,v)$
@{
bool verify = false;
assert(f_assigned[u] == true);
BGL_FORALL_ADJACENT_T(f[u], y, G2, Graph2) {
    if (y == f[v]) {    
        verify = true;
        break;
    }
}
if (verify == true) {
    ++num_edges_incident_on_k;
    if (match(next(iter)))
         return true;
}
@}



@o isomorphism-v2.hpp
@{
// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
#ifndef BOOST_GRAPH_ISOMORPHISM_HPP
#define BOOST_GRAPH_ISOMORPHISM_HPP

#include <utility>
#include <vector>
#include <iterator>
#include <algorithm>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/utility.hpp>
#include <boost/tuple/tuple.hpp>

namespace boost {

namespace detail {

@<Isomorphism algorithm class@>
    
template <typename Graph, typename InDegreeMap>
void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)
{
    BGL_FORALL_VERTICES_T(v, g, Graph)
        put(in_degree_map, v, 0);

    BGL_FORALL_VERTICES_T(u, g, Graph)
      BGL_FORALL_ADJACENT_T(u, v, g, Graph)
        put(in_degree_map, v, get(in_degree_map, v) + 1);
}

} // namespace detail


@<Degree vertex invariant functor@>

@<Isomorphism function interface@>
@<Isomorphism function body@>

namespace detail {
  
template <typename Graph1, typename Graph2, 
          typename IsoMapping, 
          typename IndexMap1, typename IndexMap2,
          typename P, typename T, typename R>
bool isomorphism_impl(const Graph1& G1, const Graph2& G2, 
                      IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2,
		      const bgl_named_params<P,T,R>& params)
{
  std::vector<std::size_t> in_degree1_vec(num_vertices(G1));
  typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, IndexMap1> InDeg1;
  InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);
  compute_in_degree(G1, in_degree1);

  std::vector<std::size_t> in_degree2_vec(num_vertices(G2));
  typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, IndexMap2> InDeg2;
  InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);
  compute_in_degree(G2, in_degree2);

  degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1);
  degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2);

  return isomorphism(G1, G2, f,
        choose_param(get_param(params, vertex_invariant1_t()), invariant1),
        choose_param(get_param(params, vertex_invariant2_t()), invariant2),
        choose_param(get_param(params, vertex_max_invariant_t()), invariant2.max()),
	index_map1, index_map2
	);  
}  
   
} // namespace detail


// Named parameter interface
template <typename Graph1, typename Graph2, class P, class T, class R>
bool isomorphism(const Graph1& g1,
		 const Graph2& g2,
		 const bgl_named_params<P,T,R>& params)
{
  typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
  typename std::vector<vertex2_t>::size_type n = num_vertices(g1);
  std::vector<vertex2_t> f(n);
  return detail::isomorphism_impl
    (g1, g2, 
     choose_param(get_param(params, vertex_isomorphism_t()),
          make_safe_iterator_property_map(f.begin(), f.size(),
                  choose_const_pmap(get_param(params, vertex_index1),
		                    g1, vertex_index), vertex2_t())),
     choose_const_pmap(get_param(params, vertex_index1), g1, vertex_index),
     choose_const_pmap(get_param(params, vertex_index2), g2, vertex_index),
     params
     );
}

// All defaults interface
template <typename Graph1, typename Graph2>
bool isomorphism(const Graph1& g1, const Graph2& g2)
{
  return isomorphism(g1, g2,
    bgl_named_params<int, buffer_param_t>(0));// bogus named param
}


// Verify that the given mapping iso_map from the vertices of g1 to the
// vertices of g2 describes an isomorphism.
// Note: this could be made much faster by specializing based on the graph
// concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,
// O(n^4) won't hurt us.
template<typename Graph1, typename Graph2, typename IsoMap>
inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map)
{
  if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
    return false;
  
  for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first;
       e1 != edges(g1).second; ++e1) {
    bool found_edge = false;
    for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first;
         e2 != edges(g2).second && !found_edge; ++e2) {
      if (source(*e2, g2) == get(iso_map, source(*e1, g1)) &&
          target(*e2, g2) == get(iso_map, target(*e1, g1))) {
        found_edge = true;
      }
    }
    
    if (!found_edge)
      return false;
  }
  
  return true;
}

} // namespace boost

#include <boost/graph/iteration_macros_undef.hpp>

#endif // BOOST_GRAPH_ISOMORPHISM_HPP
@}

\bibliographystyle{abbrv}
\bibliography{ggcl}

\end{document}
% LocalWords:  Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS
% LocalWords:  ISOMORPH Invariants invariants typename IsoMapping bool const
% LocalWords:  VertexInvariant VertexIndexMap iterator typedef VertexG Idx num
% LocalWords:  InvarValue struct invar vec iter tmp_matches mult inserter permute ui
% LocalWords:  dfs cmp isomorph VertexIter edge_iter_t IndexMap desc RPH ATCH pre

% LocalWords:  iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp
% LocalWords:  ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept
% LocalWords:  BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei
% LocalWords:  IsoMappingValue ReadablePropertyMapConcept namespace InvarFun
% LocalWords:  MultMap vip inline bitset typedefs fj hpp ifndef adaptor params
% LocalWords:  bgl param pmap endif