File: filter.cpp

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (208 lines) | stat: -rw-r--r-- 6,243 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/* Boost example/filter.cpp
 * two examples of filters for computing the sign of a determinant
 * the second filter is based on an idea presented in
 * "Interval arithmetic yields efficient dynamic filters for computational
 * geometry" by Brnnimann, Burnikel and Pion, 2001
 *
 * Copyright 2003 Guillaume Melquiond
 *
 * Distributed under the Boost Software License, Version 1.0.
 * (See accompanying file LICENSE_1_0.txt or
 * copy at http://www.boost.org/LICENSE_1_0.txt)
 */

#include <boost/numeric/interval.hpp>
#include <iostream>

namespace dummy {
  using namespace boost;
  using namespace numeric;
  using namespace interval_lib;
  typedef save_state<rounded_arith_opp<double> > R;
  typedef checking_no_nan<double, checking_no_empty<double> > P;
  typedef interval<double, policies<R, P> > I;
}

template<class T>
class vector {
  T* ptr;
public:
  vector(int d) { ptr = (T*)malloc(sizeof(T) * d); }
  ~vector() { free(ptr); }
  const T& operator[](int i) const { return ptr[i]; }
  T& operator[](int i) { return ptr[i]; }
};

template<class T>
class matrix {
  int dim;
  T* ptr;
public:
  matrix(int d): dim(d) { ptr = (T*)malloc(sizeof(T) * dim * dim); }
  ~matrix() { free(ptr); }
  int get_dim() const { return dim; }
  void assign(const matrix<T> &a) { memcpy(ptr, a.ptr, sizeof(T) * dim * dim); }
  const T* operator[](int i) const { return &(ptr[i * dim]); }
  T* operator[](int i) { return &(ptr[i * dim]); }
};

typedef dummy::I I_dbl;

/* compute the sign of a determinant using an interval LU-decomposition; the
   function answers 1 or -1 if the determinant is positive or negative (and
   more importantly, the result must be provable), or 0 if the algorithm was
   unable to get a correct sign */
int det_sign_algo1(const matrix<double> &a) {
  int dim = a.get_dim();
  vector<int> p(dim);
  for(int i = 0; i < dim; i++) p[i] = i;
  int sig = 1;
  I_dbl::traits_type::rounding rnd;
  typedef boost::numeric::interval_lib::unprotect<I_dbl>::type I;
  matrix<I> u(dim);
  for(int i = 0; i < dim; i++) {
    const double* line1 = a[i];
    I* line2 = u[i];
    for(int j = 0; j < dim; j++)
      line2[j] = line1[j];
  }
  // computation of L and U
  for(int i = 0; i < dim; i++) {
    // partial pivoting
    {
      int pivot = i;
      double max = 0;
      for(int j = i; j < dim; j++) {
        const I &v = u[p[j]][i];
        if (zero_in(v)) continue;
        double m = norm(v);
        if (m > max) { max = m; pivot = j; }
      }
      if (max == 0) return 0;
      if (pivot != i) {
        sig = -sig;
        int tmp = p[i];
        p[i] = p[pivot];
        p[pivot] = tmp;
      }
    }
    // U[i,?]
    {
      I *line1 = u[p[i]];
      const I &pivot = line1[i];
      if (boost::numeric::interval_lib::cerlt(pivot, 0.)) sig = -sig;
      for(int k = i + 1; k < dim; k++) {
        I *line2 = u[p[k]];
        I fact = line2[i] / pivot;
        for(int j = i + 1; j < dim; j++) line2[j] -= fact * line1[j];
      }
    }
  }
  return sig;
}

/* compute the sign of a determinant using a floating-point LU-decomposition
   and an a posteriori interval validation; the meaning of the answer is the
   same as previously */
int det_sign_algo2(const matrix<double> &a) {
  int dim = a.get_dim();
  vector<int> p(dim);
  for(int i = 0; i < dim; i++) p[i] = i;
  int sig = 1;
  matrix<double> lui(dim);
  {
    // computation of L and U
    matrix<double> lu(dim);
    lu.assign(a);
    for(int i = 0; i < dim; i++) {
      // partial pivoting
      {
        int pivot = i;
        double max = std::abs(lu[p[i]][i]);
        for(int j = i + 1; j < dim; j++) {
          double m = std::abs(lu[p[j]][i]);
          if (m > max) { max = m; pivot = j; }
        }
        if (max == 0) return 0;
        if (pivot != i) {
          sig = -sig;
          int tmp = p[i];
          p[i] = p[pivot];
          p[pivot] = tmp;
        }
      }
      // L[?,i] and U[i,?]
      {
        double *line1 = lu[p[i]];
        double pivot = line1[i];
        if (pivot < 0) sig = -sig;
        for(int k = i + 1; k < dim; k++) {
          double *line2 = lu[p[k]];
          double fact = line2[i] / pivot;
          line2[i] = fact;
          for(int j = i + 1; j < dim; j++) line2[j] -= line1[j] * fact;
        }
      }
    }

    // computation of approximate inverses: Li and Ui
    for(int j = 0; j < dim; j++) {
      for(int i = j + 1; i < dim; i++) {
        double *line = lu[p[i]];
        double s = - line[j];
        for(int k = j + 1; k < i; k++) s -= line[k] * lui[k][j];
        lui[i][j] = s;
      }
      lui[j][j] = 1 / lu[p[j]][j];
      for(int i = j - 1; i >= 0; i--) {
        double *line = lu[p[i]];
        double s = 0;
        for(int k = i + 1; k <= j; k++) s -= line[k] * lui[k][j];
        lui[i][j] = s / line[i];
      }
    }
  }

  // norm of PAUiLi-I computed with intervals
  {
    I_dbl::traits_type::rounding rnd;
    typedef boost::numeric::interval_lib::unprotect<I_dbl>::type I;
    vector<I> m1(dim);
    vector<I> m2(dim);
    for(int i = 0; i < dim; i++) {
      for(int j = 0; j < dim; j++) m1[j] = 0;
      const double *l1 = a[p[i]];
      for(int j = 0; j < dim; j++) {
        double v = l1[j];    // PA[i,j]
        double *l2 = lui[j]; // Ui[j,?]
        for(int k = j; k < dim; k++) {
          using boost::numeric::interval_lib::mul;
          m1[k] += mul<I>(v, l2[k]); // PAUi[i,k]
        }
      }
      for(int j = 0; j < dim; j++) m2[j] = m1[j]; // PAUi[i,j] * Li[j,j]
      for(int j = 1; j < dim; j++) {
        const I &v = m1[j];  // PAUi[i,j]
        double *l2 = lui[j]; // Li[j,?]
        for(int k = 0; k < j; k++)
          m2[k] += v * l2[k]; // PAUiLi[i,k]
      }
      m2[i] -= 1; // PAUiLi-I
      double ss = 0;
      for(int i = 0; i < dim; i++) ss = rnd.add_up(ss, norm(m2[i]));
      if (ss >= 1) return 0;
    }
  }
  return sig;
}

int main() {
  int dim = 20;
  matrix<double> m(dim);
  for(int i = 0; i < dim; i++) for(int j = 0; j < dim; j++)
    m[i][j] = /*1 / (i-j-0.001)*/ cos(1+i*sin(1 + j)) /*1./(1+i+j)*/;

  // compute the sign of the determinant of a "strange" matrix with the two
  // algorithms, the first should fail and the second succeed
  std::cout << det_sign_algo1(m) << " " << det_sign_algo2(m) << std::endl;
}