1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
[section:adaptor Iterator Adaptor]
The `iterator_adaptor` class template adapts some `Base` [#base]_
type to create a new iterator. Instantiations of `iterator_adaptor`
are derived from a corresponding instantiation of `iterator_facade`
and implement the core behaviors in terms of the `Base` type. In
essence, `iterator_adaptor` merely forwards all operations to an
instance of the `Base` type, which it stores as a member.
.. [#base] The term "Base" here does not refer to a base class and is
not meant to imply the use of derivation. We have followed the lead
of the standard library, which provides a base() function to access
the underlying iterator object of a `reverse_iterator` adaptor.
The user of `iterator_adaptor` creates a class derived from an
instantiation of `iterator_adaptor` and then selectively
redefines some of the core member functions described in the
`iterator_facade` core requirements table. The `Base` type need
not meet the full requirements for an iterator; it need only
support the operations used by the core interface functions of
`iterator_adaptor` that have not been redefined in the user's
derived class.
Several of the template parameters of `iterator_adaptor` default
to `use_default`. This allows the
user to make use of a default parameter even when she wants to
specify a parameter later in the parameter list. Also, the
defaults for the corresponding associated types are somewhat
complicated, so metaprogramming is required to compute them, and
`use_default` can help to simplify the implementation. Finally,
the identity of the `use_default` type is not left unspecified
because specification helps to highlight that the `Reference`
template parameter may not always be identical to the iterator's
`reference` type, and will keep users from making mistakes based on
that assumption.
[section:adaptor_reference Reference]
[h2 Synopsis]
template <
class Derived
, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default
>
class iterator_adaptor
: public iterator_facade<Derived, *V'*, *C'*, *R'*, *D'*> // see details
{
friend class iterator_core_access;
public:
iterator_adaptor();
explicit iterator_adaptor(Base const& iter);
typedef Base base_type;
Base const& base() const;
protected:
typedef iterator_adaptor iterator_adaptor\_;
Base const& base_reference() const;
Base& base_reference();
private: // Core iterator interface for iterator_facade.
typename iterator_adaptor::reference dereference() const;
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;
void advance(typename iterator_adaptor::difference_type n);
void increment();
void decrement();
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;
private:
Base m_iterator; // exposition only
};
__ base_parameters_
.. _requirements:
[h2 Requirements]
`static_cast<Derived*>(iterator_adaptor*)` shall be well-formed.
The `Base` argument shall be Assignable and Copy Constructible.
.. _base_parameters:
[h2 Base Class Parameters]
The *V'*, *C'*, *R'*, and *D'* parameters of the `iterator_facade`
used as a base class in the summary of `iterator_adaptor`
above are defined as follows:
[pre
*V'* = if (Value is use_default)
return iterator_traits<Base>::value_type
else
return Value
*C'* = if (CategoryOrTraversal is use_default)
return iterator_traversal<Base>::type
else
return CategoryOrTraversal
*R'* = if (Reference is use_default)
if (Value is use_default)
return iterator_traits<Base>::reference
else
return Value&
else
return Reference
*D'* = if (Difference is use_default)
return iterator_traits<Base>::difference_type
else
return Difference
]
[h2 Operations]
[h3 Public]
iterator_adaptor();
[*Requires:] The `Base` type must be Default Constructible.\n
[*Returns:] An instance of `iterator_adaptor` with
`m_iterator` default constructed.
explicit iterator_adaptor(Base const& iter);
[*Returns:] An instance of `iterator_adaptor` with
`m_iterator` copy constructed from `iter`.
Base const& base() const;
[*Returns:] `m_iterator`
[h3 Protected]
Base const& base_reference() const;
[*Returns:] A const reference to `m_iterator`.
Base& base_reference();
[*Returns:] A non-const reference to `m_iterator`.
[h3 Private]
typename iterator_adaptor::reference dereference() const;
[*Returns:] `*m_iterator`
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;
[*Returns:] `m_iterator == x.base()`
void advance(typename iterator_adaptor::difference_type n);
[*Effects:] `m_iterator += n;`
void increment();
[*Effects:] `++m_iterator;`
void decrement();
[*Effects:] `--m_iterator;`
template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
typename iterator_adaptor::difference_type distance_to(
iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;
[*Returns:] `y.base() - m_iterator`
[endsect]
[section:adaptor_tutorial Tutorial]
In this section we'll further refine the `node_iter` class
template we developed in the |fac_tut|_. If you haven't already
read that material, you should go back now and check it out because
we're going to pick up right where it left off.
.. |fac_tut| replace:: `iterator_facade` tutorial
.. _fac_tut: iterator_facade.html#tutorial-example
[blurb [*`node_base*` really *is* an iterator]\n\n
It's not really a very interesting iterator, since `node_base`
is an abstract class: a pointer to a `node_base` just points
at some base subobject of an instance of some other class, and
incrementing a `node_base*` moves it past this base subobject
to who-knows-where? The most we can do with that incremented
position is to compare another `node_base*` to it. In other
words, the original iterator traverses a one-element array.
]
You probably didn't think of it this way, but the `node_base*`
object that underlies `node_iterator` is itself an iterator,
just like all other pointers. If we examine that pointer closely
from an iterator perspective, we can see that it has much in common
with the `node_iterator` we're building. First, they share most
of the same associated types (`value_type`, `reference`,
`pointer`, and `difference_type`). Second, even some of the
core functionality is the same: `operator*` and `operator==` on
the `node_iterator` return the result of invoking the same
operations on the underlying pointer, via the `node_iterator`\ 's
|dereference_and_equal|_). The only real behavioral difference
between `node_base*` and `node_iterator` can be observed when
they are incremented: `node_iterator` follows the
`m_next` pointer, while `node_base*` just applies an address offset.
.. |dereference_and_equal| replace:: `dereference` and `equal` member functions
.. _dereference_and_equal: iterator_facade.html#implementing-the-core-operations
It turns out that the pattern of building an iterator on another
iterator-like type (the `Base` [#base]_ type) while modifying
just a few aspects of the underlying type's behavior is an
extremely common one, and it's the pattern addressed by
`iterator_adaptor`. Using `iterator_adaptor` is very much like
using `iterator_facade`, but because iterator_adaptor tries to
mimic as much of the `Base` type's behavior as possible, we
neither have to supply a `Value` argument, nor implement any core
behaviors other than `increment`. The implementation of
`node_iter` is thus reduced to:
template <class Value>
class node_iter
: public boost::iterator_adaptor<
node_iter<Value> // Derived
, Value* // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal
>
{
private:
struct enabler {}; // a private type avoids misuse
public:
node_iter()
: node_iter::iterator_adaptor_(0) {}
explicit node_iter(Value* p)
: node_iter::iterator_adaptor_(p) {}
template <class OtherValue>
node_iter(
node_iter<OtherValue> const& other
, typename boost::enable_if<
boost::is_convertible<OtherValue*,Value*>
, enabler
>::type = enabler()
)
: node_iter::iterator_adaptor_(other.base()) {}
private:
friend class boost::iterator_core_access;
void increment() { this->base_reference() = this->base()->next(); }
};
Note the use of `node_iter::iterator_adaptor_` here: because
`iterator_adaptor` defines a nested `iterator_adaptor_` type
that refers to itself, that gives us a convenient way to refer to
the complicated base class type of `node_iter<Value>`. [Note:
this technique is known not to work with Borland C++ 5.6.4 and
Metrowerks CodeWarrior versions prior to 9.0]
You can see an example program that exercises this version of the
node iterators
[@../example/node_iterator3.cpp `here`].
In the case of `node_iter`, it's not very compelling to pass
`boost::use_default` as `iterator_adaptor` 's `Value`
argument; we could have just passed `node_iter` 's `Value`
along to `iterator_adaptor`, and that'd even be shorter! Most
iterator class templates built with `iterator_adaptor` are
parameterized on another iterator type, rather than on its
`value_type`. For example, `boost::reverse_iterator` takes an
iterator type argument and reverses its direction of traversal,
since the original iterator and the reversed one have all the same
associated types, `iterator_adaptor` 's delegation of default
types to its `Base` saves the implementor of
`boost::reverse_iterator` from writing:
std::iterator_traits<Iterator>::*some-associated-type*
at least four times.
We urge you to review the documentation and implementations of
|reverse_iterator|_ and the other Boost `specialized iterator
adaptors`__ to get an idea of the sorts of things you can do with
`iterator_adaptor`. In particular, have a look at
|transform_iterator|_, which is perhaps the most straightforward
adaptor, and also |counting_iterator|_, which demonstrates that
`iterator_adaptor`\ 's `Base` type needn't be an iterator.
.. |reverse_iterator| replace:: `reverse_iterator`
.. _reverse_iterator: reverse_iterator.html
.. |counting_iterator| replace:: `counting_iterator`
.. _counting_iterator: counting_iterator.html
.. |transform_iterator| replace:: `transform_iterator`
.. _transform_iterator: transform_iterator.html
__ index.html#specialized-adaptors
[endsect]
[endsect]
|