1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/* Boost test/add.cpp
* test with symbolic operations if the addition algorithm is correct
*
* Copyright 2002-2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <boost/numeric/interval/interval.hpp>
#include <boost/numeric/interval/arith.hpp>
#include <boost/numeric/interval/rounding.hpp>
#include <boost/numeric/interval/rounded_arith.hpp>
#include <boost/numeric/interval/utility.hpp>
#include <boost/numeric/interval/policies.hpp>
#include <boost/test/minimal.hpp>
#include "bugs.hpp"
typedef enum { EXPR_VAR, EXPR_NEG, EXPR_UP, EXPR_DOWN, EXPR_ADD, EXPR_SUB } e_type;
struct expr;
struct pexpr {
expr *ptr;
expr* operator->() { return ptr; }
pexpr(expr *p = NULL): ptr(p) { }
};
struct expr {
e_type type;
int var;
pexpr e;
pexpr e1, e2;
};
pexpr var(int v) {
pexpr e = new expr;
e->type = EXPR_VAR;
e->var = v;
return e;
}
pexpr operator+(pexpr, pexpr);
pexpr operator-(pexpr, pexpr);
pexpr operator-(pexpr);
pexpr operator+(pexpr a, pexpr b) {
if (a->type == EXPR_NEG) return b - a->e;
if (b->type == EXPR_NEG) return a - b->e;
if (a->type == EXPR_VAR && b->type == EXPR_VAR && a->var > b->var) return b + a;
pexpr c = new expr;
c->type = EXPR_ADD;
c->e1 = a;
c->e2 = b;
return c;
}
pexpr operator-(pexpr a, pexpr b) {
if (b->type == EXPR_NEG) return a + b->e;
pexpr c = new expr;
c->type = EXPR_SUB;
c->e1 = a;
c->e2 = b;
return c;
}
pexpr down(pexpr a) {
pexpr e = new expr;
e->type = EXPR_DOWN;
e->e = a;
return e;
}
pexpr up(pexpr a) {
pexpr e = new expr;
e->type = EXPR_UP;
e->e = a;
return e;
}
pexpr operator-(pexpr a) {
if (a->type == EXPR_NEG) return a->e;
if (a->type == EXPR_UP) return down(-a->e);
if (a->type == EXPR_DOWN) return up(-a->e);
if (a->type == EXPR_SUB) return a->e2 - a->e1;
if (a->type == EXPR_ADD) return -a->e1 - a->e2;
pexpr e = new expr;
e->type = EXPR_NEG;
e->e = a;
return e;
}
bool operator==(pexpr a, pexpr b) {
if (a->type != b->type) return false;
if (a->type == EXPR_VAR) return a->var == b->var;
if (a->type == EXPR_DOWN || a->type == EXPR_UP || a->type == EXPR_NEG)
return a->e == b->e;
return a->e1 == b->e1 && a->e2 == b->e2;
}
bool operator<=(pexpr, pexpr) { return true; }
namespace boost {
namespace numeric {
namespace interval_lib {
template<>
struct rounding_control<pexpr> {
typedef enum { RND_U, RND_M, RND_D } rounding_mode;
static rounding_mode mode;
rounding_control() { mode = RND_M; }
void get_rounding_mode(rounding_mode& m) { m = mode; }
void set_rounding_mode(rounding_mode m) { mode = m; }
void upward() { mode = RND_U; }
void downward() { mode = RND_D; }
pexpr force_rounding(pexpr a) {
switch (mode) {
case RND_U: return up(a);
case RND_D: return down(a);
default: throw "Unset rounding mode";
}
}
};
rounding_control<pexpr>::rounding_mode rounding_control<pexpr>::mode = RND_M;
} // namespace interval_lib
} // namespace numeric
} // namespace boost
template<class I>
bool test_neg() {
I a(var(0), var(1));
return equal(-a, I(-var(1), -var(0)));
}
template<class I>
bool test_add() {
I a(var(0), var(1)), b(var(2), var(3));
return equal(a + b, I(down(var(0) + var(2)), up(var(1) + var(3))));
}
template<class I>
bool test_add1() {
I a(var(0), var(1));
return equal(a + var(2), I(down(var(0) + var(2)), up(var(1) + var(2))));
}
template<class I>
bool test_add2() {
I a(var(0), var(1));
return equal(var(2) + a, I(down(var(0) + var(2)), up(var(1) + var(2))));
}
template<class I>
bool test_sub() {
I a(var(0), var(1)), b(var(2), var(3));
return equal(a - b, I(down(var(0) - var(3)), up(var(1) - var(2))));
}
template<class I>
bool test_sub1() {
I a(var(0), var(1));
return equal(a - var(2), I(down(var(0) - var(2)), up(var(1) - var(2))));
}
template<class I>
bool test_sub2() {
I a(var(0), var(1));
return equal(var(2) - a, I(down(var(2) - var(1)), up(var(2) - var(0))));
}
template<class I>
bool test_addeq() {
I a(var(0), var(1)), b(var(2), var(3));
return equal(a += b, I(down(var(0) + var(2)), up(var(1) + var(3))));
}
template<class I>
bool test_addeq1() {
I a(var(0), var(1));
return equal(a += var(2), I(down(var(0) + var(2)), up(var(1) + var(2))));
}
template<class I>
bool test_subeq() {
I a(var(0), var(1)), b(var(2), var(3));
return equal(a -= b, I(down(var(0) - var(3)), up(var(1) - var(2))));
}
template<class I>
bool test_subeq1() {
I a(var(0), var(1));
return equal(a -= var(2), I(down(var(0) - var(2)), up(var(1) - var(2))));
}
struct my_checking
{
static pexpr pos_inf() { throw; }
static pexpr neg_inf() { throw; }
static pexpr nan() { throw; }
static bool is_nan(const pexpr&) { return false; }
static pexpr empty_lower() { throw; }
static pexpr empty_upper() { throw; }
static bool is_empty(const pexpr&, const pexpr&) { return false; }
};
template<class Rounding>
struct my_interval {
private:
typedef boost::numeric::interval_lib::save_state<Rounding> my_rounding;
typedef boost::numeric::interval_lib::policies<my_rounding, my_checking> my_policies;
public:
typedef boost::numeric::interval<pexpr, my_policies> type;
};
int test_main(int, char *[]) {
typedef my_interval<boost::numeric::interval_lib::rounded_arith_std<pexpr> >::type I1;
typedef my_interval<boost::numeric::interval_lib::rounded_arith_opp<pexpr> >::type I2;
BOOST_CHECK((test_neg<I1>()));
BOOST_CHECK((test_neg<I2>()));
BOOST_CHECK((test_add<I1>()));
BOOST_CHECK((test_add<I2>()));
BOOST_CHECK((test_add1<I1>()));
BOOST_CHECK((test_add1<I2>()));
BOOST_CHECK((test_add2<I1>()));
BOOST_CHECK((test_add2<I2>()));
BOOST_CHECK((test_sub<I1>()));
BOOST_CHECK((test_sub<I2>()));
BOOST_CHECK((test_sub1<I1>()));
BOOST_CHECK((test_sub1<I2>()));
BOOST_CHECK((test_sub2<I1>()));
BOOST_CHECK((test_sub2<I2>()));
BOOST_CHECK((test_addeq<I1>()));
BOOST_CHECK((test_addeq<I2>()));
BOOST_CHECK((test_addeq1<I1>()));
BOOST_CHECK((test_addeq1<I2>()));
BOOST_CHECK((test_subeq<I1>()));
BOOST_CHECK((test_subeq<I2>()));
BOOST_CHECK((test_subeq1<I1>()));
BOOST_CHECK((test_subeq1<I2>()));
return 0;
}
|