1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
[section:zip Zip Iterator]
The zip iterator provides the ability to parallel-iterate
over several controlled sequences simultaneously. A zip
iterator is constructed from a tuple of iterators. Moving
the zip iterator moves all the iterators in parallel.
Dereferencing the zip iterator returns a tuple that contains
the results of dereferencing the individual iterators.
[section:zip_example Example]
There are two main types of applications of the `zip_iterator`. The first
one concerns runtime efficiency: If one has several controlled sequences
of the same length that must be somehow processed, e.g., with the
`for_each` algorithm, then it is more efficient to perform just
one parallel-iteration rather than several individual iterations. For an
example, assume that `vect_of_doubles` and `vect_of_ints`
are two vectors of equal length containing doubles and ints, respectively,
and consider the following two iterations:
std::vector<double>::const_iterator beg1 = vect_of_doubles.begin();
std::vector<double>::const_iterator end1 = vect_of_doubles.end();
std::vector<int>::const_iterator beg2 = vect_of_ints.begin();
std::vector<int>::const_iterator end2 = vect_of_ints.end();
std::for_each(beg1, end1, func_0());
std::for_each(beg2, end2, func_1());
These two iterations can now be replaced with a single one as follows:
std::for_each(
boost::make_zip_iterator(
boost::make_tuple(beg1, beg2)
),
boost::make_zip_iterator(
boost::make_tuple(end1, end2)
),
zip_func()
);
A non-generic implementation of `zip_func` could look as follows:
struct zip_func :
public std::unary_function<const boost::tuple<const double&, const int&>&, void>
{
void operator()(const boost::tuple<const double&, const int&>& t) const
{
m_f0(t.get<0>());
m_f1(t.get<1>());
}
private:
func_0 m_f0;
func_1 m_f1;
};
The second important application of the `zip_iterator` is as a building block
to make combining iterators. A combining iterator is an iterator
that parallel-iterates over several controlled sequences and, upon
dereferencing, returns the result of applying a functor to the values of the
sequences at the respective positions. This can now be achieved by using the
`zip_iterator` in conjunction with the `transform_iterator`.
Suppose, for example, that you have two vectors of doubles, say
`vect_1` and `vect_2`, and you need to expose to a client
a controlled sequence containing the products of the elements of
`vect_1` and `vect_2`. Rather than placing these products
in a third vector, you can use a combining iterator that calculates the
products on the fly. Let us assume that `tuple_multiplies` is a
functor that works like `std::multiplies`, except that it takes
its two arguments packaged in a tuple. Then the two iterators
`it_begin` and `it_end` defined below delimit a controlled
sequence containing the products of the elements of `vect_1` and
`vect_2`:
typedef boost::tuple<
std::vector<double>::const_iterator,
std::vector<double>::const_iterator
> the_iterator_tuple;
typedef boost::zip_iterator<
the_iterator_tuple
> the_zip_iterator;
typedef boost::transform_iterator<
tuple_multiplies<double>,
the_zip_iterator
> the_transform_iterator;
the_transform_iterator it_begin(
the_zip_iterator(
the_iterator_tuple(
vect_1.begin(),
vect_2.begin()
)
),
tuple_multiplies<double>()
);
the_transform_iterator it_end(
the_zip_iterator(
the_iterator_tuple(
vect_1.end(),
vect_2.end()
)
),
tuple_multiplies<double>()
);
[endsect]
[section:zip_reference Reference]
[h2 Synopsis]
template<typename IteratorTuple>
class zip_iterator
{
public:
typedef /* see below */ reference;
typedef reference value_type;
typedef value_type* pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;
zip_iterator();
zip_iterator(IteratorTuple iterator_tuple);
template<typename OtherIteratorTuple>
zip_iterator(
const zip_iterator<OtherIteratorTuple>& other
, typename enable_if_convertible<
OtherIteratorTuple
, IteratorTuple>::type* = 0 // exposition only
);
const IteratorTuple& get_iterator_tuple() const;
private:
IteratorTuple m_iterator_tuple; // exposition only
};
template<typename IteratorTuple>
zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t);
The `reference` member of `zip_iterator` is the type of the tuple
made of the reference types of the iterator types in the `IteratorTuple`
argument.
The `difference_type` member of `zip_iterator` is the `difference_type`
of the first of the iterator types in the `IteratorTuple` argument.
The `iterator_category` member of `zip_iterator` is convertible to the
minimum of the traversal categories of the iterator types in the `IteratorTuple`
argument. For example, if the `zip_iterator` holds only vector
iterators, then `iterator_category` is convertible to
`boost::random_access_traversal_tag`. If you add a list iterator, then
`iterator_category` will be convertible to `boost::bidirectional_traversal_tag`,
but no longer to `boost::random_access_traversal_tag`.
[h2 Requirements]
All iterator types in the argument `IteratorTuple` shall model Readable Iterator.
[h2 Concepts]
The resulting `zip_iterator` models Readable Iterator.
The fact that the `zip_iterator` models only Readable Iterator does not
prevent you from modifying the values that the individual iterators point
to. The tuple returned by the `zip_iterator`'s `operator*` is a tuple
constructed from the reference types of the individual iterators, not
their value types. For example, if `zip_it` is a `zip_iterator` whose
first member iterator is an `std::vector<double>::iterator`, then the
following line will modify the value which the first member iterator of
`zip_it` currently points to:
zip_it->get<0>() = 42.0;
Consider the set of standard traversal concepts obtained by taking
the most refined standard traversal concept modeled by each individual
iterator type in the `IteratorTuple` argument.The `zip_iterator`
models the least refined standard traversal concept in this set.
`zip_iterator<IteratorTuple1>` is interoperable with
`zip_iterator<IteratorTuple2>` if and only if `IteratorTuple1`
is interoperable with `IteratorTuple2`.
[h2 Operations]
In addition to the operations required by the concepts modeled by
`zip_iterator`, `zip_iterator` provides the following
operations.
zip_iterator();
[*Returns:] An instance of `zip_iterator` with `m_iterator_tuple`
default constructed.
zip_iterator(IteratorTuple iterator_tuple);
[*Returns:] An instance of `zip_iterator` with `m_iterator_tuple`
initialized to `iterator_tuple`.
template<typename OtherIteratorTuple>
zip_iterator(
const zip_iterator<OtherIteratorTuple>& other
, typename enable_if_convertible<
OtherIteratorTuple
, IteratorTuple>::type* = 0 // exposition only
);
[*Returns:] An instance of `zip_iterator` that is a copy of `other`.\n
[*Requires:] `OtherIteratorTuple` is implicitly convertible to `IteratorTuple`.
const IteratorTuple& get_iterator_tuple() const;
[*Returns:] `m_iterator_tuple`
reference operator*() const;
[*Returns:] A tuple consisting of the results of dereferencing all iterators in
`m_iterator_tuple`.
zip_iterator& operator++();
[*Effects:] Increments each iterator in `m_iterator_tuple`.\n
[*Returns:] `*this`
zip_iterator& operator--();
[*Effects:] Decrements each iterator in `m_iterator_tuple`.\n
[*Returns:] `*this`
template<typename IteratorTuple>
zip_iterator<IteratorTuple>
make_zip_iterator(IteratorTuple t);
[*Returns:] An instance of `zip_iterator<IteratorTuple>` with `m_iterator_tuple`
initialized to `t`.
[endsect]
[endsect]
|