1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
[section:facade Iterator Facade]
While the iterator interface is rich, there is a core subset of the
interface that is necessary for all the functionality. We have
identified the following core behaviors for iterators:
* dereferencing
* incrementing
* decrementing
* equality comparison
* random-access motion
* distance measurement
In addition to the behaviors listed above, the core interface elements
include the associated types exposed through iterator traits:
`value_type`, `reference`, `difference_type`, and
`iterator_category`.
Iterator facade uses the Curiously Recurring Template
Pattern (CRTP) [Cop95]_ so that the user can specify the behavior
of `iterator_facade` in a derived class. Former designs used
policy objects to specify the behavior, but that approach was
discarded for several reasons:
1. the creation and eventual copying of the policy object may create
overhead that can be avoided with the current approach.
2. The policy object approach does not allow for custom constructors
on the created iterator types, an essential feature if
`iterator_facade` should be used in other library
implementations.
3. Without the use of CRTP, the standard requirement that an
iterator's `operator++` returns the iterator type itself
would mean that all iterators built with the library would
have to be specializations of `iterator_facade<...>`, rather
than something more descriptive like
`indirect_iterator<T*>`. Cumbersome type generator
metafunctions would be needed to build new parameterized
iterators, and a separate `iterator_adaptor` layer would be
impossible.
[h2 Usage]
The user of `iterator_facade` derives his iterator class from a
specialization of `iterator_facade` and passes the derived
iterator class as `iterator_facade`\ 's first template parameter.
The order of the other template parameters have been carefully
chosen to take advantage of useful defaults. For example, when
defining a constant lvalue iterator, the user can pass a
const-qualified version of the iterator's `value_type` as
`iterator_facade`\ 's `Value` parameter and omit the
`Reference` parameter which follows.
The derived iterator class must define member functions implementing
the iterator's core behaviors. The following table describes
expressions which are required to be valid depending on the category
of the derived iterator type. These member functions are described
briefly below and in more detail in the iterator facade
requirements.
[table Core Interface
[
[Expression]
[Effects]
]
[
[`i.dereference()`]
[Access the value referred to]
[
[`i.equal(j)`]
[Compare for equality with `j`]
]
[
[`i.increment()`]
[Advance by one position]
]
[
[`i.decrement()`]
[Retreat by one position]
]
[
[`i.advance(n)`]
[Advance by `n` positions]
[
[`i.distance_to(j)`]
[Measure the distance to `j`]
]
]
[/ .. Should we add a comment that a zero overhead implementation of iterator_facade is possible with proper inlining?]
In addition to implementing the core interface functions, an iterator
derived from `iterator_facade` typically defines several
constructors. To model any of the standard iterator concepts, the
iterator must at least have a copy constructor. Also, if the iterator
type `X` is meant to be automatically interoperate with another
iterator type `Y` (as with constant and mutable iterators) then
there must be an implicit conversion from `X` to `Y` or from `Y`
to `X` (but not both), typically implemented as a conversion
constructor. Finally, if the iterator is to model Forward Traversal
Iterator or a more-refined iterator concept, a default constructor is
required.
[h2 Iterator Core Access]
`iterator_facade` and the operator implementations need to be able
to access the core member functions in the derived class. Making the
core member functions public would expose an implementation detail to
the user. The design used here ensures that implementation details do
not appear in the public interface of the derived iterator type.
Preventing direct access to the core member functions has two
advantages. First, there is no possibility for the user to accidently
use a member function of the iterator when a member of the value_type
was intended. This has been an issue with smart pointer
implementations in the past. The second and main advantage is that
library implementers can freely exchange a hand-rolled iterator
implementation for one based on `iterator_facade` without fear of
breaking code that was accessing the public core member functions
directly.
In a naive implementation, keeping the derived class' core member
functions private would require it to grant friendship to
`iterator_facade` and each of the seven operators. In order to
reduce the burden of limiting access, `iterator_core_access` is
provided, a class that acts as a gateway to the core member functions
in the derived iterator class. The author of the derived class only
needs to grant friendship to `iterator_core_access` to make his core
member functions available to the library.
`iterator_core_access` will be typically implemented as an empty
class containing only private static member functions which invoke the
iterator core member functions. There is, however, no need to
standardize the gateway protocol. Note that even if
`iterator_core_access` used public member functions it would not
open a safety loophole, as every core member function preserves the
invariants of the iterator.
[h2 `operator\[\]`]
The indexing operator for a generalized iterator presents special
challenges. A random access iterator's `operator[]` is only
required to return something convertible to its `value_type`.
Requiring that it return an lvalue would rule out currently-legal
random-access iterators which hold the referenced value in a data
member (e.g. |counting|_), because `*(p+n)` is a reference
into the temporary iterator `p+n`, which is destroyed when
`operator[]` returns.
.. |counting| replace:: `counting_iterator`
Writable iterators built with `iterator_facade` implement the
semantics required by the preferred resolution to `issue 299`_ and
adopted by proposal n1550_: the result of `p[n]` is an object
convertible to the iterator's `value_type`, and `p[n] = x` is
equivalent to `*(p + n) = x` (Note: This result object may be
implemented as a proxy containing a copy of `p+n`). This approach
will work properly for any random-access iterator regardless of the
other details of its implementation. A user who knows more about
the implementation of her iterator is free to implement an
`operator[]` that returns an lvalue in the derived iterator
class; it will hide the one supplied by `iterator_facade` from
clients of her iterator.
.. _n1550: http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
.. _`issue 299`: http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299
.. _`operator arrow`:
[h2 `operator->`]
The `reference` type of a readable iterator (and today's input
iterator) need not in fact be a reference, so long as it is
convertible to the iterator's `value_type`. When the `value_type`
is a class, however, it must still be possible to access members
through `operator->`. Therefore, an iterator whose `reference`
type is not in fact a reference must return a proxy containing a copy
of the referenced value from its `operator->`.
The return types for `iterator_facade`\ 's `operator->` and
`operator[]` are not explicitly specified. Instead, those types
are described in terms of a set of requirements, which must be
satisfied by the `iterator_facade` implementation.
.. [Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template
Patterns, C++ Report, February 1995, pp. 24-27.
[section:facade_reference Reference]
template <
class Derived
, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff_t
>
class iterator_facade {
public:
typedef remove_const<Value>::type value_type;
typedef Reference reference;
typedef Value\* pointer;
typedef Difference difference_type;
typedef /* see below__ \*/ iterator_category;
reference operator\*() const;
/* see below__ \*/ operator->() const;
/* see below__ \*/ operator[](difference_type n) const;
Derived& operator++();
Derived operator++(int);
Derived& operator--();
Derived operator--(int);
Derived& operator+=(difference_type n);
Derived& operator-=(difference_type n);
Derived operator-(difference_type n) const;
protected:
typedef iterator_facade iterator_facade\_;
};
// Comparison operators
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type // exposition
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator difference
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
/* see below__ \*/
operator-(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
// Iterator addition
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
__ `iterator category`_
__ `operator arrow`_
__ brackets_
__ minus_
.. _`iterator category`:
The `iterator_category` member of `iterator_facade` is
.. parsed-literal::
*iterator-category*\ (CategoryOrTraversal, value_type, reference)
where *iterator-category* is defined as follows:
.. include:: facade_iterator_category.rst
The `enable_if_interoperable` template used above is for exposition
purposes. The member operators should only be in an overload set
provided the derived types `Dr1` and `Dr2` are interoperable,
meaning that at least one of the types is convertible to the other. The
`enable_if_interoperable` approach uses SFINAE to take the operators
out of the overload set when the types are not interoperable.
The operators should behave *as-if* `enable_if_interoperable`
were defined to be:
template <bool, typename> enable_if_interoperable_impl
{};
template <typename T> enable_if_interoperable_impl<true,T>
{ typedef T type; };
template<typename Dr1, typename Dr2, typename T>
struct enable_if_interoperable
: enable_if_interoperable_impl<
is_convertible<Dr1,Dr2>::value || is_convertible<Dr2,Dr1>::value
, T
>
{};
[h2 Requirements]
The following table describes the typical valid expressions on
`iterator_facade`\ 's `Derived` parameter, depending on the
iterator concept(s) it will model. The operations in the first
column must be made accessible to member functions of class
`iterator_core_access`. In addition,
`static_cast<Derived*>(iterator_facade*)` shall be well-formed.
In the table below, `F` is `iterator_facade<X,V,C,R,D>`, `a` is an
object of type `X`, `b` and `c` are objects of type `const X`,
`n` is an object of `F::difference_type`, `y` is a constant
object of a single pass iterator type interoperable with `X`, and `z`
is a constant object of a random access traversal iterator type
interoperable with `X`.
.. _`core operations`:
.. topic:: `iterator_facade` Core Operations
[table Core Operations
[
[Expression]
[Return Type]
[Assertion/Note]
[Used to implement Iterator Concept(s)]
]
[
[`c.dereference()`]
[`F::reference`]
[]
[Readable Iterator, Writable Iterator]
]
[
[`c.equal(y)`]
[convertible to bool]
[true iff `c` and `y` refer to the same position]
[Single Pass Iterator]
]
[
[`a.increment()`]
[unused]
[]
[Incrementable Iterator]
]
[
[`a.decrement()`]
[unused]
[]
[Bidirectional Traversal Iterator]
]
[
[`a.advance(n)`]
[unused]
[]
[Random Access Traversal Iterator]
]
[
[`c.distance_to(z)`]
[convertible to `F::difference_type`]
[equivalent to `distance(c, X(z))`.]
[Random Access Traversal Iterator]
]
]
[h2 Operations]
The operations in this section are described in terms of operations on
the core interface of `Derived` which may be inaccessible
(i.e. private). The implementation should access these operations
through member functions of class `iterator_core_access`.
reference operator*() const;
[*Returns:] `static_cast<Derived const*>(this)->dereference()`
operator->() const; (see below__)
__ `operator arrow`_
[*Returns:] If `reference` is a reference type, an object of type `pointer` equal to: `&static_cast<Derived const*>(this)->dereference()`
Otherwise returns an object of unspecified type such that,
`(*static_cast<Derived const*>(this))->m` is equivalent to `(w = **static_cast<Derived const*>(this),
w.m)` for some temporary object `w` of type `value_type`.
.. _brackets:
*unspecified* operator[](difference_type n) const;
[*Returns:] an object convertible to `value_type`. For constant
objects `v` of type `value_type`, and `n` of type
`difference_type`, `(*this)[n] = v` is equivalent to
`*(*this + n) = v`, and `static_cast<value_type
const&>((*this)[n])` is equivalent to
`static_cast<value_type const&>(*(*this + n))`
Derived& operator++();
[*Effects:]
static_cast<Derived*>(this)->increment();
return *static_cast<Derived*>(this);
Derived operator++(int);
[*Effects:]
Derived tmp(static_cast<Derived const*>(this));
++*this;
return tmp;
Derived& operator--();
[*Effects:]
static_cast<Derived*>(this)->decrement();
return *static_cast<Derived*>(this);
Derived operator--(int);
[*Effects:]
Derived tmp(static_cast<Derived const*>(this));
--*this;
return tmp;
Derived& operator+=(difference_type n);
[*Effects:]
static_cast<Derived*>(this)->advance(n);
return *static_cast<Derived*>(this);
Derived& operator-=(difference_type n);
[*Effects:]
static_cast<Derived*>(this)->advance(-n);
return *static_cast<Derived*>(this);
Derived operator-(difference_type n) const;
[*Effects:]
Derived tmp(static_cast<Derived const*>(this));
return tmp -= n;
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator_facade<Dr,V,TC,R,D> const&,
typename Derived::difference_type n);
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference_type n,
iterator_facade<Dr,V,TC,R,D> const&);
[*Effects:]
Derived tmp(static_cast<Derived const*>(this));
return tmp += n;
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator ==(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
[*Returns:]
if `is_convertible<Dr2,Dr1>::value`
then
`((Dr1 const&)lhs).equal((Dr2 const&)rhs)`.
Otherwise,
`((Dr2 const&)rhs).equal((Dr1 const&)lhs)`.
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator !=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
[*Returns:]
if `is_convertible<Dr2,Dr1>::value`
then
`!((Dr1 const&)lhs).equal((Dr2 const&)rhs)`.
Otherwise,
`!((Dr2 const&)rhs).equal((Dr1 const&)lhs)`.
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
[*Returns:]
if `is_convertible<Dr2,Dr1>::value`
then
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) < 0`.
Otherwise,
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) > 0`.
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator <=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
[*Returns:]
if `is_convertible<Dr2,Dr1>::value`
then
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) <= 0`.
Otherwise,
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) >= 0`.
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
[*Returns:]
if `is_convertible<Dr2,Dr1>::value`
then
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) > 0`.
Otherwise,
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) < 0`.
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,bool>::type
operator >=(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
[*Returns:]
if `is_convertible<Dr2,Dr1>::value`
then
`((Dr1 const&)lhs).distance_to((Dr2 const&)rhs) >= 0`.
Otherwise,
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs) <= 0`.
.. _minus:
template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1,Dr2,difference>::type
operator -(iterator_facade<Dr1,V1,TC1,R1,D1> const& lhs,
iterator_facade<Dr2,V2,TC2,R2,D2> const& rhs);
[*Return Type:]
if `is_convertible<Dr2,Dr1>::value`
then
`difference` shall be
`iterator_traits<Dr1>::difference_type`.
Otherwise
`difference` shall be `iterator_traits<Dr2>::difference_type`
[*Returns:]
if `is_convertible<Dr2,Dr1>::value`
then
`-((Dr1 const&)lhs).distance_to((Dr2 const&)rhs)`.
Otherwise,
`((Dr2 const&)rhs).distance_to((Dr1 const&)lhs)`.
[endsect]
[include facade_tutorial.qbk]
[endsect]
|