1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
|
[section:implementation Additional Implementation Notes]
The majority of the implementation notes are included with the documentation
of each function or distribution. The notes here are of a more general nature,
and reflect more the general implementation philosophy used.
[h4 Implemention philosophy]
"First be right, then be fast."
There will always be potential compromises
to be made between speed and accuracy.
It may be possible to find faster methods,
particularly for certain limited ranges of arguments,
but for most applications of math functions and distributions,
we judge that speed is rarely as important as accuracy.
So our priority is accuracy.
To permit evaluation of accuracy of the special functions,
production of extremely accurate tables of test values
has received considerable effort.
(It also required much CPU effort -
there was some danger of molten plastic dripping from the bottom of JM's laptop,
so instead, PAB's Dual-core desktop was kept 50% busy for *days*
calculating some tables of test values!)
For a specific RealType, say float or double,
it may be possible to find approximations for some functions
that are simpler and thus faster, but less accurate
(perhaps because there are no refining iterations,
for example, when calculating inverse functions).
If these prove accurate enough to be "fit for his purpose",
then a user may substitute his custom specialization.
For example, there are approximations dating back from times
when computation was a *lot* more expensive:
H Goldberg and H Levine, Approximate formulas for
percentage points and normalisation of t and chi squared,
Ann. Math. Stat., 17(4), 216 - 225 (Dec 1946).
A H Carter, Approximations to percentage points of the z-distribution,
Biometrika 34(2), 352 - 358 (Dec 1947).
These could still provide sufficient accuracy for some speed-critical applications.
[h4 Accuracy and Representation of Test Values]
In order to be accurate enough for as many as possible real types,
constant values are given to 50 decimal digits if available
(though many sources proved only accurate near to 64-bit double precision).
Values are specified as long double types by appending L,
unless they are exactly representable, for example integers, or binary fractions like 0.125.
This avoids the risk of loss of accuracy converting from double, the default type.
Values are used after static_cast<RealType>(1.2345L)
to provide the appropriate RealType for spot tests.
Functions that return constants values, like kurtosis for example, are written as
`static_cast<RealType>(-3) / 5;`
to provide the most accurate value
that the compiler can compute for the real type.
(The denominator is an integer and so will be promoted exactly).
So tests for one third, *not* exactly representable with radix two floating-point,
(should) use, for example:
`static_cast<RealType>(1) / 3;`
If a function is very sensitive to changes in input,
specifying an inexact value as input (such as 0.1) can throw
the result off by a noticeable amount: 0.1f is "wrong"
by ~1e-7 for example (because 0.1 has no exact binary representation).
That is why exact binary values - halves, quarters, and eighths etc -
are used in test code along with the occasional fraction `a/b` with `b`
a power of two (in order to ensure that the result is an exactly
representable binary value).
[h4 Tolerance of Tests]
The tolerances need to be set to the maximum of:
* Some epsilon value.
* The accuracy of the data (often only near 64-bit double).
Otherwise when long double has more digits than the test data, then no
amount of tweaking an epsilon based tolerance will work.
A common problem is when tolerances that are suitable for implementations
like Microsoft VS.NET where double and long double are the same size:
tests fail on other systems where long double is more accurate than double.
Check first that the suffix L is present, and then that the tolerance is big enough.
[h4 Handling Unsuitable Arguments]
In
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1665.pdf Errors in Mathematical Special Functions], J. Marraffino & M. Paterno
it is proposed that signalling a domain error is mandatory
when the argument would give an mathematically undefined result.
*Guideline 1
[:A mathematical function is said to be defined at a point a = (a1, a2, . . .)
if the limits as x = (x1, x2, . . .) 'approaches a from all directions agree'.
The defined value may be any number, or +infinity, or -infinity.]
Put crudely, if the function goes to + infinity
and then emerges 'round-the-back' with - infinity,
it is NOT defined.
[:The library function which approximates a mathematical function shall signal a domain error
whenever evaluated with argument values for which the mathematical function is undefined.]
*Guideline 2
[:The library function which approximates a mathematical function
shall signal a domain error whenever evaluated with argument values
for which the mathematical function obtains a non-real value.]
This implementation is believed to follow these proposals and to assist compatibility with
['ISO/IEC 9899:1999 Programming languages - C]
and with the
[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5].
[link math_toolkit.main_overview.error_handling See also domain_error].
See __policy_ref for details of the error handling policies that should allow
a user to comply with any of these recommendations, as well as other behaviour.
See [link math_toolkit.main_overview.error_handling error handling]
for a detailed explanation of the mechanism, and
[link math_toolkit.dist.stat_tut.weg.error_eg error_handling example]
and
[@../../../example/error_handling_example.cpp error_handling_example.cpp]
[caution If you enable throw but do NOT have try & catch block,
then the program will terminate with an uncaught exception and probably abort.
Therefore to get the benefit of helpful error messages, enabling *all* exceptions
*and* using try&catch is recommended for all applications.
However, for simplicity, this is not done for most examples.]
[h4 Handling of Functions that are Not Mathematically defined]
Functions that are not mathematically defined,
like the Cauchy mean, fail to compile by default.
[link math_toolkit.policy.pol_ref.assert_undefined A policy]
allows control of this.
If the policy is to permit undefined functions, then calling them
throws a domain error, by default. But the error policy can be set
to not throw, and to return NaN instead. For example,
`#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error`
appears before the first Boost include,
then if the un-implemented function is called,
mean(cauchy<>()) will return std::numeric_limits<T>::quiet_NaN().
[warning If `std::numeric_limits<T>::has_quiet_NaN` is false
(for example T is a User-defined type),
then an exception will always be thrown when a domain error occurs.
Catching exceptions is therefore strongly recommended.]
[h4 Median of distributions]
There are many distributions for which we have been unable to find an analytic formula,
and this has deterred us from implementing
[@http://en.wikipedia.org/wiki/Median median functions], the mid-point in a list of values.
However a useful median approximation for distribution `dist` may be available from
`quantile(dist, 0.5)`.
[@http://www.amstat.org/publications/jse/v13n2/vonhippel.html Mean, Median, and Skew, Paul T von Hippel]
[@http://documents.wolfram.co.jp/teachersedition/MathematicaBook/24.5.html Descriptive Statistics,]
[@http://documents.wolfram.co.jp/v5/Add-onsLinks/StandardPackages/Statistics/DescriptiveStatistics.html and ]
[@http://documents.wolfram.com/v5/TheMathematicaBook/AdvancedMathematicsInMathematica/NumericalOperationsOnData/3.8.1.html
Mathematica Basic Statistics.] give more detail, in particular for discrete distributions.
[h4 Handling of Floating-Point Infinity]
Some functions and distributions are well defined with + or - infinity as
argument(s), but after some experiments with handling infinite arguments
as special cases, we concluded that it was generally more useful to forbid this,
and instead to return the result of __domain_error.
Handling infinity as special cases is additionally complicated
because, unlike built-in types on most - but not all - platforms,
not all User-Defined Types are
specialized to provide `std::numeric_limits<RealType>::infinity()`
and would return zero rather than any representation of infinity.
The rationale is that non-finiteness may happen because of error
or overflow in the users code, and it will be more helpful for this
to be diagnosed promptly rather than just continuing.
The code also became much more complicated, more error-prone,
much more work to test, and much less readable.
However in a few cases, for example normal, where we felt it obvious,
we have permitted argument(s) to be infinity,
provided infinity is implemented for the realType on that implementation.
Overflow, underflow, denorm can be handled using __error_policy.
We have also tried to catch boundary cases where the mathematical specification
would result in divide by zero or overflow and signalling these similarly.
What happens at (and near), poles can be controlled through __error_policy.
[h4 Scale, Shape and Location]
We considered adding location and scale to the list of functions, for example:
template <class RealType>
inline RealType scale(const triangular_distribution<RealType>& dist)
{
RealType lower = dist.lower();
RealType mode = dist.mode();
RealType upper = dist.upper();
RealType result; // of checks.
if(false == detail::check_triangular(BOOST_CURRENT_FUNCTION, lower, mode, upper, &result))
{
return result;
}
return (upper - lower);
}
but found that these concepts are not defined (or their definition too contentious)
for too many distributions to be generally applicable.
Because they are non-member functions, they can be added if required.
[h4 Notes on Implementation of Specific Functions & Distributions]
* Default parameters for the Triangular Distribution.
We are uncertain about the best default parameters.
Some sources suggest that the Standard Triangular Distribution has
lower = 0, mode = half and upper = 1.
However as a approximation for the normal distribution,
the most common usage, lower = -1, mode = 0 and upper = 1 would be more suitable.
[h4 Rational Approximations Used]
Some of the special functions in this library are implemented via
rational approximations. These are either taken from the literature,
or devised by John Maddock using
[link math_toolkit.toolkit.internals2.minimax our Remez code].
Rational rather than Polynomial approximations are used to ensure
accuracy: polynomial approximations are often wonderful up to
a certain level of accuracy, but then quite often fail to provide much greater
accuracy no matter how many more terms are added.
Our own approximations were devised either for added accuracy
(to support 128-bit long doubles for example), or because
literature methods were unavailable or under non-BSL
compatible license. Our Remez code is known to produce good
agreement with literature results in fairly simple "toy" cases.
All approximations were checked
for convergence and to ensure that
they were not ill-conditioned (the coefficients can give a
theoretically good solution, but the resulting rational function
may be un-computable at fixed precision).
Recomputing using different
Remez implementations may well produce differing coefficients: the
problem is well known to be ill conditioned in general, and our Remez implementation
often found a broad and ill-defined minima for many of these approximations
(of course for simple "toy" examples like approximating `exp` the minima
is well defined, and the coeffiecents should agree no matter whose Remez
implementation is used). This should not in general effect the validity
of the approximations: there's good literature supporting the idea that
coefficients can be "in error" without necessarily adversely effecting
the result. Note that "in error" has a special meaning in this context,
see [@http://front.math.ucdavis.edu/0101.5042
"Approximate construction of rational approximations and the effect
of error autocorrection.", Grigori Litvinov, eprint arXiv:math/0101042].
Therefore the coefficients still need to be accurately calculated, even if they can
be in error compared to the "true" minimax solution.
[h4 Representation of Mathematical Constants]
A macro BOOST_DEFINE_MATH_CONSTANT in constants.hpp is used
to provide high accuracy constants to mathematical functions and distributions,
since it is important to provide values uniformly for both built-in
float, double and long double types,
and for User Defined types like NTL::quad_float and NTL::RR.
To permit calculations in this Math ToolKit and its tests, (and elsewhere)
at about 100 decimal digits with NTL::RR type,
it is obviously necessary to define constants to this accuracy.
However, some compilers do not accept decimal digits strings as long as this.
So the constant is split into two parts, with the 1st containing at least
long double precision, and the 2nd zero if not needed or known.
The 3rd part permits an exponent to be provided if necessary (use zero if none) -
the other two parameters may only contain decimal digits (and sign and decimal point),
and may NOT include an exponent like 1.234E99 (nor a trailing F or L).
The second digit string is only used if T is a User-Defined Type,
when the constant is converted to a long string literal and lexical_casted to type T.
(This is necessary because you can't use a numeric constant
since even a long double might not have enough digits).
For example, pi is defined:
BOOST_DEFINE_MATH_CONSTANT(pi,
3.141592653589793238462643383279502884197169399375105820974944,
5923078164062862089986280348253421170679821480865132823066470938446095505,
0)
And used thus:
using namespace boost::math::constants;
double diameter = 1.;
double radius = diameter * pi<double>();
or boost::math::constants::pi<NTL::RR>()
Note that it is necessary (if inconvenient) to specify the type explicitly.
So you cannot write
double p = boost::math::constants::pi<>(); // could not deduce template argument for 'T'
Neither can you write:
double p = boost::math::constants::pi; // Context does not allow for disambiguation of overloaded function
double p = boost::math::constants::pi(); // Context does not allow for disambiguation of overloaded function
[h4 Thread safety]
Reporting of error by setting errno should be thread safe already
(otherwise none of the std lib math functions would be thread safe?).
If you turn on reporting of errors via exceptions, errno gets left unused anyway.
Other than that, the code is intended to be thread safe *for built in
real-number types* : so float, double and long double are all thread safe.
For non-built-in types - NTL::RR for example - initialisation of the various
constants used in the implementation is potentially *not* thread safe.
This most undesiable, but it would be a signficant challenge to fix it.
Some compilers may offer the option of having
static-constants initialised in a thread safe manner (Commeau, and maybe
others?), if that's the case then the problem is solved. This is a topic of
hot debate for the next C++ std revision, so hopefully all compilers
will be required to do the right thing here at some point.
[h4 Sources of Test Data]
We found a large number of sources of test data.
We have assumed that these are /"known good"/
if they agree with the results from our test
and only consulted other sources for their /'vote'/
in the case of serious disagreement.
The accuracy, actual and claimed, vary very widely.
Only [@http://functions.wolfram.com/ Wolfram Mathematica functions]
provided a higher accuracy than
C++ double (64-bit floating-point) and was regarded as
the most-trusted source by far.
A useful index of sources is:
[@http://www.sal.hut.fi/Teaching/Resources/ProbStat/table.html
Web-oriented Teaching Resources in Probability and Statistics]
[@http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm Statlet]:
Is a Javascript application that calculates and plots probability distributions,
and provides the most complete range of distributions:
[:Bernoulli, Binomial, discrete uniform, geometric, hypergeometric,
negative binomial, Poisson, beta, Cauchy-Lorentz, chi-sequared, Erlang,
exponential, extreme value, Fisher, gamma, Laplace, logistic,
lognormal, normal, Parteo, Student's t, triangular, uniform, and Weibull.]
It calculates pdf, cdf, survivor, log survivor, hazard, tail areas,
& critical values for 5 tail values.
It is also the only independent source found for the Weibull distribution;
unfortunately it appears to suffer from very poor accuracy in areas where
the underlying special function is known to be difficult to implement.
[h4 Creating and Managing the Equations]
The primary source for the equations is now
[@http://www.w3.org/Math/ MathML]: see the
*.mml files in libs\/math\/doc\/sf_and_dist\/equations\/.
These are most easily edited by a GUI editor such as
[@http://mathcast.sourceforge.net/home.html Mathcast],
please note that the equation editor supplied with Open Office
currently mangles these files and should not currently be used.
Convertion to SVG was achieved using
[@http://www.grigoriev.ru/svgmath/ SVGMath] and a command line
such as:
[pre
$for file in *.mml; do
>/cygdrive/c/Python25/python.exe 'C:\download\open\SVGMath-0.3.1\math2svg.py' \\
>>$file > $(basename $file .mml).svg
>done
]
Note that SVGMath requires that the mml files are *not* wrapped in an XHTML
XML wrapper - this is added by Mathcast by default - one workaround is to
copy an existing mml file and then edit it with Mathcast: the existing
format should then be preserved. This is a bug in the XML parser used by
SVGMath which the author is aware of.
If neccessary the XHTML wrapper can be removed with:
[pre cat filename | tr -d "\\r\\n" \| sed -e 's\/.*\\(<math\[^>\]\*>.\*<\/math>\\).\*\/\\1\/' > newfile]
Setting up fonts for SVGMath is currently rather tricky, on a Windows XP system
JM's font setup is the same as the sample config file provided with SVGMath
but with:
[pre
<!\-\- Double\-struck \-\->
<mathvariant name\="double\-struck" family\="Mathematica7, Lucida Sans Unicode"\/>
]
changed to:
[pre
<!\-\- Double\-struck \-\->
<mathvariant name\="double\-struck" family\="Lucida Sans Unicode"\/>
]
Note that unlike the sample config file supplied with SVGMath, this does not
make use of the Mathematica 7 font as this lacks sufficient Unicode information
for it to be used with either SVGMath or XEP "as is".
Also note that the SVG files in the repository are almost certainly
Windows-specific since they reference various Windows Fonts.
PNG files can be created from the SVG's using
[@http://xmlgraphics.apache.org/batik/tools/rasterizer.html Batik]
and a command such as:
[pre java -jar 'C:\download\open\batik-1.7\batik-rasterizer.jar' -dpi 120 *.svg]
The PDF is generated into \pdf\math.pdf
using a command from a shell or command window with current directory
\math_toolkit\libs\math\doc\sf_and_dist, typically:
[pre bjam -a pdf]
Note that XEP will have to be configured to *use and embed*
whatever fonts are used by the SVG equations
(if necessary editing the sample xep.xml provided by the XEP installation).
(html is generated at math_toolkit\libs\math\doc\sf_and_dist\html\index.html
using just bjam -a).
JM's XEP config file has the following font configuration section added:
[pre
<font\-group xml:base\="file:\/C:\/Windows\/Fonts\/" label\="Windows TrueType" embed\="true" subset\="true">
<font\-family name\="Arial">
<font><font\-data ttf\="arial.ttf"\/><\/font>
<font style\="oblique"><font\-data ttf\="ariali.ttf"\/><\/font>
<font weight\="bold"><font\-data ttf\="arialbd.ttf"\/><\/font>
<font weight\="bold" style\="oblique"><font\-data ttf\="arialbi.ttf"\/><\/font>
<\/font\-family>
<font\-family name\="Times New Roman" ligatures\="fi fl">
<font><font\-data ttf\="times.ttf"\/><\/font>
<font style\="italic"><font\-data ttf\="timesi.ttf"\/><\/font>
<font weight\="bold"><font\-data ttf\="timesbd.ttf"\/><\/font>
<font weight\="bold" style\="italic"><font\-data ttf\="timesbi.ttf"\/><\/font>
<\/font\-family>
<font\-family name\="Courier New">
<font><font\-data ttf\="cour.ttf"\/><\/font>
<font style\="oblique"><font\-data ttf\="couri.ttf"\/><\/font>
<font weight\="bold"><font\-data ttf\="courbd.ttf"\/><\/font>
<font weight\="bold" style\="oblique"><font\-data ttf\="courbi.ttf"\/><\/font>
<\/font\-family>
<font\-family name\="Tahoma" embed\="true">
<font><font\-data ttf\="tahoma.ttf"\/><\/font>
<font weight\="bold"><font\-data ttf\="tahomabd.ttf"\/><\/font>
<\/font\-family>
<font\-family name\="Verdana" embed\="true">
<font><font\-data ttf\="verdana.ttf"\/><\/font>
<font style\="oblique"><font\-data ttf\="verdanai.ttf"\/><\/font>
<font weight\="bold"><font\-data ttf\="verdanab.ttf"\/><\/font>
<font weight\="bold" style\="oblique"><font\-data ttf\="verdanaz.ttf"\/><\/font>
<\/font\-family>
<font\-family name\="Palatino" embed\="true" ligatures\="ff fi fl ffi ffl">
<font><font\-data ttf\="pala.ttf"\/><\/font>
<font style\="italic"><font\-data ttf\="palai.ttf"\/><\/font>
<font weight\="bold"><font\-data ttf\="palab.ttf"\/><\/font>
<font weight\="bold" style\="italic"><font\-data ttf\="palabi.ttf"\/><\/font>
<\/font\-family>
<font\-family name\="Lucida Sans Unicode">
<font><font\-data ttf\="lsansuni.ttf"\/><\/font>
<\/font\-family>
]
PAB had to alter his because the Lucida Sans Unicode font had a different name.
Changes are very likely to be required if you are not using Windows.
XZ authored his equations using the venerable Latex, JM converted these to
MathML using [@http://gentoo-wiki.com/HOWTO_Convert_LaTeX_to_HTML_with_MathML mxlatex].
This process is currently unreliable and required some manual intervention:
consequently Latex source is not considered a viable route for the automatic
production of SVG versions of equations.
Equations are embedded in the quickbook source using the /equation/
template defined in math.qbk. This outputs Docbook XML that looks like:
[pre
<inlinemediaobject>
<imageobject role="html">
<imagedata fileref="../equations/myfile.png"></imagedata>
</imageobject>
<imageobject role="print">
<imagedata fileref="../equations/myfile.svg"></imagedata>
</imageobject>
</inlinemediaobject>
]
MathML is not currently present in the Docbook output, or in the
generated HTML: this needs further investigation.
[h4 Producing Graphs]
Graphs were mostly produced by a very laborious process entailing output
of columns of values from C++ programs to a .csv file,
use of [@http://www.rjsweb.fsnet.co.uk/graph/ RJS Graph] to arrange the display and axes,
and output to a .ps file, followed by conversion to .png using Adobe Photoshop,
or similar utility. This rigmarole is *not* recommended!
We plan to carry out this process in a single step using the
[@http://code.google.com/soc/2007/boost/about.html Google Summer of Code 2007]
project of Jacob Voytko (whose work so far is at .\boost-sandbox\SOC\2007\visualization)
that should, when completed, allow output of annotated graphs as
Scalable Vector Graphic .svg files directly from C++ programs.
[endsect] [/section:implementation Implementation Notes]
[/
Copyright 2006, 2007 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
|