1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#include <boost/graph/betweenness_centrality.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <vector>
#include <stack>
#include <queue>
#include <boost/property_map.hpp>
#include <boost/test/minimal.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/random/linear_congruential.hpp>
using namespace boost;
const double error_tolerance = 0.001;
typedef property<edge_weight_t, double,
property<edge_index_t, std::size_t> > EdgeProperties;
struct weighted_edge
{
int source, target;
double weight;
};
template<typename Graph>
void
run_weighted_test(Graph*, int V, weighted_edge edge_init[], int E,
double correct_centrality[])
{
Graph g(V);
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
std::vector<Vertex> vertices(V);
{
vertex_iterator v, v_end;
int index = 0;
for (tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
vertices[index] = *v;
}
}
std::vector<Edge> edges(E);
for (int e = 0; e < E; ++e) {
edges[e] = add_edge(vertices[edge_init[e].source],
vertices[edge_init[e].target],
g).first;
put(edge_weight, g, edges[e], 1.0);
}
std::vector<double> centrality(V);
brandes_betweenness_centrality(
g,
centrality_map(
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()))
.vertex_index_map(get(vertex_index, g)).weight_map(get(edge_weight, g)));
for (int v = 0; v < V; ++v) {
BOOST_CHECK(centrality[v] == correct_centrality[v]);
}
}
struct unweighted_edge
{
int source, target;
};
template<typename Graph>
void
run_unweighted_test(Graph*, int V, unweighted_edge edge_init[], int E,
double correct_centrality[],
double* correct_edge_centrality = 0)
{
Graph g(V);
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
std::vector<Vertex> vertices(V);
{
vertex_iterator v, v_end;
int index = 0;
for (tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
vertices[index] = *v;
}
}
std::vector<Edge> edges(E);
for (int e = 0; e < E; ++e) {
edges[e] = add_edge(vertices[edge_init[e].source],
vertices[edge_init[e].target],
g).first;
put(edge_weight, g, edges[e], 1.0);
put(edge_index, g, edges[e], e);
}
std::vector<double> centrality(V);
std::vector<double> edge_centrality1(E);
brandes_betweenness_centrality(
g,
centrality_map(
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()))
.edge_centrality_map(
make_iterator_property_map(edge_centrality1.begin(),
get(edge_index, g), double()))
.vertex_index_map(get(vertex_index, g)));
std::vector<double> centrality2(V);
std::vector<double> edge_centrality2(E);
brandes_betweenness_centrality(
g,
vertex_index_map(get(vertex_index, g)).weight_map(get(edge_weight, g))
.centrality_map(
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()))
.edge_centrality_map(
make_iterator_property_map(edge_centrality2.begin(),
get(edge_index, g), double())));
std::vector<double> edge_centrality3(E);
brandes_betweenness_centrality(
g,
edge_centrality_map(
make_iterator_property_map(edge_centrality3.begin(),
get(edge_index, g), double())));
for (int v = 0; v < V; ++v) {
BOOST_CHECK(centrality[v] == centrality2[v]);
double relative_error =
correct_centrality[v] == 0.0? centrality[v]
: (centrality[v] - correct_centrality[v]) / correct_centrality[v];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
}
for (int e = 0; e < E; ++e) {
BOOST_CHECK(edge_centrality1[e] == edge_centrality2[e]);
BOOST_CHECK(edge_centrality1[e] == edge_centrality3[e]);
if (correct_edge_centrality) {
double relative_error =
correct_edge_centrality[e] == 0.0? edge_centrality1[e]
: (edge_centrality1[e] - correct_edge_centrality[e])
/ correct_edge_centrality[e];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
if (relative_error >= error_tolerance) {
std::cerr << "Edge " << e << " has edge centrality "
<< edge_centrality1[e] << ", should be "
<< correct_edge_centrality[e] << std::endl;
}
}
}
}
template<typename Graph>
void
run_wheel_test(Graph*, int V)
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
Graph g(V);
Vertex center = *boost::vertices(g).first;
std::vector<Vertex> vertices(V);
{
vertex_iterator v, v_end;
int index = 0;
for (tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
vertices[index] = *v;
if (*v != center) {
Edge e = add_edge(*v, center, g).first;
put(edge_weight, g, e, 1.0);
}
}
}
std::vector<double> centrality(V);
brandes_betweenness_centrality(
g,
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()));
std::vector<double> centrality2(V);
brandes_betweenness_centrality(
g,
centrality_map(
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()))
.vertex_index_map(get(vertex_index, g)).weight_map(get(edge_weight, g)));
relative_betweenness_centrality(
g,
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()));
relative_betweenness_centrality(
g,
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()));
for (int v = 0; v < V; ++v) {
BOOST_CHECK(centrality[v] == centrality2[v]);
BOOST_CHECK((v == 0 && centrality[v] == 1)
|| (v != 0 && centrality[v] == 0));
}
double dominance =
central_point_dominance(
g,
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()));
BOOST_CHECK(dominance == 1.0);
}
template<typename MutableGraph>
void randomly_add_edges(MutableGraph& g, double edge_probability)
{
typedef typename graph_traits<MutableGraph>::directed_category
directed_category;
const bool is_undirected =
is_same<directed_category, undirected_tag>::value;
minstd_rand gen;
uniform_01<minstd_rand, double> rand_gen(gen);
typedef typename graph_traits<MutableGraph>::vertex_descriptor vertex;
typename graph_traits<MutableGraph>::vertex_iterator vi, vi_end;
for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
vertex v = *vi;
typename graph_traits<MutableGraph>::vertex_iterator wi
= is_undirected? vi : vertices(g).first;
while (wi != vi_end) {
vertex w = *wi++;
if (v != w) {
if (rand_gen() < edge_probability) add_edge(v, w, g);
}
}
}
}
template<typename Graph, typename VertexIndexMap, typename CentralityMap>
void
simple_unweighted_betweenness_centrality(const Graph& g, VertexIndexMap index,
CentralityMap centrality)
{
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename boost::graph_traits<Graph>::adjacency_iterator adjacency_iterator;
typedef typename boost::graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef typename boost::property_traits<CentralityMap>::value_type centrality_type;
vertex_iterator vi, vi_end;
for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(centrality, *vi, 0);
vertex_iterator si, si_end;
for (tie(si, si_end) = vertices(g); si != si_end; ++si) {
vertex s = *si;
// S <-- empty stack
std::stack<vertex> S;
// P[w] <-- empty list, w \in V
typedef std::vector<vertex> Predecessors;
std::vector<Predecessors> predecessors(num_vertices(g));
// sigma[t] <-- 0, t \in V
std::vector<vertices_size_type> sigma(num_vertices(g), 0);
// sigma[s] <-- 1
sigma[get(index, s)] = 1;
// d[t] <-- -1, t \in V
std::vector<int> d(num_vertices(g), -1);
// d[s] <-- 0
d[get(index, s)] = 0;
// Q <-- empty queue
std::queue<vertex> Q;
// enqueue s --> Q
Q.push(s);
while (!Q.empty()) {
// dequeue v <-- Q
vertex v = Q.front(); Q.pop();
// push v --> S
S.push(v);
adjacency_iterator wi, wi_end;
for (tie(wi, wi_end) = adjacent_vertices(v, g); wi != wi_end; ++wi) {
vertex w = *wi;
// w found for the first time?
if (d[get(index, w)] < 0) {
// enqueue w --> Q
Q.push(w);
// d[w] <-- d[v] + 1
d[get(index, w)] = d[get(index, v)] + 1;
}
// shortest path to w via v?
if (d[get(index, w)] == d[get(index, v)] + 1) {
// sigma[w] = sigma[w] + sigma[v]
sigma[get(index, w)] += sigma[get(index, v)];
// append v --> P[w]
predecessors[get(index, w)].push_back(v);
}
}
}
// delta[v] <-- 0, v \in V
std::vector<centrality_type> delta(num_vertices(g), 0);
// S returns vertices in order of non-increasing distance from s
while (!S.empty()) {
// pop w <-- S
vertex w = S.top(); S.pop();
const Predecessors& w_preds = predecessors[get(index, w)];
for (typename Predecessors::const_iterator vi = w_preds.begin();
vi != w_preds.end(); ++vi) {
vertex v = *vi;
// delta[v] <-- delta[v] + (sigma[v]/sigma[w])*(1 + delta[w])
delta[get(index, v)] +=
((centrality_type)sigma[get(index, v)]/sigma[get(index, w)])
* (1 + delta[get(index, w)]);
}
if (w != s) {
// C_B[w] <-- C_B[w] + delta[w]
centrality[w] += delta[get(index, w)];
}
}
}
typedef typename graph_traits<Graph>::directed_category directed_category;
const bool is_undirected =
is_same<directed_category, undirected_tag>::value;
if (is_undirected) {
vertex_iterator v, v_end;
for(tie(v, v_end) = vertices(g); v != v_end; ++v) {
put(centrality, *v, get(centrality, *v) / centrality_type(2));
}
}
}
template<typename Graph>
void random_unweighted_test(Graph*, int n)
{
Graph g(n);
{
typename graph_traits<Graph>::vertex_iterator v, v_end;
int index = 0;
for (tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
}
}
randomly_add_edges(g, 0.20);
std::cout << "Random graph with " << n << " vertices and "
<< num_edges(g) << " edges.\n";
std::cout << " Direct translation of Brandes' algorithm...";
std::vector<double> centrality(n);
simple_unweighted_betweenness_centrality(g, get(vertex_index, g),
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()));
std::cout << "DONE.\n";
std::cout << " Real version, unweighted...";
std::vector<double> centrality2(n);
brandes_betweenness_centrality(g,
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()));
std::cout << "DONE.\n";
if (!std::equal(centrality.begin(), centrality.end(),
centrality2.begin())) {
for (std::size_t v = 0; v < centrality.size(); ++v) {
double relative_error =
centrality[v] == 0.0? centrality2[v]
: (centrality2[v] - centrality[v]) / centrality[v];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
}
}
std::cout << " Real version, weighted...";
std::vector<double> centrality3(n);
for (typename graph_traits<Graph>::edge_iterator ei = edges(g).first;
ei != edges(g).second; ++ei)
put(edge_weight, g, *ei, 1);
brandes_betweenness_centrality(g,
weight_map(get(edge_weight, g))
.centrality_map(
make_iterator_property_map(centrality3.begin(), get(vertex_index, g),
double())));
std::cout << "DONE.\n";
if (!std::equal(centrality.begin(), centrality.end(),
centrality3.begin())) {
for (std::size_t v = 0; v < centrality.size(); ++v) {
double relative_error =
centrality[v] == 0.0? centrality3[v]
: (centrality3[v] - centrality[v]) / centrality[v];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
}
}
}
int test_main(int, char*[])
{
typedef adjacency_list<listS, listS, undirectedS,
property<vertex_index_t, int>, EdgeProperties>
Graph;
typedef adjacency_list<listS, listS, directedS,
property<vertex_index_t, int>, EdgeProperties>
Digraph;
struct unweighted_edge ud_edge_init1[5] = {
{ 0, 1 },
{ 0, 3 },
{ 1, 2 },
{ 3, 2 },
{ 2, 4 }
};
double ud_centrality1[5] = { 0.5, 1.0, 3.5, 1.0, 0.0 };
run_unweighted_test((Graph*)0, 5, ud_edge_init1, 5, ud_centrality1);
// Example borrowed from the JUNG test suite
struct unweighted_edge ud_edge_init2[10] = {
{ 0, 1 },
{ 0, 6 },
{ 1, 2 },
{ 1, 3 },
{ 2, 4 },
{ 3, 4 },
{ 4, 5 },
{ 5, 8 },
{ 7, 8 },
{ 6, 7 },
};
double ud_centrality2[9] = {
0.2142 * 28,
0.2797 * 28,
0.0892 * 28,
0.0892 * 28,
0.2797 * 28,
0.2142 * 28,
0.1666 * 28,
0.1428 * 28,
0.1666 * 28
};
double ud_edge_centrality2[10] = {
10.66666,
9.33333,
6.5,
6.5,
6.5,
6.5,
10.66666,
9.33333,
8.0,
8.0
};
run_unweighted_test((Graph*)0, 9, ud_edge_init2, 10, ud_centrality2,
ud_edge_centrality2);
weighted_edge dw_edge_init1[6] = {
{ 0, 1, 1.0 },
{ 0, 3, 1.0 },
{ 1, 2, 0.5 },
{ 3, 1, 1.0 },
{ 3, 4, 1.0 },
{ 4, 2, 0.5 }
};
double dw_centrality1[5] = { 0.0, 1.5, 0.0, 1.0, 0.5 };
run_weighted_test((Digraph*)0, 5, dw_edge_init1, 6, dw_centrality1);
run_wheel_test((Graph*)0, 15);
random_unweighted_test((Graph*)0, 300);
return 0;
}
|