1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
// test_negative_binomial.cpp
// Copyright Paul A. Bristow 2007.
// Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
// Tests for Negative Binomial Distribution.
// Note that these defines must be placed BEFORE #includes.
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
// because several tests overflow & underflow by design.
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant.
#endif
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
# define TEST_FLOAT
# define TEST_DOUBLE
# define TEST_LDOUBLE
# define TEST_REAL_CONCEPT
#endif
#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
using boost::math::negative_binomial_distribution;
#include <boost/math/special_functions/gamma.hpp>
using boost::math::lgamma; // log gamma
#include <boost/math/concepts/real_concept.hpp> // for real_concept
using ::boost::math::concepts::real_concept;
#include <boost/test/included/test_exec_monitor.hpp> // for test_main
#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
#include <iostream>
using std::cout;
using std::endl;
using std::setprecision;
using std::showpoint;
#include <limits>
using std::numeric_limits;
template <class RealType>
void test_spot( // Test a single spot value against 'known good' values.
RealType N, // Number of successes.
RealType k, // Number of failures.
RealType p, // Probability of success_fraction.
RealType P, // CDF probability.
RealType Q, // Complement of CDF.
RealType tol) // Test tolerance.
{
boost::math::negative_binomial_distribution<RealType> bn(N, p);
BOOST_CHECK_EQUAL(N, bn.successes());
BOOST_CHECK_EQUAL(p, bn.success_fraction());
BOOST_CHECK_CLOSE(
cdf(bn, k), P, tol);
if((P < 0.99) && (Q < 0.99))
{
// We can only check this if P is not too close to 1,
// so that we can guarantee that Q is free of error:
//
BOOST_CHECK_CLOSE(
cdf(complement(bn, k)), Q, tol);
if(k != 0)
{
BOOST_CHECK_CLOSE(
quantile(bn, P), k, tol);
}
else
{
// Just check quantile is very small:
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
&& (boost::is_floating_point<RealType>::value))
{
// Limit where this is checked: if exponent range is very large we may
// run out of iterations in our root finding algorithm.
BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon<RealType>() * 10);
}
}
if(k != 0)
{
BOOST_CHECK_CLOSE(
quantile(complement(bn, Q)), k, tol);
}
else
{
// Just check quantile is very small:
if((std::numeric_limits<RealType>::max_exponent <= std::numeric_limits<double>::max_exponent)
&& (boost::is_floating_point<RealType>::value))
{
// Limit where this is checked: if exponent range is very large we may
// run out of iterations in our root finding algorithm.
BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon<RealType>() * 10);
}
}
// estimate success ratio:
BOOST_CHECK_CLOSE(
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
N+k, N, P),
p, tol);
// Note we bump up the sample size here, purely for the sake of the test,
// internally the function has to adjust the sample size so that we get
// the right upper bound, our test undoes this, so we can verify the result.
BOOST_CHECK_CLOSE(
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
N+k+1, N, Q),
p, tol);
if(Q < P)
{
//
// We check two things here, that the upper and lower bounds
// are the right way around, and that they do actually bracket
// the naive estimate of p = successes / (sample size)
//
BOOST_CHECK(
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
N+k, N, Q)
<=
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
N+k, N, Q)
);
BOOST_CHECK(
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
N+k, N, Q)
<=
N / (N+k)
);
BOOST_CHECK(
N / (N+k)
<=
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
N+k, N, Q)
);
}
else
{
// As above but when P is small.
BOOST_CHECK(
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
N+k, N, P)
<=
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
N+k, N, P)
);
BOOST_CHECK(
negative_binomial_distribution<RealType>::find_lower_bound_on_p(
N+k, N, P)
<=
N / (N+k)
);
BOOST_CHECK(
N / (N+k)
<=
negative_binomial_distribution<RealType>::find_upper_bound_on_p(
N+k, N, P)
);
}
// Estimate sample size:
BOOST_CHECK_CLOSE(
negative_binomial_distribution<RealType>::find_minimum_number_of_trials(
k, p, P),
N+k, tol);
BOOST_CHECK_CLOSE(
negative_binomial_distribution<RealType>::find_maximum_number_of_trials(
k, p, Q),
N+k, tol);
// Double check consistency of CDF and PDF by computing the finite sum:
RealType sum = 0;
for(unsigned i = 0; i <= k; ++i)
{
sum += pdf(bn, RealType(i));
}
BOOST_CHECK_CLOSE(sum, P, tol);
// Complement is not possible since sum is to infinity.
} //
} // test_spot
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
// Basic sanity checks, test data is to double precision only
// so set tolerance to 1000 eps expressed as a percent, or
// 1000 eps of type double expressed as a percent, whichever
// is the larger.
RealType tolerance = (std::max)
(boost::math::tools::epsilon<RealType>(),
static_cast<RealType>(std::numeric_limits<double>::epsilon()));
tolerance *= 100 * 1000;
cout << "Tolerance = " << tolerance << "%." << endl;
RealType tol1eps = boost::math::tools::epsilon<RealType>() * 2; // Very tight, suit exact values.
//RealType tol2eps = boost::math::tools::epsilon<RealType>() * 2; // Tight, suit exact values.
RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // Wider 5 epsilon.
cout << "Tolerance 5 eps = " << tol5eps << "%." << endl;
// Sources of spot test values:
// MathCAD defines pbinom(k, r, p) (at about 64-bit double precision, about 16 decimal digits)
// returns pr(X , k) when random variable X has the binomial distribution with parameters r and p.
// 0 <= k
// r > 0
// 0 <= p <= 1
// P = pbinom(30, 500, 0.05) = 0.869147702104609
// And functions.wolfram.com
using boost::math::negative_binomial_distribution;
using ::boost::math::negative_binomial;
using ::boost::math::cdf;
using ::boost::math::pdf;
// Test negative binomial using cdf spot values from MathCAD cdf = pnbinom(k, r, p).
// These test quantiles and complements as well.
test_spot( // pnbinom(1,2,0.5) = 0.5
static_cast<RealType>(2), // successes r
static_cast<RealType>(1), // Number of failures, k
static_cast<RealType>(0.5), // Probability of success as fraction, p
static_cast<RealType>(0.5), // Probability of result (CDF), P
static_cast<RealType>(0.5), // complement CCDF Q = 1 - P
tolerance);
test_spot( // pbinom(0, 2, 0.25)
static_cast<RealType>(2), // successes r
static_cast<RealType>(0), // Number of failures, k
static_cast<RealType>(0.25),
static_cast<RealType>(0.0625), // Probability of result (CDF), P
static_cast<RealType>(0.9375), // Q = 1 - P
tolerance);
test_spot( // pbinom(48,8,0.25)
static_cast<RealType>(8), // successes r
static_cast<RealType>(48), // Number of failures, k
static_cast<RealType>(0.25), // Probability of success, p
static_cast<RealType>(9.826582228110670E-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 9.826582228110670E-1), // Q = 1 - P
tolerance);
test_spot( // pbinom(2,5,0.4)
static_cast<RealType>(5), // successes r
static_cast<RealType>(2), // Number of failures, k
static_cast<RealType>(0.4), // Probability of success, p
static_cast<RealType>(9.625600000000020E-2), // Probability of result (CDF), P
static_cast<RealType>(1 - 9.625600000000020E-2), // Q = 1 - P
tolerance);
test_spot( // pbinom(10,100,0.9)
static_cast<RealType>(100), // successes r
static_cast<RealType>(10), // Number of failures, k
static_cast<RealType>(0.9), // Probability of success, p
static_cast<RealType>(4.535522887695670E-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 4.535522887695670E-1), // Q = 1 - P
tolerance);
test_spot( // pbinom(1,100,0.991)
static_cast<RealType>(100), // successes r
static_cast<RealType>(1), // Number of failures, k
static_cast<RealType>(0.991), // Probability of success, p
static_cast<RealType>(7.693413044217000E-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 7.693413044217000E-1), // Q = 1 - P
tolerance);
test_spot( // pbinom(10,100,0.991)
static_cast<RealType>(100), // successes r
static_cast<RealType>(10), // Number of failures, k
static_cast<RealType>(0.991), // Probability of success, p
static_cast<RealType>(9.999999940939000E-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 9.999999940939000E-1), // Q = 1 - P
tolerance);
if(std::numeric_limits<RealType>::is_specialized)
{ // An extreme value test that takes 3 minutes using the real concept type
// for which numeric_limits<RealType>::is_specialized == false, deliberately
// and for which there is no Lanczos approximation defined (also deliberately)
// giving a very slow computation, but with acceptable accuracy.
// A possible enhancement might be to use a normal approximation for
// extreme values, but this is not implemented.
test_spot( // pbinom(100000,100,0.001)
static_cast<RealType>(100), // successes r
static_cast<RealType>(100000), // Number of failures, k
static_cast<RealType>(0.001), // Probability of success, p
static_cast<RealType>(5.173047534260320E-1), // Probability of result (CDF), P
static_cast<RealType>(1 - 5.173047534260320E-1), // Q = 1 - P
tolerance*1000); // *1000 is OK 0.51730475350664229 versus
// functions.wolfram.com
// for I[0.001](100, 100000+1) gives:
// Wolfram 0.517304753506834882009032744488738352004003696396461766326713
// JM nonLanczos 0.51730475350664229 differs at the 13th decimal digit.
// MathCAD 0.51730475342603199 differs at 10th decimal digit.
}
// End of single spot tests using RealType
// Tests on PDF:
BOOST_CHECK_CLOSE(
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)),
static_cast<RealType>(0) ), // k = 0.
static_cast<RealType>(0.25), // 0
tolerance);
BOOST_CHECK_CLOSE(
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(4), static_cast<RealType>(0.5)),
static_cast<RealType>(0)), // k = 0.
static_cast<RealType>(0.0625), // exact 1/16
tolerance);
BOOST_CHECK_CLOSE(
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
static_cast<RealType>(0)), // k = 0
static_cast<RealType>(9.094947017729270E-13), // pbinom(0,20,0.25) = 9.094947017729270E-13
tolerance);
BOOST_CHECK_CLOSE(
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.2)),
static_cast<RealType>(0)), // k = 0
static_cast<RealType>(1.0485760000000003e-014), // MathCAD 1.048576000000000E-14
tolerance);
BOOST_CHECK_CLOSE(
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(10), static_cast<RealType>(0.1)),
static_cast<RealType>(0)), // k = 0.
static_cast<RealType>(1e-10), // MathCAD says zero, but suffers cancellation error?
tolerance);
BOOST_CHECK_CLOSE(
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.1)),
static_cast<RealType>(0)), // k = 0.
static_cast<RealType>(1e-20), // MathCAD says zero, but suffers cancellation error?
tolerance);
BOOST_CHECK_CLOSE( // .
pdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.9)),
static_cast<RealType>(0)), // k.
static_cast<RealType>(1.215766545905690E-1), // k=20 p = 0.9
tolerance);
// Tests on cdf:
// MathCAD pbinom k, r, p) == failures, successes, probability.
BOOST_CHECK_CLOSE(cdf(
negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
static_cast<RealType>(0) ), // k = 0
static_cast<RealType>(0.25), // probability 1/4
tolerance);
BOOST_CHECK_CLOSE(cdf(complement(
negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.5)), // successes = 2,prob 0.25
static_cast<RealType>(0) )), // k = 0
static_cast<RealType>(0.75), // probability 3/4
tolerance);
BOOST_CHECK_CLOSE( // k = 1.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
static_cast<RealType>(1)), // k =1.
static_cast<RealType>(1.455191522836700E-11),
tolerance);
BOOST_CHECK_SMALL( // Check within an epsilon with CHECK_SMALL
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(20), static_cast<RealType>(0.25)),
static_cast<RealType>(1)) -
static_cast<RealType>(1.455191522836700E-11),
tolerance );
// Some exact (probably - judging by trailing zeros) values.
BOOST_CHECK_CLOSE(
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0)), // k.
static_cast<RealType>(1.525878906250000E-5),
tolerance);
BOOST_CHECK_CLOSE(
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0)), // k.
static_cast<RealType>(1.525878906250000E-5),
tolerance);
BOOST_CHECK_SMALL(
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0)) -
static_cast<RealType>(1.525878906250000E-5),
tolerance );
BOOST_CHECK_CLOSE( // k = 1.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(1)), // k.
static_cast<RealType>(1.068115234375010E-4),
tolerance);
BOOST_CHECK_CLOSE( // k = 2.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(2)), // k.
static_cast<RealType>(4.158020019531300E-4),
tolerance);
BOOST_CHECK_CLOSE( // k = 3.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(3)), // k.bristow
static_cast<RealType>(1.188278198242200E-3),
tolerance);
BOOST_CHECK_CLOSE( // k = 4.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(4)), // k.
static_cast<RealType>(2.781510353088410E-3),
tolerance);
BOOST_CHECK_CLOSE( // k = 5.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(5)), // k.
static_cast<RealType>(5.649328231811500E-3),
tolerance);
BOOST_CHECK_CLOSE( // k = 6.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(6)), // k.
static_cast<RealType>(1.030953228473680E-2),
tolerance);
BOOST_CHECK_CLOSE( // k = 7.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(7)), // k.
static_cast<RealType>(1.729983836412430E-2),
tolerance);
BOOST_CHECK_CLOSE( // k = 8.
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(8)), // k = n.
static_cast<RealType>(2.712995628826370E-2),
tolerance);
BOOST_CHECK_CLOSE( //
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(48)), // k
static_cast<RealType>(9.826582228110670E-1),
tolerance);
BOOST_CHECK_CLOSE( //
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(64)), // k
static_cast<RealType>(9.990295004935590E-1),
tolerance);
BOOST_CHECK_CLOSE( //
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
static_cast<RealType>(26)), // k
static_cast<RealType>(9.989686246611190E-1),
tolerance);
BOOST_CHECK_CLOSE( //
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(5), static_cast<RealType>(0.4)),
static_cast<RealType>(2)), // k failures
static_cast<RealType>(9.625600000000020E-2),
tolerance);
BOOST_CHECK_CLOSE( //
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.9)),
static_cast<RealType>(20)), // k
static_cast<RealType>(9.999970854144170E-1),
tolerance);
BOOST_CHECK_CLOSE( //
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(500), static_cast<RealType>(0.7)),
static_cast<RealType>(200)), // k
static_cast<RealType>(2.172846379930550E-1),
tolerance* 2);
BOOST_CHECK_CLOSE( //
cdf(negative_binomial_distribution<RealType>(static_cast<RealType>(50), static_cast<RealType>(0.7)),
static_cast<RealType>(20)), // k
static_cast<RealType>(4.550203671301790E-1),
tolerance);
// Tests of other functions, mean and other moments ...
negative_binomial_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(0.25));
using namespace std; // ADL of std names.
// mean:
BOOST_CHECK_CLOSE(
mean(dist), static_cast<RealType>(8 * (1 - 0.25) /0.25), tol5eps);
BOOST_CHECK_CLOSE(
mode(dist), static_cast<RealType>(21), tol1eps);
// variance:
BOOST_CHECK_CLOSE(
variance(dist), static_cast<RealType>(8 * (1 - 0.25) / (0.25 * 0.25)), tol5eps);
// std deviation:
BOOST_CHECK_CLOSE(
standard_deviation(dist), // 9.79795897113271239270
static_cast<RealType>(9.797958971132712392789136298823565567864L), // using functions.wolfram.com
// 9.79795897113271152534 == sqrt(8 * (1 - 0.25) / (0.25 * 0.25)))
tol5eps * 100);
BOOST_CHECK_CLOSE(
skewness(dist), //
static_cast<RealType>(0.71443450831176036),
// using http://mathworld.wolfram.com/skewness.html
tolerance);
BOOST_CHECK_CLOSE(
kurtosis_excess(dist), //
static_cast<RealType>(0.7604166666666666666666666666666666666666L), // using Wikipedia Kurtosis(excess) formula
tol5eps * 100);
BOOST_CHECK_CLOSE(
kurtosis(dist), // true
static_cast<RealType>(3.76041666666666666666666666666666666666666L), //
tol5eps * 100);
// hazard:
RealType x = static_cast<RealType>(0.125);
BOOST_CHECK_CLOSE(
hazard(dist, x)
, pdf(dist, x) / cdf(complement(dist, x)), tol5eps);
// cumulative hazard:
BOOST_CHECK_CLOSE(
chf(dist, x), -log(cdf(complement(dist, x))), tol5eps);
// coefficient_of_variation:
BOOST_CHECK_CLOSE(
coefficient_of_variation(dist)
, standard_deviation(dist) / mean(dist), tol5eps);
// Special cases for PDF:
BOOST_CHECK_EQUAL(
pdf(
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)), //
static_cast<RealType>(0)),
static_cast<RealType>(0) );
BOOST_CHECK_EQUAL(
pdf(
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0)),
static_cast<RealType>(0.0001)),
static_cast<RealType>(0) );
BOOST_CHECK_EQUAL(
pdf(
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
static_cast<RealType>(0.001)),
static_cast<RealType>(0) );
BOOST_CHECK_EQUAL(
pdf(
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1)),
static_cast<RealType>(8)),
static_cast<RealType>(0) );
BOOST_CHECK_SMALL(
pdf(
negative_binomial_distribution<RealType>(static_cast<RealType>(2), static_cast<RealType>(0.25)),
static_cast<RealType>(0))-
static_cast<RealType>(0.0625),
2 * boost::math::tools::epsilon<RealType>() ); // Expect exact, but not quite.
// numeric_limits<RealType>::epsilon()); // Not suitable for real concept!
// Quantile boundary cases checks:
BOOST_CHECK_EQUAL(
quantile( // zero P < cdf(0) so should be exactly zero.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0)),
static_cast<RealType>(0));
BOOST_CHECK_EQUAL(
quantile( // min P < cdf(0) so should be exactly zero.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(boost::math::tools::min_value<RealType>())),
static_cast<RealType>(0));
BOOST_CHECK_CLOSE_FRACTION(
quantile( // Small P < cdf(0) so should be near zero.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(boost::math::tools::epsilon<RealType>())), //
static_cast<RealType>(0),
tol5eps);
BOOST_CHECK_CLOSE(
quantile( // Small P < cdf(0) so should be exactly zero.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0.0001)),
static_cast<RealType>(0.95854156929288470),
tolerance);
//BOOST_CHECK( // Fails with overflow for real_concept
//quantile( // Small P near 1 so k failures should be big.
//negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
//static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>())) <=
//static_cast<RealType>(189.56999032670058) // 106.462769 for float
//);
if(std::numeric_limits<RealType>::has_infinity)
{ // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
// Note that infinity is not implemented for real_concept, so these tests
// are only done for types, like built-in float, double.. that have infinity.
// Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
// #define BOOST_MATH_THROW_ON_OVERFLOW_POLICY == throw_on_error would throw here.
// #define BOOST_MAT_DOMAIN_ERROR_POLICY IS defined throw_on_error,
// so the throw path of error handling is tested below with BOOST_CHECK_THROW tests.
BOOST_CHECK(
quantile( // At P == 1 so k failures should be infinite.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(1)) ==
//static_cast<RealType>(boost::math::tools::infinity<RealType>())
static_cast<RealType>(std::numeric_limits<RealType>::infinity()) );
BOOST_CHECK_EQUAL(
quantile( // At 1 == P so should be infinite.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(1)), //
std::numeric_limits<RealType>::infinity() );
BOOST_CHECK_EQUAL(
quantile(complement( // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0))),
std::numeric_limits<RealType>::infinity() );
} // test for infinity using std::numeric_limits<>::infinity()
else
{ // real_concept case, so check it throws rather than returning infinity.
BOOST_CHECK_EQUAL(
quantile( // At P == 1 so k failures should be infinite.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(1)),
boost::math::tools::max_value<RealType>() );
BOOST_CHECK_EQUAL(
quantile(complement( // Q zero 1 so P == 1 < cdf(0) so should be exactly infinity.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0))),
boost::math::tools::max_value<RealType>());
}
BOOST_CHECK( // Should work for built-in and real_concept.
quantile(complement( // Q very near to 1 so P nearly 1 < so should be large > 384.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(boost::math::tools::min_value<RealType>())))
>= static_cast<RealType>(384) );
BOOST_CHECK_EQUAL(
quantile( // P == 0 < cdf(0) so should be zero.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(0)),
static_cast<RealType>(0));
// Quantile Complement boundary cases:
BOOST_CHECK_EQUAL(
quantile(complement( // Q = 1 so P = 0 < cdf(0) so should be exactly zero.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(1))),
static_cast<RealType>(0)
);
BOOST_CHECK_EQUAL(
quantile(complement( // Q very near 1 so P == epsilon < cdf(0) so should be exactly zero.
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(1 - boost::math::tools::epsilon<RealType>()))),
static_cast<RealType>(0)
);
// Check that duff arguments throw domain_error:
BOOST_CHECK_THROW(
pdf( // Negative successes!
negative_binomial_distribution<RealType>(static_cast<RealType>(-1), static_cast<RealType>(0.25)),
static_cast<RealType>(0)), std::domain_error
);
BOOST_CHECK_THROW(
pdf( // Negative success_fraction!
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
static_cast<RealType>(0)), std::domain_error
);
BOOST_CHECK_THROW(
pdf( // Success_fraction > 1!
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
static_cast<RealType>(0)),
std::domain_error
);
BOOST_CHECK_THROW(
pdf( // Negative k argument !
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(-1)),
std::domain_error
);
//BOOST_CHECK_THROW(
//pdf( // Unlike binomial there is NO limit on k (failures)
//negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
//static_cast<RealType>(9)), std::domain_error
//);
BOOST_CHECK_THROW(
cdf( // Negative k argument !
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(0.25)),
static_cast<RealType>(-1)),
std::domain_error
);
BOOST_CHECK_THROW(
cdf( // Negative success_fraction!
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
static_cast<RealType>(0)), std::domain_error
);
BOOST_CHECK_THROW(
cdf( // Success_fraction > 1!
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
static_cast<RealType>(0)), std::domain_error
);
BOOST_CHECK_THROW(
quantile( // Negative success_fraction!
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(-0.25)),
static_cast<RealType>(0)), std::domain_error
);
BOOST_CHECK_THROW(
quantile( // Success_fraction > 1!
negative_binomial_distribution<RealType>(static_cast<RealType>(8), static_cast<RealType>(1.25)),
static_cast<RealType>(0)), std::domain_error
);
// End of check throwing 'duff' out-of-domain values.
#define T RealType
#include "negative_binomial_quantile.ipp"
for(unsigned i = 0; i < negative_binomial_quantile_data.size(); ++i)
{
using namespace boost::math::policies;
typedef policy<discrete_quantile<boost::math::policies::real> > P1;
typedef policy<discrete_quantile<integer_round_down> > P2;
typedef policy<discrete_quantile<integer_round_up> > P3;
typedef policy<discrete_quantile<integer_round_outwards> > P4;
typedef policy<discrete_quantile<integer_round_inwards> > P5;
typedef policy<discrete_quantile<integer_round_nearest> > P6;
RealType tol = boost::math::tools::epsilon<RealType>() * 700;
if(!boost::is_floating_point<RealType>::value)
tol *= 10; // no lanczos approximation implies less accuracy
//
// Check full real value first:
//
negative_binomial_distribution<RealType, P1> p1(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
RealType x = quantile(p1, negative_binomial_quantile_data[i][2]);
BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][3], tol);
x = quantile(complement(p1, negative_binomial_quantile_data[i][2]));
BOOST_CHECK_CLOSE_FRACTION(x, negative_binomial_quantile_data[i][4], tol);
//
// Now with round down to integer:
//
negative_binomial_distribution<RealType, P2> p2(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
x = quantile(p2, negative_binomial_quantile_data[i][2]);
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3]));
x = quantile(complement(p2, negative_binomial_quantile_data[i][2]));
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4]));
//
// Now with round up to integer:
//
negative_binomial_distribution<RealType, P3> p3(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
x = quantile(p3, negative_binomial_quantile_data[i][2]);
BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][3]));
x = quantile(complement(p3, negative_binomial_quantile_data[i][2]));
BOOST_CHECK_EQUAL(x, ceil(negative_binomial_quantile_data[i][4]));
//
// Now with round to integer "outside":
//
negative_binomial_distribution<RealType, P4> p4(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
x = quantile(p4, negative_binomial_quantile_data[i][2]);
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][3]) : ceil(negative_binomial_quantile_data[i][3]));
x = quantile(complement(p4, negative_binomial_quantile_data[i][2]));
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][4]) : floor(negative_binomial_quantile_data[i][4]));
//
// Now with round to integer "inside":
//
negative_binomial_distribution<RealType, P5> p5(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
x = quantile(p5, negative_binomial_quantile_data[i][2]);
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? ceil(negative_binomial_quantile_data[i][3]) : floor(negative_binomial_quantile_data[i][3]));
x = quantile(complement(p5, negative_binomial_quantile_data[i][2]));
BOOST_CHECK_EQUAL(x, negative_binomial_quantile_data[i][2] < 0.5f ? floor(negative_binomial_quantile_data[i][4]) : ceil(negative_binomial_quantile_data[i][4]));
//
// Now with round to nearest integer:
//
negative_binomial_distribution<RealType, P6> p6(negative_binomial_quantile_data[i][0], negative_binomial_quantile_data[i][1]);
x = quantile(p6, negative_binomial_quantile_data[i][2]);
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][3] + 0.5f));
x = quantile(complement(p6, negative_binomial_quantile_data[i][2]));
BOOST_CHECK_EQUAL(x, floor(negative_binomial_quantile_data[i][4] + 0.5f));
}
return;
} // template <class RealType> void test_spots(RealType) // Any floating-point type RealType.
int test_main(int, char* [])
{
// Check that can generate negative_binomial distribution using the two convenience methods:
using namespace boost::math;
negative_binomial mynb1(2., 0.5); // Using typedef - default type is double.
negative_binomial_distribution<> myf2(2., 0.5); // Using default RealType double.
// Basic sanity-check spot values.
// Test some simple double only examples.
negative_binomial_distribution<double> my8dist(8., 0.25);
// 8 successes (r), 0.25 success fraction = 35% or 1 in 4 successes.
// Note: double values (matching the distribution definition) avoid the need for any casting.
// Check accessor functions return exact values for double at least.
BOOST_CHECK_EQUAL(my8dist.successes(), static_cast<double>(8));
BOOST_CHECK_EQUAL(my8dist.success_fraction(), static_cast<double>(1./4.));
// (Parameter value, arbitrarily zero, only communicates the floating point type).
#ifdef TEST_FLOAT
test_spots(0.0F); // Test float.
#endif
#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
} // int test_main(int, char* [])
/*
Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_negative_binomial.exe"
Running 1 test case...
Tolerance = 0.0119209%.
Tolerance 5 eps = 5.96046e-007%.
Tolerance = 2.22045e-011%.
Tolerance 5 eps = 1.11022e-015%.
Tolerance = 2.22045e-011%.
Tolerance 5 eps = 1.11022e-015%.
Tolerance = 2.22045e-011%.
Tolerance 5 eps = 1.11022e-015%.
*** No errors detected
*/
|