1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Boost.Math</title>
<link rel="stylesheet" href="../../../../doc/html/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.73.2">
<link rel="start" href="index.html" title="Boost.Math">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../boost.png"></td>
<td align="center"><a href="../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/people/people.htm">People</a></td>
<td align="center"><a href="http://www.boost.org/more/faq.htm">FAQ</a></td>
<td align="center"><a href="../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
<div class="article" lang="en">
<div class="titlepage">
<div>
<div><h2 class="title">
<a name="boost_math"></a>Boost.Math</h2></div>
<div><p class="copyright">Copyright 2007 Paul A. Bristow, Hubert Holin, John Maddock, Daryle
Walker and Xiaogang Zhang</p></div>
<div><div class="legalnotice">
<a name="id2625868"></a><p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></div>
</div>
<hr>
</div>
<p>
The following libraries are present in Boost.Math:
</p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Library
</p>
</th>
<th>
<p>
Description
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Complex Number Inverse Trigonometric Functions
</p>
<p>
<a href="../complex/html/index.html" target="_top">HTML Docs</a>
</p>
<p>
<a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/complex-tr1.pdf" target="_top">PDF
Docs</a>
</p>
</td>
<td>
<p>
These complex number algorithms are the inverses of trigonometric functions
currently present in the C++ standard. Equivalents to these functions
are part of the C99 standard, and are part of the <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf" target="_top">Technical
Report on C++ Library Extensions</a>.
</p>
</td>
</tr>
<tr>
<td>
<p>
Greatest Common Divisor and Least Common Multiple
</p>
<p>
<a href="../gcd/html/index.html" target="_top">HTML Docs</a>
</p>
<p>
<a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math-gcd.pdf" target="_top">PDF
Docs</a>
</p>
</td>
<td>
<p>
The class and function templates in <boost/math/common_factor.hpp>
provide run-time and compile-time evaluation of the greatest common divisor
(GCD) or least common multiple (LCM) of two integers. These facilities
are useful for many numeric-oriented generic programming problems.
</p>
</td>
</tr>
<tr>
<td>
<p>
Octonions
</p>
<p>
<a href="../octonion/html/index.html" target="_top">HTML Docs</a>
</p>
<p>
<a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/octonion.pdf" target="_top">PDF
Docs</a>
</p>
</td>
<td>
<p>
Octonions, like <a href="../quaternion/html/index.html" target="_top">quaternions</a>,
are a relative of complex numbers.
</p>
<p>
Octonions see some use in theoretical physics.
</p>
<p>
In practical terms, an octonion is simply an octuple of real numbers
(α,β,γ,δ,ε,ζ,η,θ), which we can write in the form <span class="emphasis"><em><code class="literal">o = α + βi + γj + δk + εe' + ζi' + ηj' + θk'</code></em></span>,
where <span class="emphasis"><em><code class="literal">i</code></em></span>, <span class="emphasis"><em><code class="literal">j</code></em></span>
and <span class="emphasis"><em><code class="literal">k</code></em></span> are the same objects as
for quaternions, and <span class="emphasis"><em><code class="literal">e'</code></em></span>, <span class="emphasis"><em><code class="literal">i'</code></em></span>,
<span class="emphasis"><em><code class="literal">j'</code></em></span> and <span class="emphasis"><em><code class="literal">k'</code></em></span>
are distinct objects which play essentially the same kind of role as
<span class="emphasis"><em><code class="literal">i</code></em></span> (or <span class="emphasis"><em><code class="literal">j</code></em></span>
or <span class="emphasis"><em><code class="literal">k</code></em></span>).
</p>
<p>
Addition and a multiplication is defined on the set of octonions, which
generalize their quaternionic counterparts. The main novelty this time
is that <span class="bold"><strong>the multiplication is not only not commutative,
is now not even associative</strong></span> (i.e. there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span>,
<span class="emphasis"><em><code class="literal">y</code></em></span> and <span class="emphasis"><em><code class="literal">z</code></em></span>
such that <span class="emphasis"><em><code class="literal">x(yz) ≠ (xy)z</code></em></span>). A way
of remembering things is by using the following multiplication table:
</p>
<p>
<span class="inlinemediaobject"><img src="../../octonion/graphics/octonion_blurb17.jpeg" alt="octonion_blurb17"></span>
</p>
<p>
Octonions (and their kin) are described in far more details in this other
<a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata
and addenda</a>).
</p>
<p>
Some traditional constructs, such as the exponential, carry over without
too much change into the realms of octonions, but other, such as taking
a square root, do not (the fact that the exponential has a closed form
is a result of the author, but the fact that the exponential exists at
all for octonions is known since quite a long time ago).
</p>
</td>
</tr>
<tr>
<td>
<p>
Special Functions
</p>
<p>
<a href="../sf_and_dist/html/index.html" target="_top">HTML Docs</a>
</p>
<p>
<a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
Docs</a>
</p>
</td>
<td>
<p>
Provides a number of high quality special functions, initially these
were concentrated on functions used in statistical applications along
with those in the Technical Report on C++ Library Extensions.
</p>
<p>
The function families currently implemented are the gamma, beta &
erf functions along with the incomplete gamma and beta functions (four
variants of each) and all the possible inverses of these, plus digamma,
various factorial functions, Bessel functions, elliptic integrals, sinus
cardinals (along with their hyperbolic variants), inverse hyperbolic
functions, Legrendre/Laguerre/Hermite polynomials and various special
power and logarithmic functions.
</p>
<p>
All the implementations are fully generic and support the use of arbitrary
"real-number" types, although they are optimised for use with
types with known-about significand (or mantissa) sizes: typically float,
double or long double.
</p>
</td>
</tr>
<tr>
<td>
<p>
Statistical Distributions
</p>
<p>
<a href="../sf_and_dist/html/index.html" target="_top">HTML Docs</a>
</p>
<p>
<a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/math.pdf" target="_top">PDF
Docs</a>
</p>
</td>
<td>
<p>
Provides a reasonably comprehensive set of statistical distributions,
upon which higher level statistical tests can be built.
</p>
<p>
The initial focus is on the central univariate distributions. Both continuous
(like normal & Fisher) and discrete (like binomial & Poisson)
distributions are provided.
</p>
<p>
A comprehensive tutorial is provided, along with a series of worked examples
illustrating how the library is used to conduct statistical tests.
</p>
</td>
</tr>
<tr>
<td>
<p>
Quaternions
</p>
<p>
<a href="../quaternion/html/index.html" target="_top">HTML Docs</a>
</p>
<p>
<a href="http:svn.boost.org/svn/boost/sandbox/pdf/math/release/quaternion.pdf" target="_top">PDF
Docs</a>
</p>
</td>
<td>
<p>
Quaternions are a relative of complex numbers.
</p>
<p>
Quaternions are in fact part of a small hierarchy of structures built
upon the real numbers, which comprise only the set of real numbers (traditionally
named <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span>), the set
of complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>),
the set of quaternions (traditionally named <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>)
and the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><strong>O</strong></span></em></span>),
which possess interesting mathematical properties (chief among which
is the fact that they are <span class="emphasis"><em>division algebras</em></span>, <span class="emphasis"><em>i.e.</em></span>
where the following property is true: if <span class="emphasis"><em><code class="literal">y</code></em></span>
is an element of that algebra and is <span class="bold"><strong>not equal
to zero</strong></span>, then <span class="emphasis"><em><code class="literal">yx = yx'</code></em></span>,
where <span class="emphasis"><em><code class="literal">x</code></em></span> and <span class="emphasis"><em><code class="literal">x'</code></em></span>
denote elements of that algebra, implies that <span class="emphasis"><em><code class="literal">x =
x'</code></em></span>). Each member of the hierarchy is a super-set
of the former.
</p>
<p>
One of the most important aspects of quaternions is that they provide
an efficient way to parameterize rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
(the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>.
</p>
<p>
In practical terms, a quaternion is simply a quadruple of real numbers
(α,β,γ,δ), which we can write in the form <span class="emphasis"><em><code class="literal">q = α + βi + γj + δk</code></em></span>,
where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object as
for complex numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span> and
<span class="emphasis"><em><code class="literal">k</code></em></span> are distinct objects which
play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>.
</p>
<p>
An addition and a multiplication is defined on the set of quaternions,
which generalize their real and complex counterparts. The main novelty
here is that <span class="bold"><strong>the multiplication is not commutative</strong></span>
(i.e. there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span>
and <span class="emphasis"><em><code class="literal">y</code></em></span> such that <span class="emphasis"><em><code class="literal">xy
≠ yx</code></em></span>). A good mnemotechnical way of remembering things
is by using the formula <span class="emphasis"><em><code class="literal">i*i = j*j = k*k = -1</code></em></span>.
</p>
<p>
Quaternions (and their kin) are described in far more details in this
other <a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata and addenda</a>).
</p>
<p>
Some traditional constructs, such as the exponential, carry over without
too much change into the realms of quaternions, but other, such as taking
a square root, do not.
</p>
</td>
</tr>
</tbody>
</table></div>
<p>
The following Boost libraries are also mathematically oriented:
</p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Library
</p>
</th>
<th>
<p>
Description
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<a href="../../../integer/index.html" target="_top">Integer</a>
</p>
</td>
<td>
<p>
Headers to ease dealing with integral types.
</p>
</td>
</tr>
<tr>
<td>
<p>
<a href="../../../numeric/interval/doc/interval.htm" target="_top">Interval</a>
</p>
</td>
<td>
<p>
As implied by its name, this library is intended to help manipulating
mathematical intervals. It consists of a single header <boost/numeric/interval.hpp>
and principally a type which can be used as interval<T>.
</p>
</td>
</tr>
<tr>
<td>
<p>
<a href="../../../multi_array/doc/index.html" target="_top">Multi Array</a>
</p>
</td>
<td>
<p>
Boost.MultiArray provides a generic N-dimensional array concept definition
and common implementations of that interface.
</p>
</td>
</tr>
<tr>
<td>
<p>
<a href="../../../numeric/conversion/index.html" target="_top">Numeric.Conversion</a>
</p>
</td>
<td>
<p>
The Boost Numeric Conversion library is a collection of tools to describe
and perform conversions between values of different numeric types.
</p>
</td>
</tr>
<tr>
<td>
<p>
<a href="../../../utility/operators.htm" target="_top">Operators</a>
</p>
</td>
<td>
<p>
The header <boost/operators.hpp> supplies several sets of class
templates (in namespace boost). These templates define operators at namespace
scope in terms of a minimal number of fundamental operators provided
by the class.
</p>
</td>
</tr>
<tr>
<td>
<p>
<a href="../../../random/index.html" target="_top">Random</a>
</p>
</td>
<td>
<p>
Random numbers are useful in a variety of applications. The Boost Random
Number Library (Boost.Random for short) provides a vast variety of generators
and distributions to produce random numbers having useful properties,
such as uniform distribution.
</p>
</td>
</tr>
<tr>
<td>
<p>
<a href="../../../rational/index.html" target="_top">Rational</a>
</p>
</td>
<td>
<p>
The header rational.hpp provides an implementation of rational numbers.
The implementation is template-based, in a similar manner to the standard
complex number class.
</p>
</td>
</tr>
<tr>
<td>
<p>
<a href="../../../numeric/ublas/doc/index.htm" target="_top">uBLAS</a>
</p>
</td>
<td>
<p>
uBLAS is a C++ template class library that provides BLAS level 1, 2,
3 functionality for dense, packed and sparse matrices. The design and
implementation unify mathematical notation via operator overloading and
efficient code generation via expression templates.
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"><p><small>Last revised: February 21, 2008 at 12:14:40 +0000</small></p></td>
<td align="right"><div class="copyright-footer"></div></td>
</tr></table>
<hr>
<div class="spirit-nav"></div>
</body>
</html>
|