File: dijkstra_heap_performance.cpp

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (149 lines) | stat: -rw-r--r-- 5,098 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// Copyright 2004 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Douglas Gregor
//           Andrew Lumsdaine
#ifndef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
#  define BOOST_GRAPH_DIJKSTRA_TESTING
#endif

#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/timer.hpp>
#include <vector>
#include <iostream>

#include <iterator>
#include <utility>
#include <boost/random/uniform_int.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/erdos_renyi_generator.hpp>
#include <boost/type_traits/is_base_and_derived.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/detail/lightweight_test.hpp>

using namespace boost;

#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR

struct show_events_visitor : dijkstra_visitor<>
{
  template<typename Vertex, typename Graph>
  void discover_vertex(Vertex v, const Graph&)
  {
    std::cerr << "on_discover_vertex(" << v << ")\n";
  }

  template<typename Vertex, typename Graph>
  void examine_vertex(Vertex v, const Graph&)
  {
    std::cerr << "on_discover_vertex(" << v << ")\n";
  }
};


template<typename Graph, typename Kind>
void run_test(const Graph& g, const char* name, Kind kind, 
              const std::vector<double>& correct_distances)
{
  std::vector<double> distances(num_vertices(g));

  std::cout << "Running Dijkstra's with " << name << "...";
  std::cout.flush();
  timer t;
  dijkstra_heap_kind = kind;

  dijkstra_shortest_paths(g, vertex(0, g),
                          distance_map(&distances[0]).
                          visitor(show_events_visitor()));
  double run_time = t.elapsed();
  std::cout << run_time << " seconds.\n";

  BOOST_TEST(distances == correct_distances);

  if (distances != correct_distances)
    {
      std::cout << "Expected: ";
      std::copy(correct_distances.begin(), correct_distances.end(),
                std::ostream_iterator<double>(std::cout, " "));
      std::cout << "\nReceived: ";
      std::copy(distances.begin(), distances.end(),
                std::ostream_iterator<double>(std::cout, " "));
      std::cout << std::endl;
    }
}
#endif

int main(int argc, char* argv[])
{
  unsigned n = (argc > 1? lexical_cast<unsigned>(argv[1]) : 10000u);
  unsigned m = (argc > 2? lexical_cast<unsigned>(argv[2]) : 10*n);
  int seed = (argc > 3? lexical_cast<int>(argv[3]) : 1);

  // Build random graph
  typedef adjacency_list<vecS, vecS, directedS, no_property,
                         property<edge_weight_t, double> > Graph;
  std::cout << "Generating graph...";
  std::cout.flush();
  minstd_rand gen(seed);
  double p = double(m)/(double(n)*double(n));
  Graph g(erdos_renyi_iterator<minstd_rand, Graph>(gen, n, p),
          erdos_renyi_iterator<minstd_rand, Graph>(),
          n);
  std::cout << n << " vertices, " << num_edges(g) << " edges.\n";
  uniform_real<double> rand01(0.0, 1.0);
  graph_traits<Graph>::edge_iterator ei, ei_end;
  for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
    put(edge_weight, g, *ei, rand01(gen));

  std::vector<double> binary_heap_distances(n);
  std::vector<double> relaxed_heap_distances(n);

  // Run binary heap version
  std::cout << "Running Dijkstra's with binary heap...";
  std::cout.flush();
  timer t;
#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
  dijkstra_heap_kind = dijkstra_binary_heap;
#else
  dijkstra_relaxed_heap = false;
#endif
  dijkstra_shortest_paths(g, vertex(0, g),
                          distance_map(&binary_heap_distances[0]));
  double binary_heap_time = t.elapsed();
  std::cout << binary_heap_time << " seconds.\n";

  // Run relaxed heap version
  std::cout << "Running Dijkstra's with relaxed heap...";
  std::cout.flush();
  t.restart();
#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
  dijkstra_heap_kind = dijkstra_relaxed_heap;
#else
  dijkstra_relaxed_heap = true;
#endif
  dijkstra_shortest_paths(g, vertex(0, g),
                          distance_map(&relaxed_heap_distances[0]));
  double relaxed_heap_time = t.elapsed();
  std::cout << relaxed_heap_time << " seconds.\n"
            << "Speedup = " << (binary_heap_time / relaxed_heap_time) << ".\n";

  // Verify that the results are equivalent
  BOOST_TEST(binary_heap_distances == relaxed_heap_distances);

#ifdef BOOST_GRAPH_DIJKSTRA_TESTING_DIETMAR
  run_test(g, "d-ary heap (d=2)", dijkstra_d_heap_2, binary_heap_distances);
  run_test(g, "d-ary heap (d=3)", dijkstra_d_heap_3, binary_heap_distances);
  run_test(g, "Fibonacci heap", dijkstra_fibonacci_heap, binary_heap_distances);
  run_test(g, "Lazy Fibonacci heap", dijkstra_lazy_fibonacci_heap, binary_heap_distances);
  run_test(g, "Pairing heap", dijkstra_pairing_heap, binary_heap_distances);
  run_test(g, "Splay heap", dijkstra_splay_heap, binary_heap_distances);
#endif
  return boost::report_errors();
}