1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"
#ifdef TEST_GSL
#include <gsl/gsl_errno.h>
#include <gsl/gsl_message.h>
#endif
#include "handle_test_result.hpp"
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
# define TEST_FLOAT
# define TEST_DOUBLE
# define TEST_LDOUBLE
# define TEST_REAL_CONCEPT
#endif
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the incomplete beta function inverses
// ibeta_inva and ibetac_inva. There are three sets of tests:
// 1) TODO!!!! Accuracy tests use values generated with NTL::RR at
// 1000-bit precision and our generic versions of these functions.
// 2) Round trip sanity checks, use the test data for the forward
// functions, and verify that we can get (approximately) back
// where we started.
//
// Note that when this file is first run on a new platform many of
// these tests will fail: the default accuracy is 1 epsilon which
// is too tight for most platforms. In this situation you will
// need to cast a human eye over the error rates reported and make
// a judgement as to whether they are acceptable. Either way please
// report the results to the Boost mailing list. Acceptable rates of
// error are marked up below as a series of regular expressions that
// identify the compiler/stdlib/platform/data-type/test-data/test-function
// along with the maximum expected peek and RMS mean errors for that
// test.
//
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
{
largest_type = "(long\\s+)?double";
}
else
{
largest_type = "long double";
}
#else
largest_type = "(long\\s+)?double";
#endif
//
// Linux:
//
add_expected_result(
".*", // compiler
".*", // stdlib
"linux", // platform
largest_type, // test type(s)
".*", // test data group
".*", 3000, 500); // test function
//
// Catch all cases come last:
//
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
largest_type, // test type(s)
".*", // test data group
".*", 500, 500); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
"float|double", // test type(s)
".*", // test data group
".*", 5, 3); // test function
add_expected_result(
".*", // compiler
".*", // stdlib
".*", // platform
"real_concept", // test type(s)
".*", // test data group
".*", 1000000, 500000); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <class T>
void test_inverses(const T& data)
{
using namespace std;
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
for(unsigned i = 0; i < data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete beta is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if(data[i][5] == 0)
{
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(data[i][1], data[i][2], data[i][5]), boost::math::tools::max_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(data[i][0], data[i][2], data[i][5]), boost::math::tools::min_value<value_type>());
}
else if((1 - data[i][5] > 0.001)
&& (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = boost::math::ibeta_inva(data[i][1], data[i][2], data[i][5]);
BOOST_CHECK_CLOSE(data[i][0], inv, precision);
inv = boost::math::ibeta_invb(data[i][0], data[i][2], data[i][5]);
BOOST_CHECK_CLOSE(data[i][1], inv, precision);
}
else if(1 == data[i][5])
{
BOOST_CHECK_EQUAL(boost::math::ibeta_inva(data[i][1], data[i][2], data[i][5]), boost::math::tools::min_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibeta_invb(data[i][0], data[i][2], data[i][5]), boost::math::tools::max_value<value_type>());
}
if(data[i][6] == 0)
{
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(data[i][1], data[i][2], data[i][6]), boost::math::tools::min_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(data[i][0], data[i][2], data[i][6]), boost::math::tools::max_value<value_type>());
}
else if((1 - data[i][6] > 0.001)
&& (fabs(data[i][6]) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(data[i][6]) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = boost::math::ibetac_inva(data[i][1], data[i][2], data[i][6]);
BOOST_CHECK_CLOSE(data[i][0], inv, precision);
inv = boost::math::ibetac_invb(data[i][0], data[i][2], data[i][6]);
BOOST_CHECK_CLOSE(data[i][1], inv, precision);
}
else if(data[i][6] == 1)
{
BOOST_CHECK_EQUAL(boost::math::ibetac_inva(data[i][1], data[i][2], data[i][6]), boost::math::tools::max_value<value_type>());
BOOST_CHECK_EQUAL(boost::math::ibetac_invb(data[i][0], data[i][2], data[i][6]), boost::math::tools::min_value<value_type>());
}
}
}
template <class T>
void test_inverses2(const T& data, const char* type_name, const char* test_name)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
typedef value_type (*pg)(value_type, value_type, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
pg funcp = boost::math::ibeta_inva<value_type, value_type, value_type>;
#else
pg funcp = boost::math::ibeta_inva;
#endif
boost::math::tools::test_result<value_type> result;
std::cout << "Testing " << test_name << " with type " << type_name
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
//
// test ibeta_inva(T, T, T) against data:
//
result = boost::math::tools::test(
data,
bind_func(funcp, 0, 1, 2),
extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta_inva", test_name);
//
// test ibetac_inva(T, T, T) against data:
//
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibetac_inva<value_type, value_type, value_type>;
#else
funcp = boost::math::ibetac_inva;
#endif
result = boost::math::tools::test(
data,
bind_func(funcp, 0, 1, 2),
extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac_inva", test_name);
//
// test ibeta_invb(T, T, T) against data:
//
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibeta_invb<value_type, value_type, value_type>;
#else
funcp = boost::math::ibeta_invb;
#endif
result = boost::math::tools::test(
data,
bind_func(funcp, 0, 1, 2),
extract_result(5));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta_invb", test_name);
//
// test ibetac_invb(T, T, T) against data:
//
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
funcp = boost::math::ibetac_invb<value_type, value_type, value_type>;
#else
funcp = boost::math::ibetac_invb;
#endif
result = boost::math::tools::test(
data,
bind_func(funcp, 0, 1, 2),
extract_result(6));
handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac_invb", test_name);
}
template <class T>
void test_beta(T, const char* name)
{
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
//
std::cout << "Running sanity checks for type " << name << std::endl;
# include "ibeta_small_data.ipp"
test_inverses(ibeta_small_data);
# include "ibeta_data.ipp"
test_inverses(ibeta_data);
# include "ibeta_large_data.ipp"
test_inverses(ibeta_large_data);
#ifndef FULL_TEST
if(boost::is_floating_point<T>::value){
#endif
//
// This accuracy test is normally only enabled for "real"
// floating point types and not for class real_concept.
// The reason is that these tests are exceptionally slow
// to complete when T doesn't have Lanczos support defined for it.
//
# include "ibeta_inva_data.ipp"
test_inverses2(ibeta_inva_data, name, "Inverse incomplete beta");
#ifndef FULL_TEST
}
#endif
}
int test_main(int, char* [])
{
expected_results();
#ifdef TEST_GSL
gsl_set_error_handler_off();
#endif
#ifdef TEST_FLOAT
test_beta(0.1F, "float");
#endif
#ifdef TEST_DOUBLE
test_beta(0.1, "double");
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_beta(0.1L, "long double");
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#ifdef TEST_REAL_CONCEPT
test_beta(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
}
|