1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
// (C) Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/bessel.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#include "handle_test_result.hpp"
#include "test_bessel_hooks.hpp"
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the bessel Y function. There are two sets of tests, spot
// tests which compare our results with selected values computed
// using the online special function calculator at
// functions.wolfram.com, while the bulk of the accuracy tests
// use values generated with NTL::RR at 1000-bit precision
// and our generic versions of these functions.
//
// Note that when this file is first run on a new platform many of
// these tests will fail: the default accuracy is 1 epsilon which
// is too tight for most platforms. In this situation you will
// need to cast a human eye over the error rates reported and make
// a judgement as to whether they are acceptable. Either way please
// report the results to the Boost mailing list. Acceptable rates of
// error are marked up below as a series of regular expressions that
// identify the compiler/stdlib/platform/data-type/test-data/test-function
// along with the maximum expected peek and RMS mean errors for that
// test.
//
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
{
largest_type = "(long\\s+)?double|real_concept";
}
else
{
largest_type = "long double|real_concept";
}
#else
largest_type = "(long\\s+)?double";
#endif
//
// HP-UX and Solaris rates are very slightly higher:
//
add_expected_result(
".*", // compiler
".*", // stdlib
"HP-UX|Sun Solaris", // platform
largest_type, // test type(s)
".*(Y[nv]|y).*Random.*", // test data group
".*", 30000, 30000); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
"HP-UX|Sun Solaris", // platform
largest_type, // test type(s)
".*Y[01Nv].*", // test data group
".*", 1300, 500); // test function
//
// Tru64:
//
add_expected_result(
".*Tru64.*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*(Y[nv]|y).*Random.*", // test data group
".*", 30000, 30000); // test function
add_expected_result(
".*Tru64.*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*Y[01Nv].*", // test data group
".*", 400, 200); // test function
//
// Mac OS X rates are very slightly higher:
//
add_expected_result(
".*", // compiler
".*", // stdlib
"Mac OS", // platform
largest_type, // test type(s)
".*(Y[nv1]).*", // test data group
".*", 600000, 100000); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
"Mac OS", // platform
"long double|real_concept", // test type(s)
".*Y[0].*", // test data group
".*", 1200, 1000); // test function
//
// Linux:
//
add_expected_result(
".*", // compiler
".*", // stdlib
"linux", // platform
largest_type, // test type(s)
".*Yv.*Random.*", // test data group
".*", 200000, 200000); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
"linux", // platform
largest_type, // test type(s)
".*Y[01v].*", // test data group
".*", 2000, 1000); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
"linux", // platform
largest_type, // test type(s)
".*Yn.*", // test data group
".*", 30000, 30000); // test function
//
// MinGW:
//
add_expected_result(
".*mingw.*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*Yv.*Random.*", // test data group
".*", 200000, 200000); // test function
add_expected_result(
".*mingw.*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*Y[01v].*", // test data group
".*", 2000, 1000); // test function
add_expected_result(
".*mingw.*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*Yn.*", // test data group
".*", 30000, 30000); // test function
//
// Solaris version of long double has it's own error rates,
// again just a touch higher than msvc's 64-bit double:
//
add_expected_result(
"GNU.*", // compiler
".*", // stdlib
"Sun.*", // platform
largest_type, // test type(s)
"Y[0N].*Mathworld.*", // test data group
".*", 2000, 2000); // test function
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if((std::numeric_limits<double>::digits != std::numeric_limits<long double>::digits)
&& (std::numeric_limits<long double>::digits < 90))
{
// some errors spill over into type double as well:
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
"double", // test type(s)
".*Y[Nn].*", // test data group
".*", 20, 20); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
"double", // test type(s)
".*Yv.*", // test data group
".*", 80, 70); // test function
}
#endif
//
// defaults are based on MSVC-8 on Win32:
//
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*Y0.*Random.*", // test data group
".*", 600, 400); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
"real_concept", // test type(s)
".*(Y[nv]|y).*Random.*", // test data group
".*", 2000, 2000); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*(Y[nv]|y).*Random.*", // test data group
".*", 1500, 1000); // test function
//
// Fallback for sun has to go after the general cases above:
//
add_expected_result(
"GNU.*", // compiler
".*", // stdlib
"Sun.*", // platform
largest_type, // test type(s)
"Y[0N].*", // test data group
".*", 200, 200); // test function
//
// General fallback:
//
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*", // test data group
".*", 60, 40); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <class T>
void do_test_cyl_neumann_y(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::cyl_neumann<value_type, value_type>;
#else
pg funcp = boost::math::cyl_neumann;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test cyl_neumann against data:
//
result = boost::math::tools::test(
data,
bind_func(funcp, 0, 1),
extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_neumann", test_name);
std::cout << std::endl;
#ifdef TEST_OTHER
if(boost::is_floating_point<value_type>::value)
{
funcp = other::cyl_neumann;
//
// test other::cyl_neumann against data:
//
result = boost::math::tools::test(
data,
bind_func(funcp, 0, 1),
extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "other::cyl_neumann", test_name);
std::cout << std::endl;
}
#endif
}
template <class T>
T cyl_neumann_int_wrapper(T v, T x)
{
return static_cast<T>(boost::math::cyl_neumann(boost::math::tools::real_cast<int>(v), x));
}
template <class T>
void do_test_cyl_neumann_y_int(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = cyl_neumann_int_wrapper<value_type>;
#else
pg funcp = cyl_neumann_int_wrapper;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test cyl_neumann against data:
//
result = boost::math::tools::test(
data,
bind_func(funcp, 0, 1),
extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_neumann", test_name);
std::cout << std::endl;
}
template <class T>
void do_test_sph_neumann_y(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(unsigned, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::sph_neumann<value_type>;
#else
pg funcp = boost::math::sph_neumann;
#endif
typedef int (*cast_t)(value_type);
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test sph_neumann against data:
//
result = boost::math::tools::test(
data,
bind_func_int1(funcp, 0, 1),
extract_result(2));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::cyl_neumann", test_name);
std::cout << std::endl;
}
template <class T>
void test_bessel(T, const char* name)
{
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// three items, input value a, input value b and erf(a, b):
//
// function values calculated on http://functions.wolfram.com/
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 9> y0_data = {{
SC_(0), SC_(1), SC_(0.0882569642156769579829267660235151628278175230906755467110438),
SC_(0), SC_(2), SC_(0.510375672649745119596606592727157873268139227085846135571839),
SC_(0), SC_(4), SC_(-0.0169407393250649919036351344471532182404925898980149027169321),
SC_(0), SC_(8), SC_(0.223521489387566220527323400498620359274814930781423577578334),
SC_(0), SC_(1e-05), SC_(-7.40316028370197013259676050746759072070960287586102867247159),
SC_(0), SC_(1e-10), SC_(-14.7325162726972420426916696426209144888762342592762415255386),
SC_(0), SC_(1e-20), SC_(-29.3912282502857968601858410375186700783698345615477536431464),
SC_(0), SC_(1e+03), SC_(0.00471591797762281339977326146566525500985900489680197718528000),
SC_(0), SC_(1e+05), SC_(0.00184676615886506410434074102431546125884886798090392516843524)
}};
static const boost::array<boost::array<T, 3>, 9> y1_data = {
SC_(1), SC_(1), SC_(-0.781212821300288716547150000047964820549906390716444607843833),
SC_(1), SC_(2), SC_(-0.107032431540937546888370772277476636687480898235053860525795),
SC_(1), SC_(4), SC_(0.397925710557100005253979972450791852271189181622908340876586),
SC_(1), SC_(8), SC_(-0.158060461731247494255555266187483550327344049526705737651263),
SC_(1), SC_(1e-10), SC_(-6.36619772367581343150789184284462611709080831190542841855708e9),
SC_(1), SC_(1e-20), SC_(-6.36619772367581343075535053490057448139324059868649274367256e19),
SC_(1), SC_(1e+01), SC_(0.249015424206953883923283474663222803260416543069658461246944),
SC_(1), SC_(1e+03), SC_(-0.0247843312923517789148623560971412909386318548648705287583490),
SC_(1), SC_(1e+05), SC_(0.00171921035008825630099494523539897102954509504993494957572726)
};
static const boost::array<boost::array<T, 3>, 9> yn_data = {
SC_(2), SC_(1e-20), SC_(-1.27323954473516268615107010698011489627570899691226996904849e40),
SC_(5), SC_(10), SC_(0.135403047689362303197029014762241709088405766746419538495983),
SC_(-5), SC_(1e+06), SC_(0.000331052088322609048503535570014688967096938338061796192422114),
SC_(10), SC_(10), SC_(-0.359814152183402722051986577343560609358382147846904467526222),
SC_(10), SC_(1e-10), SC_(-1.18280490494334933900960937719565669877576135140014365217993e108),
SC_(-10), SC_(1e+06), SC_(0.000725951969295187086245251366365393653610914686201194434805730),
SC_(1e+02), SC_(5), SC_(-5.08486391602022287993091563093082035595081274976837280338134e115),
SC_(1e+03), SC_(1e+05), SC_(0.00217254919137684037092834146629212647764581965821326561261181),
SC_(-1e+03), SC_(7e+02), SC_(-1.88753109980945889960843803284345261796244752396992106755091e77)
};
static const boost::array<boost::array<T, 3>, 9> yv_data = {
//SC_(2.25), SC_(1) / 1024, SC_(-1.01759203636941035147948317764932151601257765988969544340275e7),
SC_(0.5), SC_(1) / (1024*1024), SC_(-817.033790261762580469303126467917092806755460418223776544122),
SC_(5.5), SC_(3.125), SC_(-2.61489440328417468776474188539366752698192046890955453259866),
SC_(-5.5), SC_(3.125), SC_(-0.0274994493896489729948109971802244976377957234563871795364056),
SC_(-5.5), SC_(1e+04), SC_(-0.00759343502722670361395585198154817047185480147294665270646578),
SC_(-10486074) / (1024*1024), SC_(1)/1024, SC_(-1.50382374389531766117868938966858995093408410498915220070230e38),
SC_(-10486074) / (1024*1024), SC_(1e+02), SC_(0.0583041891319026009955779707640455341990844522293730214223545),
SC_(141.75), SC_(1e+02), SC_(-5.38829231428696507293191118661269920130838607482708483122068e9),
SC_(141.75), SC_(2e+04), SC_(-0.00376577888677186194728129112270988602876597726657372330194186),
SC_(-141.75), SC_(1e+02), SC_(-3.81009803444766877495905954105669819951653361036342457919021e9),
};
do_test_cyl_neumann_y(y0_data, name, "Y0: Mathworld Data");
do_test_cyl_neumann_y(y1_data, name, "Y1: Mathworld Data");
do_test_cyl_neumann_y(yn_data, name, "Yn: Mathworld Data");
do_test_cyl_neumann_y_int(y0_data, name, "Y0: Mathworld Data (Integer Version)");
do_test_cyl_neumann_y_int(y1_data, name, "Y1: Mathworld Data (Integer Version)");
do_test_cyl_neumann_y_int(yn_data, name, "Yn: Mathworld Data (Integer Version)");
do_test_cyl_neumann_y(yv_data, name, "Yv: Mathworld Data");
#include "bessel_y01_data.ipp"
do_test_cyl_neumann_y(bessel_y01_data, name, "Y0 and Y1: Random Data");
#include "bessel_yn_data.ipp"
do_test_cyl_neumann_y(bessel_yn_data, name, "Yn: Random Data");
#include "bessel_yv_data.ipp"
do_test_cyl_neumann_y(bessel_yv_data, name, "Yv: Random Data");
#include "sph_neumann_data.ipp"
do_test_sph_neumann_y(sph_neumann_data, name, "y: Random Data");
}
int test_main(int, char* [])
{
#ifdef TEST_GSL
gsl_set_error_handler_off();
#endif
expected_results();
BOOST_MATH_CONTROL_FP;
#ifndef BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
test_bessel(0.1F, "float");
#endif
test_bessel(0.1, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_bessel(0.1L, "long double");
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
test_bessel(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
}
|