File: index.html

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (435 lines) | stat: -rw-r--r-- 18,189 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Boost.Math</title>
<link rel="stylesheet" href="../../../../doc/html/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.73.2">
<link rel="start" href="index.html" title="Boost.Math">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../boost.png"></td>
<td align="center"><a href="../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/people/people.htm">People</a></td>
<td align="center"><a href="http://www.boost.org/more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
<div class="article" lang="en">
<div class="titlepage">
<div>
<div><h2 class="title">
<a name="boost_math"></a>Boost.Math</h2></div>
<div><p class="copyright">Copyright  2007 Paul A. Bristow, Hubert Holin, John Maddock, Daryle
      Walker and Xiaogang Zhang</p></div>
<div><div class="legalnotice">
<a name="id2625868"></a><p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></div>
</div>
<hr>
</div>
<p>
    The following libraries are present in Boost.Math:
  </p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
          <p>
            Library
          </p>
          </th>
<th>
          <p>
            Description
          </p>
          </th>
</tr></thead>
<tbody>
<tr>
<td>
          <p>
            Complex Number Inverse Trigonometric Functions
          </p>
          <p>
            <a href="../complex/html/index.html" target="_top">HTML Docs</a>
          </p>
          <p>
            <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/complex-tr1.pdf" target="_top">PDF
            Docs</a>
          </p>
          </td>
<td>
          <p>
            These complex number algorithms are the inverses of trigonometric functions
            currently present in the C++ standard. Equivalents to these functions
            are part of the C99 standard, and are part of the <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf" target="_top">Technical
            Report on C++ Library Extensions</a>.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            Greatest Common Divisor and Least Common Multiple
          </p>
          <p>
            <a href="../gcd/html/index.html" target="_top">HTML Docs</a>
          </p>
          <p>
            <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math-gcd.pdf" target="_top">PDF
            Docs</a>
          </p>
          </td>
<td>
          <p>
            The class and function templates in &lt;boost/math/common_factor.hpp&gt;
            provide run-time and compile-time evaluation of the greatest common divisor
            (GCD) or least common multiple (LCM) of two integers. These facilities
            are useful for many numeric-oriented generic programming problems.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            Octonions
          </p>
          <p>
            <a href="../octonion/html/index.html" target="_top">HTML Docs</a>
          </p>
          <p>
            <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/octonion.pdf" target="_top">PDF
            Docs</a>
          </p>
          </td>
<td>
          <p>
            Octonions, like <a href="../quaternion/html/index.html" target="_top">quaternions</a>,
            are a relative of complex numbers.
          </p>
          <p>
            Octonions see some use in theoretical physics.
          </p>
          <p>
            In practical terms, an octonion is simply an octuple of real numbers
            (&#945;,&#946;,&#947;,&#948;,&#949;,&#950;,&#951;,&#952;), which we can write in the form <span class="emphasis"><em><code class="literal">o = &#945; + &#946;i + &#947;j + &#948;k + &#949;e' + &#950;i' + &#951;j' + &#952;k'</code></em></span>,
            where <span class="emphasis"><em><code class="literal">i</code></em></span>, <span class="emphasis"><em><code class="literal">j</code></em></span>
            and <span class="emphasis"><em><code class="literal">k</code></em></span> are the same objects as
            for quaternions, and <span class="emphasis"><em><code class="literal">e'</code></em></span>, <span class="emphasis"><em><code class="literal">i'</code></em></span>,
            <span class="emphasis"><em><code class="literal">j'</code></em></span> and <span class="emphasis"><em><code class="literal">k'</code></em></span>
            are distinct objects which play essentially the same kind of role as
            <span class="emphasis"><em><code class="literal">i</code></em></span> (or <span class="emphasis"><em><code class="literal">j</code></em></span>
            or <span class="emphasis"><em><code class="literal">k</code></em></span>).
          </p>
          <p>
            Addition and a multiplication is defined on the set of octonions, which
            generalize their quaternionic counterparts. The main novelty this time
            is that <span class="bold"><strong>the multiplication is not only not commutative,
            is now not even associative</strong></span> (i.e. there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span>,
            <span class="emphasis"><em><code class="literal">y</code></em></span> and <span class="emphasis"><em><code class="literal">z</code></em></span>
            such that <span class="emphasis"><em><code class="literal">x(yz) &#8800; (xy)z</code></em></span>). A way
            of remembering things is by using the following multiplication table:
          </p>
          <p>
            <span class="inlinemediaobject"><img src="../../octonion/graphics/octonion_blurb17.jpeg" alt="octonion_blurb17"></span>
          </p>
          <p>
            Octonions (and their kin) are described in far more details in this other
            <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata
            and addenda</a>).
          </p>
          <p>
            Some traditional constructs, such as the exponential, carry over without
            too much change into the realms of octonions, but other, such as taking
            a square root, do not (the fact that the exponential has a closed form
            is a result of the author, but the fact that the exponential exists at
            all for octonions is known since quite a long time ago).
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            Special Functions
          </p>
          <p>
            <a href="../sf_and_dist/html/index.html" target="_top">HTML Docs</a>
          </p>
          <p>
            <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
            Docs</a>
          </p>
          </td>
<td>
          <p>
            Provides a number of high quality special functions, initially these
            were concentrated on functions used in statistical applications along
            with those in the Technical Report on C++ Library Extensions.
          </p>
          <p>
            The function families currently implemented are the gamma, beta &amp;
            erf functions along with the incomplete gamma and beta functions (four
            variants of each) and all the possible inverses of these, plus digamma,
            various factorial functions, Bessel functions, elliptic integrals, sinus
            cardinals (along with their hyperbolic variants), inverse hyperbolic
            functions, Legrendre/Laguerre/Hermite polynomials and various special
            power and logarithmic functions.
          </p>
          <p>
            All the implementations are fully generic and support the use of arbitrary
            "real-number" types, although they are optimised for use with
            types with known-about significand (or mantissa) sizes: typically float,
            double or long double.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            Statistical Distributions
          </p>
          <p>
            <a href="../sf_and_dist/html/index.html" target="_top">HTML Docs</a>
          </p>
          <p>
            <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
            Docs</a>
          </p>
          </td>
<td>
          <p>
            Provides a reasonably comprehensive set of statistical distributions,
            upon which higher level statistical tests can be built.
          </p>
          <p>
            The initial focus is on the central univariate distributions. Both continuous
            (like normal &amp; Fisher) and discrete (like binomial &amp; Poisson)
            distributions are provided.
          </p>
          <p>
            A comprehensive tutorial is provided, along with a series of worked examples
            illustrating how the library is used to conduct statistical tests.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            Quaternions
          </p>
          <p>
            <a href="../quaternion/html/index.html" target="_top">HTML Docs</a>
          </p>
          <p>
            <a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/quaternion.pdf" target="_top">PDF
            Docs</a>
          </p>
          </td>
<td>
          <p>
            Quaternions are a relative of complex numbers.
          </p>
          <p>
            Quaternions are in fact part of a small hierarchy of structures built
            upon the real numbers, which comprise only the set of real numbers (traditionally
            named <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span>), the set
            of complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>),
            the set of quaternions (traditionally named <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>)
            and the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><strong>O</strong></span></em></span>),
            which possess interesting mathematical properties (chief among which
            is the fact that they are <span class="emphasis"><em>division algebras</em></span>, <span class="emphasis"><em>i.e.</em></span>
            where the following property is true: if <span class="emphasis"><em><code class="literal">y</code></em></span>
            is an element of that algebra and is <span class="bold"><strong>not equal
            to zero</strong></span>, then <span class="emphasis"><em><code class="literal">yx = yx'</code></em></span>,
            where <span class="emphasis"><em><code class="literal">x</code></em></span> and <span class="emphasis"><em><code class="literal">x'</code></em></span>
            denote elements of that algebra, implies that <span class="emphasis"><em><code class="literal">x =
            x'</code></em></span>). Each member of the hierarchy is a super-set
            of the former.
          </p>
          <p>
            One of the most important aspects of quaternions is that they provide
            an efficient way to parameterize rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
            (the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>.
          </p>
          <p>
            In practical terms, a quaternion is simply a quadruple of real numbers
            (&#945;,&#946;,&#947;,&#948;), which we can write in the form <span class="emphasis"><em><code class="literal">q = &#945; + &#946;i + &#947;j + &#948;k</code></em></span>,
            where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object as
            for complex numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span> and
            <span class="emphasis"><em><code class="literal">k</code></em></span> are distinct objects which
            play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>.
          </p>
          <p>
            An addition and a multiplication is defined on the set of quaternions,
            which generalize their real and complex counterparts. The main novelty
            here is that <span class="bold"><strong>the multiplication is not commutative</strong></span>
            (i.e. there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span>
            and <span class="emphasis"><em><code class="literal">y</code></em></span> such that <span class="emphasis"><em><code class="literal">xy
            &#8800; yx</code></em></span>). A good mnemotechnical way of remembering things
            is by using the formula <span class="emphasis"><em><code class="literal">i*i = j*j = k*k = -1</code></em></span>.
          </p>
          <p>
            Quaternions (and their kin) are described in far more details in this
            other <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata and addenda</a>).
          </p>
          <p>
            Some traditional constructs, such as the exponential, carry over without
            too much change into the realms of quaternions, but other, such as taking
            a square root, do not.
          </p>
          </td>
</tr>
</tbody>
</table></div>
<p>
    The following Boost libraries are also mathematically oriented:
  </p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
          <p>
            Library
          </p>
          </th>
<th>
          <p>
            Description
          </p>
          </th>
</tr></thead>
<tbody>
<tr>
<td>
          <p>
            <a href="../../../integer/index.html" target="_top">Integer</a>
          </p>
          </td>
<td>
          <p>
            Headers to ease dealing with integral types.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            <a href="../../../numeric/interval/doc/interval.htm" target="_top">Interval</a>
          </p>
          </td>
<td>
          <p>
            As implied by its name, this library is intended to help manipulating
            mathematical intervals. It consists of a single header &lt;boost/numeric/interval.hpp&gt;
            and principally a type which can be used as interval&lt;T&gt;.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            <a href="../../../multi_array/doc/index.html" target="_top">Multi Array</a>
          </p>
          </td>
<td>
          <p>
            Boost.MultiArray provides a generic N-dimensional array concept definition
            and common implementations of that interface.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            <a href="../../../numeric/conversion/index.html" target="_top">Numeric.Conversion</a>
          </p>
          </td>
<td>
          <p>
            The Boost Numeric Conversion library is a collection of tools to describe
            and perform conversions between values of different numeric types.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            <a href="../../../utility/operators.htm" target="_top">Operators</a>
          </p>
          </td>
<td>
          <p>
            The header &lt;boost/operators.hpp&gt; supplies several sets of class
            templates (in namespace boost). These templates define operators at namespace
            scope in terms of a minimal number of fundamental operators provided
            by the class.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            <a href="../../../random/index.html" target="_top">Random</a>
          </p>
          </td>
<td>
          <p>
            Random numbers are useful in a variety of applications. The Boost Random
            Number Library (Boost.Random for short) provides a vast variety of generators
            and distributions to produce random numbers having useful properties,
            such as uniform distribution.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            <a href="../../../rational/index.html" target="_top">Rational</a>
          </p>
          </td>
<td>
          <p>
            The header rational.hpp provides an implementation of rational numbers.
            The implementation is template-based, in a similar manner to the standard
            complex number class.
          </p>
          </td>
</tr>
<tr>
<td>
          <p>
            <a href="../../../numeric/ublas/doc/index.htm" target="_top">uBLAS</a>
          </p>
          </td>
<td>
          <p>
            uBLAS is a C++ template class library that provides BLAS level 1, 2,
            3 functionality for dense, packed and sparse matrices. The design and
            implementation unify mathematical notation via operator overloading and
            efficient code generation via expression templates.
          </p>
          </td>
</tr>
</tbody>
</table></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"><p><small>Last revised: February 21, 2008 at 12:14:40 +0000</small></p></td>
<td align="right"><div class="copyright-footer"></div></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
</body>
</html>