File: isomorphism-impl-v3.w

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (987 lines) | stat: -rw-r--r-- 36,930 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
\documentclass[11pt,awpaper]{book}

\usepackage{math}
\usepackage{jweb}
\usepackage[nolineno]{lgrind}
\usepackage{awpaper}
\usepackage{graphicx}

\setlength{\evensidemargin}{-0.25in}% was -0.17in
\setlength{\oddsidemargin}{0in}%was -0.25in
\setlength{\textwidth}{5.625in}%was 5.75in
\setlength{\textheight}{7.75in}
\setlength{\topmargin}{-0.125in}%was -0.25
\addtolength{\topmargin}{-\headheight}
\addtolength{\topmargin}{-\headsep}

\newif\ifpdf
\ifx\pdfoutput\undefined
   \pdffalse
\else
   \pdfoutput=1
   \pdftrue
\fi

\ifpdf
  \usepackage[
              pdftex,
              colorlinks=true, %change to true for the electronic version
              linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue
              ]{hyperref}
\fi

\ifpdf
  \newcommand{\stlconcept}[1]{\href{http://www.sgi.com/tech/stl/#1.html}{{\small \textsf{#1}}}}
  \newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}}
  \newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}}
  \newcommand{\myhyperref}[2]{\hyperref[#1]{#2}}
  \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}}
\else
  \newcommand{\myhyperref}[2]{#2}
  \newcommand{\bglconcept}[1]{{\small \textsf{#1}}}
  \newcommand{\pmconcept}[1]{{\small \textsf{#1}}}
  \newcommand{\stlconcept}[1]{{\small \textsf{#1}}}
  \newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}}
\fi

\newcommand{\code}[1]{{\small{\em \textbf{#1}}}}


\newcommand{\isomorphic}{\cong}

\begin{document}

\title{An Implementation of Graph Isomorphism Testing}
\author{Jeremy G. Siek}

\maketitle

% Ideas: use BFS instead of DFS, don't have to sort edges?
% No, you would still have to sort the edges.
%
%Figure~\ref{fig:iso-eg2}.
% 0 0 0 1 1 2 5 6 6 7
% 1 2 3 4 2 4 6 3 7 5
%\vizfig{iso-eg2}{Vertices numbered by BFS discover time. The BFS tree
%edges are the solid lines. Nodes $0$ and $5$ are BFS tree root nodes.}
%
% You could do a modified Dijkstra, where the priority in the queue
% would be the BFS discover time of the target vertex.

% Use w(u,v) = |Adj[u] \intersect Adj[v]| as an edge invariant.
% Has anyone used edge invariants before?


\section{Introduction}

This paper documents the implementation of the \code{isomorphism()}
function of the Boost Graph Library.  The implementation was by Jeremy
Siek with algorithmic improvements and test code from Douglas Gregor
and Brian Osman.  The \code{isomorphism()} function answers the
question, ``are these two graphs equal?''  By \emph{equal} we mean
the two graphs have the same structure---the vertices and edges are
connected in the same way. The mathematical name for this kind of
equality is \emph{isomorphism}.

More precisely, an \emph{isomorphism} is a one-to-one mapping of the
vertices in one graph to the vertices of another graph such that
adjacency is preserved. Another words, given graphs $G_{1} =
(V_{1},E_{1})$ and $G_{2} = (V_{2},E_{2})$, an isomorphism is a
function $f$ such that for all pairs of vertices $a,b$ in $V_{1}$,
edge $(a,b)$ is in $E_{1}$ if and only if edge $(f(a),f(b))$ is in
$E_{2}$.

The graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists
between the two graphs, which we denote by $G_1 \isomorphic G_2$.
Both graphs must be the same size, so let $N = |V_1| = |V_2|$.

In the following discussion we will need to use several more notions
from graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of
graph $G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$.  An
\emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$
consists of the vertices in $V_s$, which is a subset of $V$, and every
edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$.  We use
the notation $E[V_s]$ to mean the edges in $G[V_s]$.

\section{Backtracking Search}
\label{sec:backtracking}

The algorithm used by the \code{isomorphism()} function is, at first
approximation, an exhaustive search implemented via backtracking.  The
backtracking algorithm is a recursive function. At each stage we will
try to extend the match that we have found so far.  So suppose that we
have already determined that some subgraph of $G_1$ is isomorphic to a
subgraph of $G_2$.  We then try to add a vertex to each subgraph such
that the new subgraphs are still isomorphic to one another. At some
point we may hit a dead end---there are no vertices that can be added
to extend the isomorphic subgraphs. We then backtrack to previous
smaller matching subgraphs, and try extending with a different vertex
choice. The process ends by either finding a complete mapping between
$G_1$ and $G_2$ and returning true, or by exhausting all possibilities
and returning false.

The problem with the exhaustive backtracking algorithm is that there
are $N!$ possible vertex mappings, and $N!$ gets very large as $N$
increases, so we need to prune the search space. We use the pruning
techniques described in
\cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo},
some of which originated in
\cite{sussenguth65:_isomorphism,unger64:_isomorphism}. Also, the
specific backtracking method we use is the one from
\cite{deo77:_new_algo_digraph_isomorph}.

We consider the vertices of $G_1$ for addition to the matched subgraph
in a specific order, so assume that the vertices of $G_1$ are labeled
$1,\ldots,N$ according to that order. As we will see later, a good
ordering of the vertices is by DFS discover time.  Let $G_1[k]$ denote
the subgraph of $G_1$ induced by the first $k$ vertices, with $G_1[0]$
being an empty graph. We also consider the edges of $G_1$ in a
specific order. We always examine edges in the current subgraph
$G_1[k]$ first, that is, edges $(u,v)$ where both $u \leq k$ and $v
\leq k$. This ordering of edges can be acheived by sorting each edge
$(u,v)$ by lexicographical comparison on the tuple $\langle \max(u,v),
u, v \rangle$. Figure~\ref{fig:iso-eg} shows an example of a graph
with the vertices labelled by DFS discover time. The edge ordering for
this graph is as follows:

\begin{tabular}{lccccccccc}
source: &0&1&0&1&3&0&5&6&6\\
target: &1&2&3&3&2&4&6&4&7
\end{tabular}

\vizfig{iso-eg}{Vertices numbered by DFS discover time. The DFS tree
edges are the solid lines. Nodes $0$ and $5$ are DFS tree root nodes.}

Each step of the backtracking search moves from left to right though
the ordered edges. At each step it examines an edge $(i,j)$ of $G_1$
and decides whether to continue to the left or to go back. There are
three cases to consider:

\begin{enumerate}
\item \label{case:1} $i > k$
\item \label{case:2} $i \leq k$ and $j > k$.
\item \label{case:3} $i \leq k$ and $j \leq k$.
\end{enumerate}

\paragraph{Case 1: $i > k$.}
$i$ is not in the matched subgraph $G_1[k]$. This situation only
happens at the very beginning of the search, or when $i$ is not
reachable from any of the vertices in $G_1[k]$.  This means that we
are finished with $G_1[k]$.  We increment $k$ and find a match for it
amongst any of the eligible vertices in $V_2 - S$. We then proceed to
Case 2. It is usually the case that $i$ is equal to the new $k$, but
when there is another DFS root $r$ with no in-edges or out-edges
and if $r < i$ then it will be the new $k$.

\paragraph{Case 2: $i \leq k$ and $j > k$.}
$i$ is in the matched subgraph $G_1[k]$, but $j$ is not. We are about
to increment $k$ to try and grow the matched subgraph to include
$j$. However, first we need to finish verifying that $G_1[k]
\isomorphic G_2[S]$. In previous steps we proved that $G_1[k-1]
\isomorphic G_2[S-\{f(k)\}]$, so now we just need to verify the
extension of the isomorphism to $k$. At this point we are guaranteed
to have seen all the edges to and from vertex $k$ (because the edges
are sorted), and in previous steps we have checked that for each edge
incident on $k$ in $E_1[k]$ there is a matching edge in
$E_2[S]$. However we still need to check the ``only if'' part of the
``if and only if''. So we check that for every edge $(u,v)$ incident
on $f(k)$ there is $(f^{-1}(u),f^{-1}(v)) \in E_1[k]$.  A quick way to
verify this is to make sure that the number of edges incident on $k$
in $E_1[k]$ is the same as the number of edges incident on $f(k)$ in
$E_2[S]$. We create an edge counter that we increment every time we
see an edge incident on $k$ and decrement for each edge incident on
$f(k)$. If the counter gets back to zero we know the edges match up.

Once we have verified that $G_1[k] \isomorphic G_2[S]$ we add $f(k)$
to $S$, increment $k$, and then try assigning $j$ to
any of the eligible vertices in $V_2 - S$. More about what
``eligible'' means below.

\paragraph{Case 3: $i \leq k$ and $j \leq k$.}
Both $i$ and $j$ are in $G_1[k]$.  We check to make sure that
$(f(i),f(j)) \in E_2[S]$ and then proceed to the next edge.


\subsection{Vertex Invariants}
\label{sec:vertex-invariants}

One way to reduce the search space is through the use of \emph{vertex
invariants}. The idea is to compute a number for each vertex $i(v)$
such that $i(v) = i(v')$ if there exists some isomorphism $f$ where
$f(v) = v'$. Then when we look for a match to some vertex $v$, only
those vertices that have the same vertex invariant number are
``eligible''. The number of vertices in a graph with the same vertex
invariant number $i$ is called the \emph{invariant multiplicity} for
$i$.  In this implementation, by default we use the function $i(v) =
(|V|+1) \times \outdegree(v) + \indegree(v)$, though the user can also
supply there own invariant function. The ability of the invariant
function to prune the search space varies widely with the type of
graph.

The following is the definition of the functor that implements the
default vertex invariant. The functor models the
\stlconcept{AdaptableUnaryFunction} concept.

@d Degree vertex invariant functor
@{
template <typename InDegreeMap, typename Graph>
class degree_vertex_invariant
{
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::degree_size_type size_type;
public:
    typedef vertex_t argument_type;
    typedef size_type result_type;

    degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)
        : m_in_degree_map(in_degree_map), m_g(g) { }

    size_type operator()(vertex_t v) const {
        return (num_vertices(m_g) + 1) * out_degree(v, m_g)
            + get(m_in_degree_map, v);
    }
    // The largest possible vertex invariant number
    size_type max() const { 
        return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g);
    }
private:
    InDegreeMap m_in_degree_map;
    const Graph& m_g;
};
@}


\subsection{Vertex Order}

A good choice of the labeling for the vertices (which determines the
order in which the subgraph $G_1[k]$ is grown) can also reduce the
search space. In the following we discuss two labeling heuristics.

\subsubsection{Most Constrained First}

Consider the most constrained vertices first.  That is, examine
lower-degree vertices before higher-degree vertices. This reduces the
search space because it chops off a trunk before the trunk has a
chance to blossom out. We can generalize this to use vertex
invariants. We examine vertices with low invariant multiplicity
before examining vertices with high invariant multiplicity.

\subsubsection{Adjacent First}

It only makes sense to examine an edge if one or more of its vertices
has been assigned a mapping. This means that we should visit vertices
adjacent to those in the current matched subgraph before proceeding.

\subsubsection{DFS Order, Starting with Lowest Multiplicity}

For this implementation, we combine the above two heuristics in the
following way. To implement the ``adjacent first'' heuristic we apply
DFS to the graph, and use the DFS discovery order as our vertex
order. To comply with the ``most constrained first'' heuristic we
order the roots of our DFS trees by invariant multiplicity.


\subsection{Implementation of the \code{match} function}


The \code{match} function implements the recursive backtracking,
handling the four cases described in \S\ref{sec:backtracking}.

@d Match function
@{
bool match(edge_iter iter, int dfs_num_k)
{
    if (iter != ordered_edges.end()) {
        vertex1_t i = source(*iter, G1), j = target(*iter, G2);
        if (dfs_num[i] > dfs_num_k) {
           @<Find a match for the DFS tree root $k+1$@>
        }
        else if (dfs_num[j] > dfs_num_k) {
            @<Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$@>
        }
        else {
            @<Check to see if $(f(i),f(j)) \in E_2[S]$ and continue@>
        }
    } else 
        return true;
    return false;
}
@}

\noindent Now to describe how each of the four cases is implemented.

\paragraph{Case 1: $i \not\in G_1[k]$.}
We increment $k$ and try to map it to any of the eligible vertices of
$V_2 - S$.  After matching the new $k$ we proceed by invoking
\code{match}. We do not yet move on to the next edge, since we have
not yet found a match for edge, or for target $j$.  We reset the edge
counter to zero.

@d Find a match for the DFS tree root $k+1$
@{
vertex1_t kp1 = dfs_vertices[dfs_num_k + 1];
BGL_FORALL_VERTICES_T(u, G2, Graph2) {
    if (invariant1(kp1) == invariant2(u) && in_S[u] == false) {
        f[kp1] = u;
        in_S[u] = true;
        num_edges_on_k = 0;
        if (match(iter, dfs_num_k + 1));
            return true;
        in_S[u] = false;
    }
}
@}


\paragraph{Case 2: $i \in G_1[k]$ and $j \not\in G_1[k]$.}
Before we extend the subgraph by incrementing $k$, we need to finish
verifying that $G_1[k]$ and $G_2[S]$ are isomorphic. We decrement the
edge counter for every edge incident to $f(k)$ in $G_2[S]$, which
should bring the counter back down to zero. If not we return false.

@d Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$
@{
vertex1_t k = dfs_vertices[dfs_num_k];
@<Count out-edges of $f(k)$ in $G_2[S]$@>
@<Count in-edges of $f(k)$ in $G_2[S]$@>
if (num_edges_on_k != 0)
    return false;
@<Find a match for $j$ and continue@>
@}

\noindent We decrement the edge counter for every vertex in
$Adj[f(k)]$ that is also in $S$. We call \code{count\_if} to do the
counting, using \code{boost::bind} to create the predicate functor.

@d Count out-edges of $f(k)$ in $G_2[S]$
@{
num_edges_on_k -= 
    count_if(adjacent_vertices(f[k], G2), make_indirect_pmap(in_S));
@}

\noindent Next we iterate through all the vertices in $S$ and for each
we decrement the counter for each edge whose target is $k$.

% We could specialize this for the case when G_2 is bidirectional.

@d Count in-edges of $f(k)$ in $G_2[S]$
@{
for (int jj = 0; jj < dfs_num_k; ++jj) {
    vertex1_t j = dfs_vertices[jj];
    num_edges_on_k -= count(adjacent_vertices(f[j], G2), f[k]);
}
@}

Now that we have finished verifying that $G_1[k] \isomorphic G_2[S]$,
we can now consider extending the isomorphism. We need to find a match
for $j$ in $V_2 - S$. Since $j$ is adjacent to $i$, we can further
narrow down the search by only considering vertices adjacent to
$f(i)$. Also, the vertex must have the same vertex invariant. Once we
have a matching vertex $v$ we extend the matching subgraphs by
incrementing $k$ and adding $v$ to $S$, we set $f(j) = v$, and we set
the edge counter to $1$ (since $(i,j)$ is the first edge incident on
our new $k$). We continue to the next edge by calling \code{match}. If
that fails we undo the assignment $f(j) = v$.

@d Find a match for $j$ and continue
@{
BGL_FORALL_ADJ_T(f[i], v, G2, Graph2)
    if (invariant2(v) == invariant1(j) && in_S[v] == false) {
        f[j] = v;
        in_S[v] = true;
        num_edges_on_k = 1;
	int next_k = std::max(dfs_num_k, std::max(dfs_num[i], dfs_num[j]));
        if (match(next(iter), next_k))
            return true;
        in_S[v] = false;
    }
@}

\paragraph{Case 3: both $i$ and $j$ are in $G_1[k]$.} 
Our goal is to check whether $(f(i),f(j)) \in E_2[S]$.  If $f(j)$ is
in $Adj[f(i)]$ then we have a match for the edge $(i,j)$, and can
increment the counter for the number of edges incident on $k$ in
$E_1[k]$. We continue by calling \code{match} on the next edge.

@d Check to see if $(f(i),f(j)) \in E_2[S]$ and continue
@{
edge2_t e2;
bool fi_fj_exists = false;
typename graph_traits<Graph2>::out_edge_iterator io, io_end;
for (tie(io, io_end) = out_edges(f[i], G2); io != io_end; ++io)
  if (target(*io, G2) == f[j]) {
    fi_fj_exists = true;
    e2 = *io;
  }

if (fi_fj_exists && edge_compare(e2, *iter)) {
    ++num_edges_on_k;
    if (match(next(iter), dfs_num_k))
         return true;
}
@}

\section{Public Interface}

The following is the public interface for the \code{isomorphism}
function. The input to the function is the two graphs $G_1$ and $G_2$,
mappings from the vertices in the graphs to integers (in the range
$[0,|V|)$), and a vertex invariant function object. The output of the
function is an isomorphism $f$ if there is one. The \code{isomorphism}
function returns true if the graphs are isomorphic and false
otherwise. The invariant parameters are function objects that compute
the vertex invariants for vertices of the two graphs.  The
\code{max\_invariant} parameter is to specify one past the largest
integer that a vertex invariant number could be (the invariants
numbers are assumed to span from zero to \code{max\_invariant-1}).
The requirements on the template parameters are described below in the
``Concept checking'' code part.


@d Isomorphism function interface
@{
template <typename Graph1, typename Graph2, typename IsoMapping, 
          typename Invariant1, typename Invariant2, typename EdgeCompare,
          typename IndexMap1, typename IndexMap2>
bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f, 
                 Invariant1 invariant1, Invariant2 invariant2, 
                 std::size_t max_invariant, EdgeCompare edge_compare,
                 IndexMap1 index_map1, IndexMap2 index_map2)
@}


The function body consists of the concept checks followed by a quick
check for empty graphs or graphs of different size and then constructs
an algorithm object. We then call the \code{test\_isomorphism} member
function, which runs the algorithm.  The reason that we implement the
algorithm using a class is that there are a fair number of internal
data structures required, and it is easier to make these data members
of a class and make each section of the algorithm a member
function. This relieves us from the burden of passing lots of
arguments to each function, while at the same time avoiding the evils
of global variables (non-reentrant, etc.).


@d Isomorphism function body
@{
{
    @<Concept checking@>
    @<Quick return based on size@>
    detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1,
        Invariant2, EdgeCompare, IndexMap1, IndexMap2> 
        algo(G1, G2, f, invariant1, invariant2, max_invariant, 
             edge_compare,
             index_map1, index_map2);
    return algo.test_isomorphism();
}
@}


\noindent If there are no vertices in either graph, then they are
trivially isomorphic. If the graphs have different numbers of vertices
then they are not isomorphic. We could also check the number of edges
here, but that would introduce the \bglconcept{EdgeListGraph}
requirement, which we otherwise do not need.

@d Quick return based on size
@{
if (num_vertices(G1) != num_vertices(G2))
    return false;
if (num_vertices(G1) == 0 && num_vertices(G2) == 0)
    return true;
@}

We use the Boost Concept Checking Library to make sure that the
template arguments fulfill certain requirements. The graph types must
model the \bglconcept{VertexListGraph} and \bglconcept{AdjacencyGraph}
concepts. The vertex invariants must model the
\stlconcept{AdaptableUnaryFunction} concept, with a vertex as their
argument and an integer return type.  The \code{IsoMapping} type
representing the isomorphism $f$ must be a
\pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to
vertices in $G_2$. The two other index maps are
\pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to
unsigned integers.


@d Concept checking
@{
// Graph requirements
function_requires< VertexListGraphConcept<Graph1> >();
function_requires< EdgeListGraphConcept<Graph1> >();
function_requires< VertexListGraphConcept<Graph2> >();
function_requires< BidirectionalGraphConcept<Graph2> >();

typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
typedef typename graph_traits<Graph1>::vertices_size_type size_type;

// Vertex invariant requirement
function_requires< AdaptableUnaryFunctionConcept<Invariant1,
  size_type, vertex1_t> >();
function_requires< AdaptableUnaryFunctionConcept<Invariant2,
  size_type, vertex2_t> >();

// Property map requirements
function_requires< ReadWritePropertyMapConcept<IsoMapping, vertex1_t> >();
typedef typename property_traits<IsoMapping>::value_type IsoMappingValue;
BOOST_STATIC_ASSERT((is_same<IsoMappingValue, vertex2_t>::value));

function_requires< ReadablePropertyMapConcept<IndexMap1, vertex1_t> >();
typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value));

function_requires< ReadablePropertyMapConcept<IndexMap2, vertex2_t> >();
typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value));
@}


\section{Data Structure Setup}

The following is the outline of the isomorphism algorithm class.  The
class is templated on all of the same parameters as the
\code{isomorphism} function, and all of the parameter values are
stored in the class as data members, in addition to the internal data
structures.

@d Isomorphism algorithm class
@{
template <typename Graph1, typename Graph2, typename IsoMapping,
    typename Invariant1, typename Invariant2, typename EdgeCompare,
    typename IndexMap1, typename IndexMap2>
class isomorphism_algo
{
    @<Typedefs for commonly used types@>
    @<Data members for the parameters@>
    @<Internal data structures@>
    friend struct compare_multiplicity;
    @<Invariant multiplicity comparison functor@>
    @<DFS visitor to record vertex and edge order@>
    @<Edge comparison predicate@>
public:
    @<Isomorphism algorithm constructor@>
    @<Test isomorphism member function@>
private:
    @<Match function@>
};
@}

The interesting parts of this class are the \code{test\_isomorphism}
function and the \code{match} function. We focus on those in the
following sections, and leave the other parts of the class to the
Appendix.

The \code{test\_isomorphism} function does all of the setup required
of the algorithm. This consists of sorting the vertices according to
invariant multiplicity, and then by DFS order.  The edges are then
sorted as previously described. The last step of this function is to
begin the backtracking search.

@d Test isomorphism member function
@{
bool test_isomorphism()
{
    @<Quick return if the vertex invariants do not match up@>
    @<Sort vertices according to invariant multiplicity@>
    @<Order vertices and edges by DFS@>
    @<Sort edges according to vertex DFS order@>

    int dfs_num_k = -1;
    return this->match(ordered_edges.begin(), dfs_num_k);
}
@}

As a first check to rule out graphs that have no possibility of
matching, one can create a list of computed vertex invariant numbers
for the vertices in each graph, sort the two lists, and then compare
them.  If the two lists are different then the two graphs are not
isomorphic.  If the two lists are the same then the two graphs may be
isomorphic.

@d Quick return if the vertex invariants do not match up
@{
{
    std::vector<invar1_value> invar1_array;
    BGL_FORALL_VERTICES_T(v, G1, Graph1)
        invar1_array.push_back(invariant1(v));
    sort(invar1_array);

    std::vector<invar2_value> invar2_array;
    BGL_FORALL_VERTICES_T(v, G2, Graph2)
        invar2_array.push_back(invariant2(v));
    sort(invar2_array);
    if (! equal(invar1_array, invar2_array))
        return false;
}
@}

Next we compute the invariant multiplicity, the number of vertices
with the same invariant number. The \code{invar\_mult} vector is
indexed by invariant number. We loop through all the vertices in the
graph to record the multiplicity. We then order the vertices by their
invariant multiplicity.  This will allow us to search the more
constrained vertices first.

@d Sort vertices according to invariant multiplicity
@{
std::vector<vertex1_t> V_mult;
BGL_FORALL_VERTICES_T(v, G1, Graph1)
    V_mult.push_back(v);
{
    std::vector<size_type> multiplicity(max_invariant, 0);
    BGL_FORALL_VERTICES_T(v, G1, Graph1)
        ++multiplicity[invariant1(v)];
    sort(V_mult, compare_multiplicity(invariant1, &multiplicity[0]));
}
@}

\noindent The definition of the \code{compare\_multiplicity} predicate
is shown below. This predicate provides the glue that binds
\code{std::sort} to our current purpose.

@d Invariant multiplicity comparison functor
@{
struct compare_multiplicity
{
    compare_multiplicity(Invariant1 invariant1, size_type* multiplicity)
        : invariant1(invariant1), multiplicity(multiplicity) { }
    bool operator()(const vertex1_t& x, const vertex1_t& y) const {
        return multiplicity[invariant1(x)] < multiplicity[invariant1(y)];
    }
    Invariant1 invariant1;
    size_type* multiplicity;
};
@}

\subsection{Ordering by DFS Discover Time}

Next we order the vertices and edges by DFS discover time.  We would
normally call the BGL \code{depth\_first\_search} function to do this,
but we want the roots of the DFS tree's to be ordered by invariant
multiplicity.  Therefore we implement the outer-loop of the DFS here
and then call \code{depth\_\-first\_\-visit} to handle the recursive
portion of the DFS. The \code{record\_dfs\_order} adapts the DFS to
record the ordering, storing the results in in the
\code{dfs\_vertices} and \code{ordered\_edges} arrays. We then create
the \code{dfs\_num} array which provides a mapping from vertex to DFS
number.

@d Order vertices and edges by DFS
@{
std::vector<default_color_type> color_vec(num_vertices(G1));
safe_iterator_property_map<std::vector<default_color_type>::iterator, IndexMap1>
     color_map(color_vec.begin(), color_vec.size(), index_map1);
record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);
typedef color_traits<default_color_type> Color;
for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) {
    if (color_map[*u] == Color::white()) {
        dfs_visitor.start_vertex(*u, G1);
        depth_first_visit(G1, *u, dfs_visitor, color_map);
    }
}
// Create the dfs_num array and dfs_num_map
dfs_num_vec.resize(num_vertices(G1));
dfs_num = make_safe_iterator_property_map(dfs_num_vec.begin(),
                          dfs_num_vec.size(), index_map1);
size_type n = 0;
for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v)
    dfs_num[*v] = n++;
@}

\noindent The definition of the \code{record\_dfs\_order} visitor
class is as follows.

@d DFS visitor to record vertex and edge order
@{
struct record_dfs_order : default_dfs_visitor
{
    record_dfs_order(std::vector<vertex1_t>& v, std::vector<edge1_t>& e) 
        : vertices(v), edges(e) { }

    void discover_vertex(vertex1_t v, const Graph1&) const {
        vertices.push_back(v);
    }
    void examine_edge(edge1_t e, const Graph1& G1) const {
        edges.push_back(e);
    }
    std::vector<vertex1_t>& vertices;
    std::vector<edge1_t>& edges;
};
@}

The final stage of the setup is to reorder the edges so that all edges
belonging to $G_1[k]$ appear before any edges not in $G_1[k]$, for
$k=1,...,n$.

@d Sort edges according to vertex DFS order
@{
sort(ordered_edges, edge_cmp(G1, dfs_num));
@}

\noindent The edge comparison function object is defined as follows.

@d Edge comparison predicate
@{
struct edge_cmp {
    edge_cmp(const Graph1& G1, DFSNumMap dfs_num)
        : G1(G1), dfs_num(dfs_num) { }
    bool operator()(const edge1_t& e1, const edge1_t& e2) const {
        using namespace std;
        vertex1_t u1 = dfs_num[source(e1,G1)], v1 = dfs_num[target(e1,G1)];
        vertex1_t u2 = dfs_num[source(e2,G1)], v2 = dfs_num[target(e2,G1)];
        int m1 = max(u1, v1);
        int m2 = max(u2, v2);
        // lexicographical comparison 
        return make_pair(m1, make_pair(u1, v1))
             < make_pair(m2, make_pair(u2, v2));
    }
    const Graph1& G1;
    DFSNumMap dfs_num;
};
@}


\section{Appendix}


@d Typedefs for commonly used types
@{
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
typedef typename graph_traits<Graph1>::edge_descriptor edge1_t;
typedef typename graph_traits<Graph2>::edge_descriptor edge2_t;
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
typedef typename Invariant1::result_type invar1_value;
typedef typename Invariant2::result_type invar2_value;
@}

@d Data members for the parameters
@{
const Graph1& G1;
const Graph2& G2;
IsoMapping f;
Invariant1 invariant1;
Invariant2 invariant2;
std::size_t max_invariant;
EdgeCompare edge_compare;
IndexMap1 index_map1;
IndexMap2 index_map2;
@}

@d Internal data structures
@{
std::vector<vertex1_t> dfs_vertices;
typedef typename std::vector<vertex1_t>::iterator vertex_iter;
std::vector<int> dfs_num_vec;
typedef safe_iterator_property_map<typename std::vector<int>::iterator, 
  IndexMap1> DFSNumMap;
DFSNumMap dfs_num;
std::vector<edge1_t> ordered_edges;
typedef typename std::vector<edge1_t>::iterator edge_iter;

std::vector<char> in_S_vec;
typedef safe_iterator_property_map<typename std::vector<char>::iterator,
    IndexMap2> InSMap;
InSMap in_S;

int num_edges_on_k;
@}

@d Isomorphism algorithm constructor
@{
isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,
                 Invariant1 invariant1, Invariant2 invariant2, 
                 std::size_t max_invariant,
                 EdgeCompare edge_compare,
                 IndexMap1 index_map1, IndexMap2 index_map2)
    : G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2),
      max_invariant(max_invariant), edge_compare(edge_compare),
      index_map1(index_map1), index_map2(index_map2)
{
    in_S_vec.resize(num_vertices(G1));
    in_S = make_safe_iterator_property_map
        (in_S_vec.begin(), in_S_vec.size(), index_map2);
}
@}


@o isomorphism.hpp
@{
// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
#ifndef BOOST_GRAPH_ISOMORPHISM_HPP
#define BOOST_GRAPH_ISOMORPHISM_HPP

#include <utility>
#include <vector>
#include <iterator>
#include <algorithm>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/utility.hpp>
#include <boost/detail/algorithm.hpp>
#include <boost/pending/indirect_cmp.hpp> // for make_indirect_pmap

namespace boost {

namespace detail {

@<Isomorphism algorithm class@>
    
template <typename Graph, typename InDegreeMap>
void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)
{
    BGL_FORALL_VERTICES_T(v, g, Graph)
        put(in_degree_map, v, 0);

    BGL_FORALL_VERTICES_T(u, g, Graph)
      BGL_FORALL_ADJ_T(u, v, g, Graph)
        put(in_degree_map, v, get(in_degree_map, v) + 1);
}

} // namespace detail


@<Degree vertex invariant functor@>

@<Isomorphism function interface@>
@<Isomorphism function body@>

namespace detail {

struct default_edge_compare {
   template <typename Edge1, typename Edge2>
   bool operator()(Edge1 e1, Edge2 e2) const { return true; }
};
  
template <typename Graph1, typename Graph2, 
          typename IsoMapping, 
          typename IndexMap1, typename IndexMap2,
          typename P, typename T, typename R>
bool isomorphism_impl(const Graph1& G1, const Graph2& G2, 
                      IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2,
                      const bgl_named_params<P,T,R>& params)
{
  std::vector<std::size_t> in_degree1_vec(num_vertices(G1));
  typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, 
    IndexMap1> InDeg1;
  InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);
  compute_in_degree(G1, in_degree1);

  std::vector<std::size_t> in_degree2_vec(num_vertices(G2));
  typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, 
    IndexMap2> InDeg2;
  InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);
  compute_in_degree(G2, in_degree2);

  degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1);
  degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2);
  default_edge_compare edge_cmp;

  return isomorphism(G1, G2, f,
        choose_param(get_param(params, vertex_invariant1_t()), invariant1),
        choose_param(get_param(params, vertex_invariant2_t()), invariant2),
        choose_param(get_param(params, vertex_max_invariant_t()), 
                     invariant2.max()),
        choose_param(get_param(params, edge_compare_t()), edge_cmp),
        index_map1, index_map2
        );  
}  
   
} // namespace detail


// Named parameter interface
template <typename Graph1, typename Graph2, class P, class T, class R>
bool isomorphism(const Graph1& g1,
                 const Graph2& g2,
                 const bgl_named_params<P,T,R>& params)
{
  typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
  typename std::vector<vertex2_t>::size_type n = num_vertices(g1);
  std::vector<vertex2_t> f(n);
  return detail::isomorphism_impl
    (g1, g2, 
     choose_param(get_param(params, vertex_isomorphism_t()),
          make_safe_iterator_property_map(f.begin(), f.size(),
                  choose_const_pmap(get_param(params, vertex_index1),
                                    g1, vertex_index), vertex2_t())),
     choose_const_pmap(get_param(params, vertex_index1), g1, vertex_index),
     choose_const_pmap(get_param(params, vertex_index2), g2, vertex_index),
     params
     );
}

// All defaults interface
template <typename Graph1, typename Graph2>
bool isomorphism(const Graph1& g1, const Graph2& g2)
{
  return isomorphism(g1, g2,
    bgl_named_params<int, buffer_param_t>(0));// bogus named param
}


// Verify that the given mapping iso_map from the vertices of g1 to the
// vertices of g2 describes an isomorphism.
// Note: this could be made much faster by specializing based on the graph
// concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,
// O(n^4) won't hurt us.
template<typename Graph1, typename Graph2, typename IsoMap>
inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map)
{
#if 0
    // problematic for filtered_graph!
  if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
    return false;
#endif
  
  for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first;
       e1 != edges(g1).second; ++e1) {
    bool found_edge = false;
    for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first;
         e2 != edges(g2).second && !found_edge; ++e2) {
      if (source(*e2, g2) == get(iso_map, source(*e1, g1)) &&
          target(*e2, g2) == get(iso_map, target(*e1, g1))) {
        found_edge = true;
      }
    }
    
    if (!found_edge)
      return false;
  }
  
  return true;
}

} // namespace boost

#include <boost/graph/iteration_macros_undef.hpp>

#endif // BOOST_GRAPH_ISOMORPHISM_HPP
@}

\bibliographystyle{abbrv}
\bibliography{ggcl}

\end{document}
% LocalWords:  Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS
% LocalWords:  ISOMORPH Invariants invariants typename IsoMapping bool const
% LocalWords:  VertexInvariant VertexIndexMap iterator typedef VertexG Idx num
% LocalWords:  InvarValue struct invar vec iter tmp_matches mult inserter permute ui
% LocalWords:  dfs cmp isomorph VertexIter edge_iter_t IndexMap desc RPH ATCH pre

% LocalWords:  iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp
% LocalWords:  ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept
% LocalWords:  BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei
% LocalWords:  IsoMappingValue ReadablePropertyMapConcept namespace InvarFun
% LocalWords:  MultMap vip inline bitset typedefs fj hpp ifndef adaptor params
% LocalWords:  bgl param pmap endif