File: test_ellint_1.cpp

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (220 lines) | stat: -rw-r--r-- 8,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//  Copyright Xiaogang Zhang 2006
//  Copyright John Maddock 2006, 2007
//  Copyright Paul A. Bristow 2007

//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifdef _MSC_VER
#  pragma warning(disable : 4756) // overflow in constant arithmetic
// Constants are too big for float case, but this doesn't matter for test.
#endif

#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/ellint_1.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#include "handle_test_result.hpp"
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the Elliptic Integrals of the first kind.
// There are two sets of tests, spot
// tests which compare our results with selected values computed
// using the online special function calculator at
// functions.wolfram.com, while the bulk of the accuracy tests
// use values generated with NTL::RR at 1000-bit precision
// and our generic versions of these functions.
//
// Note that when this file is first run on a new platform many of
// these tests will fail: the default accuracy is 1 epsilon which
// is too tight for most platforms.  In this situation you will
// need to cast a human eye over the error rates reported and make
// a judgement as to whether they are acceptable.  Either way please
// report the results to the Boost mailing list.  Acceptable rates of
// error are marked up below as a series of regular expressions that
// identify the compiler/stdlib/platform/data-type/test-data/test-function
// along with the maximum expected peek and RMS mean errors for that
// test.
//

void expected_results()
{
   //
   // Define the max and mean errors expected for
   // various compilers and platforms.
   //
   const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
   if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
   {
      largest_type = "(long\\s+)?double";
   }
   else
   {
      largest_type = "long double";
   }
#else
   largest_type = "(long\\s+)?double";
#endif

   //
   // Catch all cases come last:
   //
   add_expected_result(
      ".*",                          // compiler
      ".*",                          // stdlib
      ".*",                          // platform
      largest_type,                  // test type(s)
      ".*",      // test data group
      ".*", 5, 3);  // test function
   add_expected_result(
      ".*",                          // compiler
      ".*",                          // stdlib
      ".*",                          // platform
      "real_concept",                  // test type(s)
      ".*",      // test data group
      ".*", 5, 3);  // test function
   //
   // Finish off by printing out the compiler/stdlib/platform names,
   // we do this to make it easier to mark up expected error rates.
   //
   std::cout << "Tests run with " << BOOST_COMPILER << ", "
      << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}


template <typename T>
void do_test_ellint_f(T& data, const char* type_name, const char* test)
{
   typedef typename T::value_type row_type;
   typedef typename row_type::value_type value_type;

   std::cout << "Testing: " << test << std::endl;

#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
    value_type (*fp2)(value_type, value_type) = boost::math::ellint_1<value_type, value_type>;
#else
    value_type (*fp2)(value_type, value_type) = boost::math::ellint_1;
#endif
    boost::math::tools::test_result<value_type> result;

    result = boost::math::tools::test(
      data,
      bind_func(fp2, 1, 0),
      extract_result(2));
    handle_test_result(result, data[result.worst()], result.worst(),
      type_name, "boost::math::ellint_1", test);

   std::cout << std::endl;

}

template <typename T>
void do_test_ellint_k(T& data, const char* type_name, const char* test)
{
   typedef typename T::value_type row_type;
   typedef typename row_type::value_type value_type;
    boost::math::tools::test_result<value_type> result;

   std::cout << "Testing: " << test << std::endl;

#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   value_type (*fp1)(value_type) = boost::math::ellint_1<value_type>;
#else
   value_type (*fp1)(value_type) = boost::math::ellint_1;
#endif
   result = boost::math::tools::test(
      data,
      bind_func(fp1, 0),
      extract_result(1));
   handle_test_result(result, data[result.worst()], result.worst(),
      type_name, "boost::math::ellint_1", test);

   std::cout << std::endl;
}

template <typename T>
void test_spots(T, const char* type_name)
{
    // Function values calculated on http://functions.wolfram.com/
    // Note that Mathematica's EllipticF accepts k^2 as the second parameter.
    #define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
    static const boost::array<boost::array<T, 3>, 19> data1 = {
        SC_(0), SC_(0), SC_(0),
        SC_(-10), SC_(0), SC_(-10),
        SC_(-1), SC_(-1), SC_(-1.2261911708835170708130609674719067527242483502207),
        SC_(-4), SC_(0.875), SC_(-5.3190556182262405182189463092940736859067548232647),
        SC_(8), SC_(-0.625), SC_(9.0419973860310100524448893214394562615252527557062),
        SC_(1e-05), SC_(0.875), SC_(0.000010000000000127604166668510945638036143355898993088),
        SC_(1e+05), SC_(10)/1024, SC_(100002.38431454899771096037307519328741455615271038),
        SC_(1e-20), SC_(1), SC_(1.0000000000000000000000000000000000000000166666667e-20),
        SC_(1e-20), SC_(1e-20), SC_(1.000000000000000e-20),
        SC_(1e+20), SC_(400)/1024, SC_(1.0418143796499216839719289963154558027005142709763e20),
        SC_(1e+50), SC_(0.875), SC_(1.3913251718238765549409892714295358043696028445944e50),
        SC_(2), SC_(0.5), SC_(2.1765877052210673672479877957388515321497888026770),
        SC_(4), SC_(0.5), SC_(4.2543274975235836861894752787874633017836785640477),
        SC_(6), SC_(0.5), SC_(6.4588766202317746302999080620490579800463614807916),
        SC_(10), SC_(0.5), SC_(10.697409951222544858346795279378531495869386960090),
        SC_(-2), SC_(0.5), SC_(-2.1765877052210673672479877957388515321497888026770),
        SC_(-4), SC_(0.5), SC_(-4.2543274975235836861894752787874633017836785640477),
        SC_(-6), SC_(0.5), SC_(-6.4588766202317746302999080620490579800463614807916),
        SC_(-10), SC_(0.5), SC_(-10.697409951222544858346795279378531495869386960090),
    };
    #undef SC_

    do_test_ellint_f(data1, type_name, "Elliptic Integral F: Mathworld Data");

#include "ellint_f_data.ipp"

    do_test_ellint_f(ellint_f_data, type_name, "Elliptic Integral F: Random Data");

    // Function values calculated on http://functions.wolfram.com/
    // Note that Mathematica's EllipticK accepts k^2 as the second parameter.
    #define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
    static const boost::array<boost::array<T, 2>, 9> data2 = {
        SC_(0), SC_(1.5707963267948966192313216916397514420985846996876),
        SC_(0.125), SC_(1.5769867712158131421244030532288080803822271060839),
        SC_(0.25), SC_(1.5962422221317835101489690714979498795055744578951),
        SC_(300)/1024, SC_(1.6062331054696636704261124078746600894998873503208),
        SC_(400)/1024, SC_(1.6364782007562008756208066125715722889067992997614),
        SC_(-0.5), SC_(1.6857503548125960428712036577990769895008008941411),
        SC_(-0.75), SC_(1.9109897807518291965531482187613425592531451316788),
        1-SC_(1)/8, SC_(2.185488469278223686913080323730158689730428415766),
        1-SC_(1)/1024, SC_(4.5074135978990422666372495313621124487894807327687),
    };
    #undef SC_

    do_test_ellint_k(data2, type_name, "Elliptic Integral K: Mathworld Data");

#include "ellint_k_data.ipp"

    do_test_ellint_k(ellint_k_data, type_name, "Elliptic Integral K: Random Data");
}

int test_main(int, char* [])
{
    expected_results();
    BOOST_MATH_CONTROL_FP;

    test_spots(0.0F, "float");
    test_spots(0.0, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
    test_spots(0.0L, "long double");
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
    test_spots(boost::math::concepts::real_concept(0), "real_concept");
#endif
#else
   std::cout << "<note>The long double tests have been disabled on this platform "
      "either because the long double overloads of the usual math functions are "
      "not available at all, or because they are too inaccurate for these tests "
      "to pass.</note>" << std::cout;
#endif

    return 0;
}