File: test_ibeta_inv_ab.cpp

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (315 lines) | stat: -rw-r--r-- 11,591 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error

#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/tools/stats.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/array.hpp>
#include "functor.hpp"

#ifdef TEST_GSL
#include <gsl/gsl_errno.h>
#include <gsl/gsl_message.h>
#endif

#include "handle_test_result.hpp"

#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
#  define TEST_FLOAT
#  define TEST_DOUBLE
#  define TEST_LDOUBLE
#  define TEST_REAL_CONCEPT
#endif
//
// DESCRIPTION:
// ~~~~~~~~~~~~
//
// This file tests the incomplete beta function inverses 
// ibeta_inva and ibetac_inva. There are three sets of tests:
// 1) TODO!!!! Accuracy tests use values generated with NTL::RR at 
// 1000-bit precision and our generic versions of these functions.
// 2) Round trip sanity checks, use the test data for the forward
// functions, and verify that we can get (approximately) back
// where we started.
//
// Note that when this file is first run on a new platform many of
// these tests will fail: the default accuracy is 1 epsilon which
// is too tight for most platforms.  In this situation you will 
// need to cast a human eye over the error rates reported and make
// a judgement as to whether they are acceptable.  Either way please
// report the results to the Boost mailing list.  Acceptable rates of
// error are marked up below as a series of regular expressions that
// identify the compiler/stdlib/platform/data-type/test-data/test-function
// along with the maximum expected peek and RMS mean errors for that
// test.
//

void expected_results()
{
   //
   // Define the max and mean errors expected for
   // various compilers and platforms.
   //
   const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
   if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
   {
      largest_type = "(long\\s+)?double";
   }
   else
   {
      largest_type = "long double";
   }
#else
   largest_type = "(long\\s+)?double";
#endif
   //
   // Linux:
   //
   add_expected_result(
      ".*",                          // compiler
      ".*",                          // stdlib
      "linux",                          // platform
      largest_type,                  // test type(s)
      ".*",                          // test data group
      ".*", 3000, 500);               // test function
   //
   // Catch all cases come last:
   //
   add_expected_result(
      ".*",                          // compiler
      ".*",                          // stdlib
      ".*",                          // platform
      largest_type,                  // test type(s)
      ".*",                          // test data group
      ".*", 500, 500);               // test function
   add_expected_result(
      ".*",                          // compiler
      ".*",                          // stdlib
      ".*",                          // platform
      "float|double",                // test type(s)
      ".*",                          // test data group
      ".*", 5, 3);                   // test function
   add_expected_result(
      ".*",                          // compiler
      ".*",                          // stdlib
      ".*",                          // platform
      "real_concept",                // test type(s)
      ".*",                          // test data group
      ".*", 1000000, 500000);        // test function

   //
   // Finish off by printing out the compiler/stdlib/platform names,
   // we do this to make it easier to mark up expected error rates.
   //
   std::cout << "Tests run with " << BOOST_COMPILER << ", " 
      << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}

template <class T>
void test_inverses(const T& data)
{
   using namespace std;
   typedef typename T::value_type row_type;
   typedef typename row_type::value_type value_type;

   value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
   if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
      precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated

   for(unsigned i = 0; i < data.size(); ++i)
   {
      //
      // These inverse tests are thrown off if the output of the
      // incomplete beta is too close to 1: basically there is insuffient
      // information left in the value we're using as input to the inverse
      // to be able to get back to the original value.
      //
      if(data[i][5] == 0)
      {
         BOOST_CHECK_EQUAL(boost::math::ibeta_inva(data[i][1], data[i][2], data[i][5]), boost::math::tools::max_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibeta_invb(data[i][0], data[i][2], data[i][5]), boost::math::tools::min_value<value_type>());
      }
      else if((1 - data[i][5] > 0.001) 
         && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>()) 
         && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>()))
      {
         value_type inv = boost::math::ibeta_inva(data[i][1], data[i][2], data[i][5]);
         BOOST_CHECK_CLOSE(data[i][0], inv, precision);
         inv = boost::math::ibeta_invb(data[i][0], data[i][2], data[i][5]);
         BOOST_CHECK_CLOSE(data[i][1], inv, precision);
      }
      else if(1 == data[i][5])
      {
         BOOST_CHECK_EQUAL(boost::math::ibeta_inva(data[i][1], data[i][2], data[i][5]), boost::math::tools::min_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibeta_invb(data[i][0], data[i][2], data[i][5]), boost::math::tools::max_value<value_type>());
      }

      if(data[i][6] == 0)
      {
         BOOST_CHECK_EQUAL(boost::math::ibetac_inva(data[i][1], data[i][2], data[i][6]), boost::math::tools::min_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibetac_invb(data[i][0], data[i][2], data[i][6]), boost::math::tools::max_value<value_type>());
      }
      else if((1 - data[i][6] > 0.001) 
         && (fabs(data[i][6]) > 2 * boost::math::tools::min_value<value_type>()) 
         && (fabs(data[i][6]) > 2 * boost::math::tools::min_value<double>()))
      {
         value_type inv = boost::math::ibetac_inva(data[i][1], data[i][2], data[i][6]);
         BOOST_CHECK_CLOSE(data[i][0], inv, precision);
         inv = boost::math::ibetac_invb(data[i][0], data[i][2], data[i][6]);
         BOOST_CHECK_CLOSE(data[i][1], inv, precision);
      }
      else if(data[i][6] == 1)
      {
         BOOST_CHECK_EQUAL(boost::math::ibetac_inva(data[i][1], data[i][2], data[i][6]), boost::math::tools::max_value<value_type>());
         BOOST_CHECK_EQUAL(boost::math::ibetac_invb(data[i][0], data[i][2], data[i][6]), boost::math::tools::min_value<value_type>());
      }
   }
}

template <class T>
void test_inverses2(const T& data, const char* type_name, const char* test_name)
{
   typedef typename T::value_type row_type;
   typedef typename row_type::value_type value_type;

   typedef value_type (*pg)(value_type, value_type, value_type);
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   pg funcp = boost::math::ibeta_inva<value_type, value_type, value_type>;
#else
   pg funcp = boost::math::ibeta_inva;
#endif

   boost::math::tools::test_result<value_type> result;

   std::cout << "Testing " << test_name << " with type " << type_name
      << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";

   //
   // test ibeta_inva(T, T, T) against data:
   //
   result = boost::math::tools::test(
      data,
      bind_func(funcp, 0, 1, 2),
      extract_result(3));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta_inva", test_name);
   //
   // test ibetac_inva(T, T, T) against data:
   //
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   funcp = boost::math::ibetac_inva<value_type, value_type, value_type>;
#else
   funcp = boost::math::ibetac_inva;
#endif
   result = boost::math::tools::test(
      data,
      bind_func(funcp, 0, 1, 2),
      extract_result(4));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac_inva", test_name);
   //
   // test ibeta_invb(T, T, T) against data:
   //
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   funcp = boost::math::ibeta_invb<value_type, value_type, value_type>;
#else
   funcp = boost::math::ibeta_invb;
#endif
   result = boost::math::tools::test(
      data,
      bind_func(funcp, 0, 1, 2),
      extract_result(5));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibeta_invb", test_name);
   //
   // test ibetac_invb(T, T, T) against data:
   //
#if defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
   funcp = boost::math::ibetac_invb<value_type, value_type, value_type>;
#else
   funcp = boost::math::ibetac_invb;
#endif
   result = boost::math::tools::test(
      data,
      bind_func(funcp, 0, 1, 2),
      extract_result(6));
   handle_test_result(result, data[result.worst()], result.worst(), type_name, "boost::math::ibetac_invb", test_name);
}

template <class T>
void test_beta(T, const char* name)
{
   //
   // The actual test data is rather verbose, so it's in a separate file
   //
   // The contents are as follows, each row of data contains
   // five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
   //
   std::cout << "Running sanity checks for type " << name << std::endl;

#  include "ibeta_small_data.ipp"

   test_inverses(ibeta_small_data);

#  include "ibeta_data.ipp"

   test_inverses(ibeta_data);

#  include "ibeta_large_data.ipp"

   test_inverses(ibeta_large_data);
#ifndef FULL_TEST
   if(boost::is_floating_point<T>::value){
#endif
   //
   // This accuracy test is normally only enabled for "real"
   // floating point types and not for class real_concept.
   // The reason is that these tests are exceptionally slow
   // to complete when T doesn't have Lanczos support defined for it.
   //
#  include "ibeta_inva_data.ipp"

   test_inverses2(ibeta_inva_data, name, "Inverse incomplete beta");
#ifndef FULL_TEST
   }
#endif
}

int test_main(int, char* [])
{
   expected_results();
#ifdef TEST_GSL
   gsl_set_error_handler_off();
#endif

#ifdef TEST_FLOAT
   test_beta(0.1F, "float");
#endif
#ifdef TEST_DOUBLE
   test_beta(0.1, "double");
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
   test_beta(0.1L, "long double");
#endif
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
#ifdef TEST_REAL_CONCEPT
   test_beta(boost::math::concepts::real_concept(0.1), "real_concept");
#endif
#endif
#else
   std::cout << "<note>The long double tests have been disabled on this platform "
      "either because the long double overloads of the usual math functions are "
      "not available at all, or because they are too inaccurate for these tests "
      "to pass.</note>" << std::cout;
#endif
   return 0;
}