1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
<HTML>
<!--
~~ Copyright (c) Jeremy Siek 2000
~~
-- Distributed under the Boost Software License, Version 1.0.
-- (See accompanying file LICENSE_1_0.txt or copy at
-- http://www.boost.org/LICENSE_1_0.txt)
-->
<Head>
<Title>Boost Graph Library: King Ordering</Title>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<BR Clear>
<H1>
<img src="figs/python.gif" alt="(Python)"/>
<TT>king_ordering</TT>
</H1>
<P>
<DIV ALIGN="LEFT">
<TABLE CELLPADDING=3 border>
<TR><TH ALIGN="LEFT"><B>Graphs:</B></TH>
<TD ALIGN="LEFT">undirected</TD>
</TR>
<TR><TH ALIGN="LEFT"><B>Properties:</B></TH>
<TD ALIGN="LEFT">color, degree</TD>
</TR>
<TR><TH ALIGN="LEFT"><B>Complexity:</B></TH>
<TD ALIGN="LEFT">time: <i>O(m<sup>2</sup>log(m)|E|)</i> where <i>m = max { degree(v) | v in V }</i> </TD>
</TR>
</TABLE>
</DIV>
<pre>
(1)
template <class IncidenceGraph, class OutputIterator,
class ColorMap, class DegreeMap, class VertexIndexMap>
OutputIterator
king_ordering(const IncidenceGraph& g,
typename graph_traits<Graph>::vertex_descriptor s,
OutputIterator inverse_permutation,
ColorMap color, DegreeMap degree, VertexIndexMap index_map);
(2)
template <class IncidenceGraph, class OutputIterator>
OutputIterator
king_ordering(const IncidenceGraph& g, OutputIterator inverse_permutation);
template <class IncidenceGraph, class OutputItrator, class VertexIndexMap>
OutputIterator
king_ordering(const IncidenceGraph& g, OutputIterator inverse_permutation,
VertexIndexMap index_map);
template <class VertexListGraph, class OutputIterator,
class ColorMap, class DegreeMap, class VertexIndexMap>
OutputIterator
king_ordering(const VertexListGraph& G, OutputIterator inverse_permutation,
ColorMap color, DegreeMap degree, VertexIndexMap index_map);
(3)
template <class IncidenceGraph, class OutputIterator,
class ColorMap, class DegreeMap, class VertexIndexMap>
OutputIterator
king_ordering(const IncidenceGraph& g,
std::deque< typename
graph_traits<Graph>::vertex_descriptor > vertex_queue,
OutputIterator permutation,
ColorMap color, DegreeMap degree, VertexIndexMap index_map);
</pre>
<!-- King, I.P. An automatic reordering scheme for simultaneous equations derived from network analysis. Int. J. Numer. Methods Engrg. 2 (1970), 523-533 -->
The goal of the King ordering
algorithm [<a href="bibliography.html#king70">62</a>]is to reduce the <a
href="./bandwidth.html">bandwidth</a> of a graph by reordering the
indices assigned to each vertex. The King ordering algorithm
works by a local minimization of the i-th bandwidths. The vertices are
basically assigned a breadth-first search order, except that at each
step, the adjacent vertices are placed in the queue in order of
increasing pseudo-degree, where pseudo-degree is defined as the number of
outgoing edges with white endpoints (vertices yet to be examined).
<p>
Version 1 of the algorithm lets the user choose the ``starting
vertex'', version 2 finds a good starting vertex using the
pseudo-peripheral pair heuristic (among each component), while version 3
contains the starting nodes for each vertex in the deque. The choice of the ``starting
vertex'' can have a significant effect on the quality of the ordering.
</p>
<p>
The output of the algorithm are the vertices in the new ordering.
Storing the output into a vector gives you the
permutation from the new ordering to the old ordering.
<pre>
inv_perm[new_index[u]] == u
</pre>
<p>
Often times, it is the opposite permutation that you want, the
permutation from the old index to the new index. This can easily be
computed in the following way.
</p>
<pre>
for (size_type i = 0; i != inv_perm.size(); ++i)
perm[old_index[inv_perm[i]]] = i;
</pre>
<h3>Parameters</h3>
For version 1:
<ul>
<li> <tt>IncidenceGraph& g</tt> (IN) <br>
An undirected graph. The graph's type must be a model of <a
href="./IncidenceGraph.html">IncidenceGraph</a>.<br>
<b>Python</b>: The parameter is named <tt>graph</tt>.
<li> <tt>vertex_descriptor s</tt>  (IN) <br>
The starting vertex.<br>
<b>Python</b>: Unsupported parameter.
<li> <tt>OutputIterator permutation</tt>  (OUT) <br>
The new vertex ordering. The vertices are written to the <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">output
iterator</a> in their new order. <br>
<b>Python</b>: This parameter is unused in Python. The new vertex
ordering is returned as a Python <tt>list</tt>.
<li> <tt>ColorMap color_map</tt>  (WORK) <br>
Used internally to keep track of the progress of the algorithm
(to avoid visiting the same vertex twice).<br>
<b>Python</b>: Unsupported parameter.
<li> <tt>DegreeMap degree_map</tt>  (IN) <br>
This must map vertices to their degree.<br>
<b>Python</b>: Unsupported parameter.
</ul>
For version 2:
<ul>
<li> <tt>VertexListGraph& g</tt> (IN) <br>
An undirected graph. The graph's type must be a model of <a
href="./VertexListGraph.html">VertexListGraph</a>.<br>
<b>Python</b>: The name of this parameter is <tt>graph</tt>.
<li> <tt><a href="http://www.sgi.com/tech/stl/OutputIterator.html">
OutputIterator</a> permutation</tt>  (OUT) <br>
The new vertex ordering. The vertices are written to the
output iterator in their new order.<br>
<b>Python</b>: This parameter is unused in Python. The new vertex
ordering is returned as a Python <tt>list</tt>.
<li> <tt>ColorMap color_map</tt>  (WORK) <br>
Used internally to keep track of the progress of the algorithm
(to avoid visiting the same vertex twice).<br>
<b>Python</b>: Unsupported parameter.
<li> <tt>DegreeMap degree_map</tt>  (IN) <br>
This must map vertices to their degree.<br>
<b>Python</b>: Unsupported parameter.
</ul>
For version 3:
<ul>
<li> <tt>IncidenceGraph& g</tt> (IN) <br>
An undirected graph. The graph's type must be a model of <a
href="./IncidenceGraph.html">IncidenceGraph</a>.<br>
<b>Python</b>: The parameter is named <tt>graph</tt>.
<li> <tt> std::deque< typename graph_traits<Graph>::vertex_descriptor > vertex_queue </tt>  (IN) <br>
The deque containing the starting vertices for each component.<br>
<b>Python</b>: This parameter is unused in Python. The new vertex
ordering is returned as a Python <tt>list</tt>.
<li> <tt>OutputIterator permutation</tt>  (OUT) <br>
The new vertex ordering. The vertices are written to the <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">output
iterator</a> in their new order.<br>
<b>Python</b>: This parameter is unused in Python. The new vertex
ordering is returned as a Python <tt>list</tt>.
<li> <tt>ColorMap color_map</tt>  (WORK) <br>
Used internally to keep track of the progress of the algorithm
(to avoid visiting the same vertex twice).<br>
<b>Python</b>: Unsupported parameter.
<li> <tt>DegreeMap degree_map</tt>  (IN) <br>
This must map vertices to their degree.<br>
<b>Python</b>: Unsupported parameter.
</ul>
<h3>Example</h3>
See <a
href="../example/king_ordering.cpp"><tt>example/king_ordering.cpp</tt></a>.
<h3>See Also</h3>
<a href="./bandwidth.html">bandwidth</tt></a>,
and <tt>degree_property_map</tt> in <tt>boost/graph/properties.hpp</tt>.
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright © 2000-2001</TD><TD>
<A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>
|