1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
//=======================================================================
// Copyright 2007 Aaron Windsor
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
/*
This test is almost identical to all_planar_input_files_test.cpp
except that parallel edges and loops are added to the graphs as
they are read in.
This test needs to be linked against Boost.Filesystem.
*/
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <utility>
#include <boost/property_map.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/test/minimal.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/planar_canonical_ordering.hpp>
#include <boost/graph/make_connected.hpp>
#include <boost/graph/make_biconnected_planar.hpp>
#include <boost/graph/make_maximal_planar.hpp>
#include <boost/graph/is_straight_line_drawing.hpp>
#include <boost/graph/is_kuratowski_subgraph.hpp>
#include <boost/graph/chrobak_payne_drawing.hpp>
#include <boost/graph/boyer_myrvold_planar_test.hpp>
#include <boost/graph/planar_detail/add_edge_visitors.hpp>
using namespace boost;
struct coord_t
{
std::size_t x;
std::size_t y;
};
template <typename Graph>
void read_dimacs(Graph& g, const std::string& filename)
{
// every <vertex_stride>th vertex has a self-loop
int vertex_stride = 5;
// on vertices with self loops, there are between 1 and
// <max_loop_multiplicity> loops
int max_loop_multiplicity = 6;
// every <edge_stride>th edge is a parallel edge
int edge_stride = 7;
// parallel edges come in groups of 2 to <max_edge_multiplicity> + 1
int max_edge_multiplicity = 5;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
std::vector<vertex_t> vertices_by_index;
std::ifstream in(filename.c_str());
long num_edges_added = 0;
long num_parallel_edges = 0;
while (!in.eof())
{
char buffer[256];
in.getline(buffer, 256);
std::string s(buffer);
if (s.size() == 0)
continue;
std::vector<std::string> v;
split(v, buffer, is_any_of(" \t\n"));
if (v[0] == "p")
{
//v[1] == "edge"
long num_vertices = boost::lexical_cast<long>(v[2].c_str());
g = Graph(num_vertices);
vertex_iterator_t vi, vi_end;
long count = 0;
long mult_count = 0;
for(tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
{
if (count % vertex_stride == 0)
{
for(int i = 0;
i < (mult_count % max_loop_multiplicity) + 1;
++i
)
{
add_edge(*vi, *vi, g);
}
++mult_count;
}
++count;
}
std::copy(vertices(g).first,
vertices(g).second,
std::back_inserter(vertices_by_index)
);
}
else if (v[0] == "e")
{
add_edge(vertices_by_index[boost::lexical_cast<long>(v[1].c_str())],
vertices_by_index[boost::lexical_cast<long>(v[2].c_str())],
g);
if (num_edges_added % edge_stride == 0)
{
for(int i = 0;
i < (num_parallel_edges % max_edge_multiplicity) + 1;
++i
)
{
add_edge(vertices_by_index
[boost::lexical_cast<long>(v[1].c_str())],
vertices_by_index
[boost::lexical_cast<long>(v[2].c_str())],
g);
}
++num_parallel_edges;
}
++num_edges_added;
}
}
}
struct face_counter : planar_face_traversal_visitor
{
face_counter() : m_num_faces(0) {}
void begin_face() { ++m_num_faces; }
long num_faces() { return m_num_faces; }
private:
long m_num_faces;
};
int test_graph(const std::string& dimacs_filename)
{
typedef adjacency_list<listS,
vecS,
undirectedS,
property<vertex_index_t, int>,
property<edge_index_t, int> > graph;
typedef graph_traits<graph>::edge_descriptor edge_t;
typedef graph_traits<graph>::edge_iterator edge_iterator_t;
typedef graph_traits<graph>::vertex_iterator vertex_iterator_t;
typedef graph_traits<graph>::edges_size_type e_size_t;
typedef graph_traits<graph>::vertices_size_type v_size_t;
typedef graph_traits<graph>::vertex_descriptor vertex_t;
typedef std::pair<vertex_t, vertex_t> vertex_pair_t;
typedef edge_index_update_visitor<property_map<graph, edge_index_t>::type>
edge_visitor_t;
vertex_iterator_t vi, vi_end;
edge_iterator_t ei, ei_end;
graph g;
read_dimacs(g, dimacs_filename);
// Initialize the interior edge index
property_map<graph, edge_index_t>::type e_index = get(edge_index, g);
e_size_t edge_count = 0;
for(tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
put(e_index, *ei, edge_count++);
// Initialize the interior vertex index - not needed if the vertices
// are stored with a vecS
/*
property_map<graph, vertex_index_t>::type v_index = get(vertex_index, g);
v_size_t vertex_count = 0;
for(tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(v_index, *vi, vertex_count++);
*/
// This edge_updater will automatically update the interior edge
// index of the graph as edges are created.
edge_visitor_t edge_updater(get(edge_index, g), num_edges(g));
// The input graph may not be maximal planar, but the Chrobak-Payne straight
// line drawing needs a maximal planar graph as input. So, we make a copy of
// the original graph here, then add edges to the graph to make it maximal
// planar. When we're done creating a drawing of the maximal planar graph,
// we can use the same mapping of vertices to points on the grid to embed the
// original, non-maximal graph.
graph g_copy(g);
// Add edges to make g connected, if it isn't already
make_connected(g, get(vertex_index, g), edge_updater);
std::vector<graph_traits<graph>::edge_descriptor> kuratowski_edges;
typedef std::vector< std::vector<edge_t> > edge_permutation_storage_t;
typedef boost::iterator_property_map
< edge_permutation_storage_t::iterator,
property_map<graph, vertex_index_t>::type
>
edge_permutation_t;
edge_permutation_storage_t edge_permutation_storage(num_vertices(g));
edge_permutation_t perm(edge_permutation_storage.begin(),
get(vertex_index,g)
);
// Test for planarity, computing the planar embedding or the kuratowski
// subgraph.
if (!boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding = perm,
boyer_myrvold_params::kuratowski_subgraph
= std::back_inserter(kuratowski_edges)
)
)
{
std::cerr << "Not planar. ";
BOOST_REQUIRE(is_kuratowski_subgraph
(g, kuratowski_edges.begin(), kuratowski_edges.end())
);
return 0;
}
// If we get this far, we have a connected planar graph.
make_biconnected_planar(g, perm, get(edge_index, g), edge_updater);
// Compute the planar embedding of the (now) biconnected planar graph
BOOST_CHECK (boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding
= perm
)
);
// If we get this far, we have a biconnected planar graph
make_maximal_planar(g, perm, get(vertex_index,g), get(edge_index,g),
edge_updater);
// Now the graph is triangulated - we can compute the final planar embedding
BOOST_CHECK (boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding
= perm
)
);
// Make sure Euler's formula holds
face_counter vis;
planar_face_traversal(g, perm, vis, get(edge_index, g));
BOOST_CHECK(num_vertices(g) - num_edges(g) + vis.num_faces() == 2);
// Compute a planar canonical ordering of the vertices
std::vector<vertex_t> ordering;
planar_canonical_ordering(g, perm, std::back_inserter(ordering));
BOOST_CHECK(ordering.size() == num_vertices(g));
typedef std::vector< coord_t > drawing_storage_t;
typedef boost::iterator_property_map
< drawing_storage_t::iterator, property_map<graph, vertex_index_t>::type >
drawing_map_t;
drawing_storage_t drawing_vector(num_vertices(g));
drawing_map_t drawing(drawing_vector.begin(), get(vertex_index,g));
// Compute a straight line drawing
chrobak_payne_straight_line_drawing(g,
perm,
ordering.begin(),
ordering.end(),
drawing
);
std::cerr << "Planar. ";
BOOST_REQUIRE (is_straight_line_drawing(g, drawing));
return 0;
}
int test_main(int argc, char* argv[])
{
std::string input_directory_str = "planar_input_graphs";
if (argc > 1)
{
input_directory_str = std::string(argv[1]);
}
std::cout << "Reading planar input files from " << input_directory_str
<< std::endl;
filesystem::path input_directory =
filesystem::system_complete
(filesystem::path(input_directory_str, filesystem::native));
const std::string dimacs_suffix = ".dimacs";
filesystem::directory_iterator dir_end;
for( filesystem::directory_iterator dir_itr(input_directory);
dir_itr != dir_end; ++dir_itr)
{
if (!ends_with(dir_itr->string(), dimacs_suffix))
continue;
std::cerr << "Testing " << dir_itr->path().leaf() << "... ";
BOOST_REQUIRE (test_graph(dir_itr->string()) == 0);
std::cerr << std::endl;
}
return 0;
}
|