File: facade.qbk

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (619 lines) | stat: -rw-r--r-- 20,307 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

[section:facade Iterator Facade]

While the iterator interface is rich, there is a core subset of the
interface that is necessary for all the functionality.  We have
identified the following core behaviors for iterators:

* dereferencing
* incrementing
* decrementing
* equality comparison
* random-access motion
* distance measurement

In addition to the behaviors listed above, the core interface elements
include the associated types exposed through iterator traits:
`value_type`, `reference`, `difference_type`, and
`iterator_category`.

Iterator facade uses the Curiously Recurring Template
Pattern (CRTP) [Cop95]_ so that the user can specify the behavior
of `iterator_facade` in a derived class.  Former designs used
policy objects to specify the behavior, but that approach was
discarded for several reasons:

1. the creation and eventual copying of the policy object may create
   overhead that can be avoided with the current approach.

2. The policy object approach does not allow for custom constructors
   on the created iterator types, an essential feature if
   `iterator_facade` should be used in other library
   implementations.

3. Without the use of CRTP, the standard requirement that an
   iterator's `operator++` returns the iterator type itself
   would mean that all iterators built with the library would
   have to be specializations of `iterator_facade<...>`, rather
   than something more descriptive like
   `indirect_iterator<T*>`.  Cumbersome type generator
   metafunctions would be needed to build new parameterized
   iterators, and a separate `iterator_adaptor` layer would be
   impossible.

[h2 Usage]

The user of `iterator_facade` derives his iterator class from a
specialization of `iterator_facade` and passes the derived
iterator class as `iterator_facade`\ 's first template parameter.
The order of the other template parameters have been carefully
chosen to take advantage of useful defaults.  For example, when
defining a constant lvalue iterator, the user can pass a
const-qualified version of the iterator's `value_type` as
`iterator_facade`\ 's `Value` parameter and omit the
`Reference` parameter which follows.

The derived iterator class must define member functions implementing
the iterator's core behaviors.  The following table describes
expressions which are required to be valid depending on the category
of the derived iterator type.  These member functions are described
briefly below and in more detail in the iterator facade
requirements.

[table Core Interface
  [
    [Expression]
    [Effects]
  ]
  [
    [`i.dereference()`]
    [Access the value referred to]
  [
    [`i.equal(j)`]
    [Compare for equality with `j`]
  ]
  [
    [`i.increment()`]
    [Advance by one position]
  ]
  [
    [`i.decrement()`]
    [Retreat by one position]
  ]
  [
    [`i.advance(n)`]
    [Advance by `n` positions]
  [
    [`i.distance_to(j)`]
    [Measure the distance to `j`]
  ]
]

[/ .. Should we add a comment that a zero overhead implementation of iterator_facade is possible with proper inlining?]

In addition to implementing the core interface functions, an iterator
derived from `iterator_facade` typically defines several
constructors. To model any of the standard iterator concepts, the
iterator must at least have a copy constructor. Also, if the iterator
type `X` is meant to be automatically interoperate with another
iterator type `Y` (as with constant and mutable iterators) then
there must be an implicit conversion from `X` to `Y` or from `Y`
to `X` (but not both), typically implemented as a conversion
constructor. Finally, if the iterator is to model Forward Traversal
Iterator or a more-refined iterator concept, a default constructor is
required.

[h2 Iterator Core Access]

`iterator_facade` and the operator implementations need to be able
to access the core member functions in the derived class.  Making the
core member functions public would expose an implementation detail to
the user.  The design used here ensures that implementation details do
not appear in the public interface of the derived iterator type.

Preventing direct access to the core member functions has two
advantages.  First, there is no possibility for the user to accidently
use a member function of the iterator when a member of the value_type
was intended.  This has been an issue with smart pointer
implementations in the past.  The second and main advantage is that
library implementers can freely exchange a hand-rolled iterator
implementation for one based on `iterator_facade` without fear of
breaking code that was accessing the public core member functions
directly.

In a naive implementation, keeping the derived class' core member
functions private would require it to grant friendship to
`iterator_facade` and each of the seven operators.  In order to
reduce the burden of limiting access, `iterator_core_access` is
provided, a class that acts as a gateway to the core member functions
in the derived iterator class.  The author of the derived class only
needs to grant friendship to `iterator_core_access` to make his core
member functions available to the library.


`iterator_core_access` will be typically implemented as an empty
class containing only private static member functions which invoke the
iterator core member functions. There is, however, no need to
standardize the gateway protocol.  Note that even if
`iterator_core_access` used public member functions it would not
open a safety loophole, as every core member function preserves the
invariants of the iterator.

[h2 `operator\[\]`]

The indexing operator for a generalized iterator presents special
challenges.  A random access iterator's `operator[]` is only
required to return something convertible to its `value_type`.
Requiring that it return an lvalue would rule out currently-legal
random-access iterators which hold the referenced value in a data
member (e.g. |counting|_), because `*(p+n)` is a reference
into the temporary iterator `p+n`, which is destroyed when
`operator[]` returns.

.. |counting| replace:: `counting_iterator`

Writable iterators built with `iterator_facade` implement the
semantics required by the preferred resolution to `issue 299`_ and
adopted by proposal n1550_: the result of `p[n]` is an object
convertible to the iterator's `value_type`, and `p[n] = x` is
equivalent to `*(p + n) = x` (Note: This result object may be
implemented as a proxy containing a copy of `p+n`).  This approach
will work properly for any random-access iterator regardless of the
other details of its implementation.  A user who knows more about
the implementation of her iterator is free to implement an
`operator[]` that returns an lvalue in the derived iterator
class; it will hide the one supplied by `iterator_facade` from
clients of her iterator.

.. _n1550: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html

.. _`issue 299`: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299

.. _`operator arrow`:

[h2 `operator->`]

The `reference` type of a readable iterator (and today's input
iterator) need not in fact be a reference, so long as it is
convertible to the iterator's `value_type`.  When the `value_type`
is a class, however, it must still be possible to access members
through `operator->`.  Therefore, an iterator whose `reference`
type is not in fact a reference must return a proxy containing a copy
of the referenced value from its `operator->`.

The return types for `iterator_facade`\ 's `operator->` and
`operator[]` are not explicitly specified. Instead, those types
are described in terms of a set of requirements, which must be
satisfied by the `iterator_facade` implementation.

.. [Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template
   Patterns, C++ Report, February 1995, pp. 24-27.

[section:facade_reference Reference]

  template <
      class Derived
    , class Value
    , class CategoryOrTraversal
    , class Reference  = Value&
    , class Difference = ptrdiff_t
  >
  class iterator_facade {
   public:
      typedef remove_const<Value>::type value_type;
      typedef Reference reference;
      typedef Value\* pointer;
      typedef Difference difference_type;
      typedef /* see below__ \*/ iterator_category;

      reference operator\*() const;
      /* see below__ \*/ operator->() const;
      /* see below__ \*/ operator[](difference_type n) const;
      Derived& operator++();
      Derived operator++(int);
      Derived& operator--();
      Derived operator--(int);
      Derived& operator+=(difference_type n);
      Derived& operator-=(difference_type n);
      Derived operator-(difference_type n) const;
   protected:
      typedef iterator_facade iterator_facade\_;
  };

  // Comparison operators
  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type // exposition
  operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
             iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
             iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

  // Iterator difference
  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  /* see below__ \*/
  operator-(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
            iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

  // Iterator addition
  template <class Dr, class V, class TC, class R, class D>
  Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
                     typename Derived::difference_type n);

  template <class Dr, class V, class TC, class R, class D>
  Derived operator+ (typename Derived::difference_type n,
                     iterator_facade<Dr,V,TC,R,D> const&);

__ `iterator category`_

__ `operator arrow`_

__ brackets_

__ minus_

.. _`iterator category`:

The `iterator_category` member of `iterator_facade` is

.. parsed-literal::

  *iterator-category*\ (CategoryOrTraversal, value_type, reference)

where *iterator-category* is defined as follows:

.. include:: facade_iterator_category.rst

The `enable_if_interoperable` template used above is for exposition
purposes.  The member operators should only be in an overload set
provided the derived types `Dr1` and `Dr2` are interoperable, 
meaning that at least one of the types is convertible to the other.  The
`enable_if_interoperable` approach uses SFINAE to take the operators
out of the overload set when the types are not interoperable.  
The operators should behave *as-if* `enable_if_interoperable`
were defined to be:

  template <bool, typename> enable_if_interoperable_impl
  {};

  template <typename T> enable_if_interoperable_impl<true,T>
  { typedef T type; };

  template<typename Dr1, typename Dr2, typename T>
  struct enable_if_interoperable
    : enable_if_interoperable_impl<
          is_convertible<Dr1,Dr2>::value || is_convertible<Dr2,Dr1>::value
        , T
      >
  {};


[h2 Requirements]

The following table describes the typical valid expressions on
`iterator_facade`\ 's `Derived` parameter, depending on the
iterator concept(s) it will model.  The operations in the first
column must be made accessible to member functions of class
`iterator_core_access`.  In addition,
`static_cast<Derived*>(iterator_facade*)` shall be well-formed.

In the table below, `F` is `iterator_facade<X,V,C,R,D>`, `a` is an
object of type `X`, `b` and `c` are objects of type `const X`,
`n` is an object of `F::difference_type`, `y` is a constant
object of a single pass iterator type interoperable with `X`, and `z`
is a constant object of a random access traversal iterator type
interoperable with `X`.

.. _`core operations`:

.. topic:: `iterator_facade` Core Operations

[table Core Operations
  [
    [Expression]
    [Return Type]
    [Assertion/Note]
    [Used to implement Iterator Concept(s)]
  ]
  [
    [`c.dereference()`]
    [`F::reference`]
    []
    [Readable Iterator, Writable Iterator]
  ]
  [
    [`c.equal(y)`]
    [convertible to bool]
    [true iff `c` and `y` refer to the same position]
    [Single Pass Iterator]
  ]
  [
    [`a.increment()`]
    [unused]
    []
    [Incrementable Iterator]
  ]
  [
    [`a.decrement()`]
    [unused]
    []
    [Bidirectional Traversal Iterator]
  ]
  [
    [`a.advance(n)`]
    [unused]
    []
    [Random Access Traversal Iterator]
  ]
  [
    [`c.distance_to(z)`]
    [convertible to `F::difference_type`]
    [equivalent to `distance(c, X(z))`.]
    [Random Access Traversal Iterator]
  ]
]

[h2 Operations]

The operations in this section are described in terms of operations on
the core interface of `Derived` which may be inaccessible
(i.e. private).  The implementation should access these operations
through member functions of class `iterator_core_access`.

  reference operator*() const;

[*Returns:] `static_cast<Derived const*>(this)->dereference()`

  operator->() const; (see below__)

__ `operator arrow`_

[*Returns:] If `reference` is a reference type, an object of type `pointer` equal to: `&static_cast<Derived const*>(this)->dereference()`
Otherwise returns an object of unspecified type such that, 
`(*static_cast<Derived const*>(this))->m` is equivalent to `(w = **static_cast<Derived const*>(this),
w.m)` for some temporary object `w` of type `value_type`.

.. _brackets:

  *unspecified* operator[](difference_type n) const;

[*Returns:] an object convertible to `value_type`. For constant
     objects `v` of type `value_type`, and `n` of type
     `difference_type`, `(*this)[n] = v` is equivalent to
     `*(*this + n) = v`, and `static_cast<value_type
     const&>((*this)[n])` is equivalent to
     `static_cast<value_type const&>(*(*this + n))`

  Derived& operator++();

[*Effects:] 

    static_cast<Derived*>(this)->increment();
    return *static_cast<Derived*>(this);

  Derived operator++(int);

[*Effects:]

    Derived tmp(static_cast<Derived const*>(this));
    ++*this;
    return tmp;

  Derived& operator--();

[*Effects:]

      static_cast<Derived*>(this)->decrement();
      return *static_cast<Derived*>(this);

  Derived operator--(int);

[*Effects:]

    Derived tmp(static_cast<Derived const*>(this));
    --*this;
    return tmp;


  Derived& operator+=(difference_type n);

[*Effects:]

      static_cast<Derived*>(this)->advance(n);
      return *static_cast<Derived*>(this);


  Derived& operator-=(difference_type n);

[*Effects:]
 
      static_cast<Derived*>(this)->advance(-n);
      return *static_cast<Derived*>(this);


  Derived operator-(difference_type n) const;

[*Effects:]

    Derived tmp(static_cast<Derived const*>(this));
    return tmp -= n;

  template <class Dr, class V, class TC, class R, class D>
  Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
                     typename Derived::difference_type n);

  template <class Dr, class V, class TC, class R, class D>
  Derived operator+ (typename Derived::difference_type n,
                     iterator_facade<Dr,V,TC,R,D> const&);

[*Effects:]

    Derived tmp(static_cast<Derived const*>(this));
    return tmp += n;

  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

[*Returns:]
 
  if `is_convertible<Dr2,Dr1>::value`

  then 
    `((Dr1 const&)lhs).equal((Dr2 const&)rhs)`.

  Otherwise, 
    `((Dr2 const&)rhs).equal((Dr1 const&)lhs)`.


  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

[*Returns:]
 
  if `is_convertible<Dr2,Dr1>::value`

  then 
    `!((Dr1 const&)lhs).equal((Dr2 const&)rhs)`.

  Otherwise, 
    `!((Dr2 const&)rhs).equal((Dr1 const&)lhs)`.


  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
             iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

[*Returns:]
 
  if `is_convertible<Dr2,Dr1>::value`

  then 
    `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) < 0`.

  Otherwise, 
    `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) > 0`.


  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

[*Returns:]
 
  if `is_convertible<Dr2,Dr1>::value`

  then 
    `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) <= 0`.

  Otherwise, 
    `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) >= 0`.


  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
             iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

[*Returns:]
 
  if `is_convertible<Dr2,Dr1>::value`

  then 
    `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) > 0`.

  Otherwise, 
    `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) < 0`.


  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,bool>::type
  operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
              iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

[*Returns:]
 
  if `is_convertible<Dr2,Dr1>::value`

  then 
    `((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) >= 0`.

  Otherwise, 
    `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) <= 0`.

.. _minus:


  template <class Dr1, class V1, class TC1, class R1, class D1,
            class Dr2, class V2, class TC2, class R2, class D2>
  typename enable_if_interoperable<Dr1,Dr2,difference>::type
  operator -(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
             iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);

[*Return Type:]
 
  if `is_convertible<Dr2,Dr1>::value`

   then 
    `difference` shall be
    `iterator_traits<Dr1>::difference_type`.

   Otherwise 
    `difference` shall be `iterator_traits<Dr2>::difference_type`

[*Returns:]
 
  if `is_convertible<Dr2,Dr1>::value`

  then 
    `-((Dr1 const&)lhs).distance_to((Dr2 const&)rhs)`.

  Otherwise, 
    `((Dr2 const&)rhs).distance_to((Dr1 const&)lhs)`.


[endsect]

[include facade_tutorial.qbk]

[endsect]