1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
|
+++++++++++++++++++++++++++++++++++++++++++++++++
The Boost Parameter Library
+++++++++++++++++++++++++++++++++++++++++++++++++
|(logo)|__
.. |(logo)| image:: ../../../../boost.png
:alt: Boost
__ ../../../../index.htm
-------------------------------------
:Abstract: Use this library to write functions and class templates
that can accept arguments by name:
.. parsed-literal::
new_window("alert", **_width=10**, **_titlebar=false**);
smart_ptr<
Foo
, **deleter<Deallocate<Foo> >**
, **copy_policy<DeepCopy>** > p(new Foo);
Since named arguments can be passed in any order, they are
especially useful when a function or template has more than one
parameter with a useful default value. The library also supports
*deduced* parameters; that is to say, parameters whose identity
can be deduced from their types.
.. @jam_prefix.append('''
project test : requirements <include>. <source>/boost//headers ;''')
.. @example.prepend('''
#include <boost/parameter.hpp>
namespace test
{
BOOST_PARAMETER_NAME(title)
BOOST_PARAMETER_NAME(width)
BOOST_PARAMETER_NAME(titlebar)
BOOST_PARAMETER_FUNCTION(
(int), new_window, tag, (required (title,*)(width,*)(titlebar,*)))
{
return 0;
}
BOOST_PARAMETER_TEMPLATE_KEYWORD(deleter)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copy_policy)
template <class T> struct Deallocate {};
struct DeepCopy {};
namespace parameter = boost::parameter;
struct Foo {};
template <class T, class A0, class A1>
struct smart_ptr
{
smart_ptr(Foo*);
};
}
using namespace test;
int x = ''');
.. @test('compile')
-------------------------------------
:Authors: David Abrahams, Daniel Wallin
:Contact: dave@boost-consulting.com, dalwan01@student.umu.se
:Organization: `Boost Consulting`_
:Date: $Date: 2005/07/18 20:34:31 $
:Copyright: Copyright David Abrahams, Daniel Wallin 2005.
Distributed under the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt
or copy at http://www.boost.org/LICENSE_1_0.txt)
.. _`Boost Consulting`: http://www.boost-consulting.com
.. _concepts: http://www.boost.org/more/generic_programming.html#concept
-------------------------------------
.. contents:: **Table of Contents**
.. role:: concept
:class: concept
.. role:: vellipsis
:class: vellipsis
.. section-numbering::
-------------------------------------
============
Motivation
============
In C++, arguments_ are normally given meaning by their positions
with respect to a parameter_ list: the first argument passed maps
onto the first parameter in a function's definition, and so on.
That protocol is fine when there is at most one parameter with a
default value, but when there are even a few useful defaults, the
positional interface becomes burdensome:
* .. compound::
Since an argument's meaning is given by its position, we have to
choose an (often arbitrary) order for parameters with default
values, making some combinations of defaults unusable:
.. parsed-literal::
window* new_window(
char const* name,
**int border_width = default_border_width,**
bool movable = true,
bool initially_visible = true
);
const bool movability = false;
window* w = new_window("alert box", movability);
In the example above we wanted to make an unmoveable window
with a default ``border_width``, but instead we got a moveable
window with a ``border_width`` of zero. To get the desired
effect, we'd need to write:
.. parsed-literal::
window* w = new_window(
"alert box", **default_border_width**, movability);
* .. compound::
It can become difficult for readers to understand the meaning of
arguments at the call site::
window* w = new_window("alert", 1, true, false);
Is this window moveable and initially invisible, or unmoveable
and initially visible? The reader needs to remember the order
of arguments to be sure.
* The author of the call may not remember the order of the
arguments either, leading to hard-to-find bugs.
.. @ignore(3)
-------------------------
Named Function Parameters
-------------------------
.. compound::
This library addresses the problems outlined above by associating
each parameter name with a keyword object. Now users can identify
arguments by name, rather than by position:
.. parsed-literal::
window* w = new_window("alert box", **movable_=**\ false); // OK!
.. @ignore()
---------------------------
Deduced Function Parameters
---------------------------
.. compound::
A **deduced parameter** can be passed in any position *without*
supplying an explicit parameter name. It's not uncommon for a
function to have parameters that can be uniquely identified based
on the types of arguments passed. The ``name`` parameter to
``new_window`` is one such example. None of the other arguments,
if valid, can reasonably be converted to a ``char const*``. With
a deduced parameter interface, we could pass the window name in
*any* argument position without causing ambiguity:
.. parsed-literal::
window* w = new_window(movable_=false, **"alert box"**); // OK!
window* w = new_window(**"alert box"**, movable_=false); // OK!
Appropriately used, a deduced parameter interface can free the
user of the burden of even remembering the formal parameter
names.
.. @ignore()
--------------------------------
Class Template Parameter Support
--------------------------------
.. compound::
The reasoning we've given for named and deduced parameter
interfaces applies equally well to class templates as it does to
functions. Using the Parameter library, we can create interfaces
that allow template arguments (in this case ``shared`` and
``Client``) to be explicitly named, like this:
.. parsed-literal::
smart_ptr<**ownership<shared>**, **value_type<Client>** > p;
The syntax for passing named template arguments is not quite as
natural as it is for function arguments (ideally, we'd be able to
write ``smart_ptr<ownership=shared,…>``). This small syntactic
deficiency makes deduced parameters an especially big win when
used with class templates:
.. parsed-literal::
// *p and q could be equivalent, given a deduced*
// *parameter interface.*
smart_ptr<**shared**, **Client**> p;
smart_ptr<**Client**, **shared**> q;
.. @ignore(2)
==========
Tutorial
==========
This tutorial shows all the basics—how to build both named- and deduced-parameter
interfaces to function templates and class templates—and several
more advanced idioms as well.
---------------------------
Parameter-Enabled Functions
---------------------------
In this section we'll show how the Parameter library can be used to
build an expressive interface to the `Boost Graph library`__\ 's
|dfs|_ algorithm. [#old_interface]_
.. Revisit this
After laying some groundwork
and describing the algorithm's abstract interface, we'll show you
how to build a basic implementation with keyword support. Then
we'll add support for default arguments and we'll gradually refine the
implementation with syntax improvements. Finally we'll show how to
streamline the implementation of named parameter interfaces,
improve their participation in overload resolution, and optimize
their runtime efficiency.
__ ../../../graph/index.html
.. _dfs: ../../../graph/doc/depth_first_search.html
.. |dfs| replace:: ``depth_first_search``
Headers And Namespaces
======================
Most components of the Parameter library are declared in a
header named for the component. For example, ::
#include <boost/parameter/keyword.hpp>
will ensure ``boost::parameter::keyword`` is known to the
compiler. There is also a combined header,
``boost/parameter.hpp``, that includes most of the library's
components. For the the rest of this tutorial, unless we say
otherwise, you can use the rule above to figure out which header
to ``#include`` to access any given component of the library.
.. @example.append('''
using boost::parameter::keyword;
''')
.. @test('compile')
Also, the examples below will also be written as if the
namespace alias ::
namespace parameter = boost::parameter;
.. @ignore()
has been declared: we'll write ``parameter::xxx`` instead of
``boost::parameter::xxx``.
The Abstract Interface to |dfs|
===============================
The Graph library's |dfs| algorithm is a generic function accepting
from one to four arguments by reference. If all arguments were
required, its signature might be as follows::
template <
class Graph, class DFSVisitor, class Index, class ColorMap
>
void depth_first_search(
, Graph const& graph
, DFSVisitor visitor
, typename graph_traits<g>::vertex_descriptor root_vertex
, IndexMap index_map
, ColorMap& color);
.. @ignore()
However, most of the parameters have a useful default value, as
shown in the table below.
.. _`parameter table`:
.. _`default expressions`:
.. table:: ``depth_first_search`` Parameters
+----------------+----------+---------------------------------+----------------------------------+
| Parameter Name | Dataflow | Type | Default Value (if any) |
+================+==========+=================================+==================================+
|``graph`` | in |Model of |IncidenceGraph|_ and |none - this argument is required. |
| | ||VertexListGraph|_ | |
| | | | |
+----------------+----------+---------------------------------+----------------------------------+
|``visitor`` | in |Model of |DFSVisitor|_ |``boost::dfs_visitor<>()`` |
+----------------+----------+---------------------------------+----------------------------------+
|``root_vertex`` | in |``graph``'s vertex descriptor |``*vertices(graph).first`` |
| | |type. | |
+----------------+----------+---------------------------------+----------------------------------+
|``index_map`` | in |Model of |ReadablePropertyMap|_ |``get(boost::vertex_index,graph)``|
| | |with key type := ``graph``'s | |
| | |vertex descriptor and value type | |
| | |an integer type. | |
+----------------+----------+---------------------------------+----------------------------------+
|``color_map`` | in/out |Model of |ReadWritePropertyMap|_ |an ``iterator_property_map`` |
| | |with key type := ``graph``'s |created from a ``std::vector`` of |
| | |vertex descriptor type. |``default_color_type`` of size |
| | | |``num_vertices(graph)`` and using |
| | | |``index_map`` for the index map. |
+----------------+----------+---------------------------------+----------------------------------+
.. |IncidenceGraph| replace:: :concept:`Incidence Graph`
.. |VertexListGraph| replace:: :concept:`Vertex List Graph`
.. |DFSVisitor| replace:: :concept:`DFS Visitor`
.. |ReadablePropertyMap| replace:: :concept:`Readable Property Map`
.. |ReadWritePropertyMap| replace:: :concept:`Read/Write Property Map`
.. _`IncidenceGraph`: ../../../graph/doc/IncidenceGraph.html
.. _`VertexListGraph`: ../../../graph/doc/VertexListGraph.html
.. _`DFSVisitor`: ../../../graph/doc/DFSVisitor.html
.. _`ReadWritePropertyMap`: ../../../property_map/ReadWritePropertyMap.html
.. _`ReadablePropertyMap`: ../../../property_map/ReadablePropertyMap.html
Don't be intimidated by the information in the second and third
columns above. For the purposes of this exercise, you don't need
to understand them in detail.
Defining the Keywords
=====================
The point of this exercise is to make it possible to call
``depth_first_search`` with named arguments, leaving out any
arguments for which the default is appropriate:
.. parsed-literal::
graphs::depth_first_search(g, **color_map_=my_color_map**);
.. @ignore()
To make that syntax legal, there needs to be an object called
“\ ``color_map_``\ ” whose assignment operator can accept a
``my_color_map`` argument. In this step we'll create one such
**keyword object** for each parameter. Each keyword object will be
identified by a unique **keyword tag type**.
.. Revisit this
We're going to define our interface in namespace ``graphs``. Since
users need access to the keyword objects, but not the tag types,
we'll define the keyword objects so they're accessible through
``graphs``, and we'll hide the tag types away in a nested
namespace, ``graphs::tag``. The library provides a convenient
macro for that purpose.
We're going to define our interface in namespace ``graphs``. The
library provides a convenient macro for defining keyword objects::
#include <boost/parameter/name.hpp>
namespace graphs
{
BOOST_PARAMETER_NAME(graph) // Note: no semicolon
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(root_vertex)
BOOST_PARAMETER_NAME(index_map)
BOOST_PARAMETER_NAME(color_map)
}
.. @test('compile')
The declaration of the ``graph`` keyword you see here is
equivalent to::
namespace graphs
{
namespace tag { struct graph; } // keyword tag type
namespace // unnamed
{
// A reference to the keyword object
boost::parameter::keyword<tag::graph>& _graph
= boost::parameter::keyword<tag::graph>::get();
}
}
.. @example.prepend('#include <boost/parameter/keyword.hpp>')
.. @test('compile')
It defines a *keyword tag type* named ``tag::graph`` and a *keyword
object* reference named ``_graph``.
This “fancy dance” involving an unnamed namespace and references
is all done to avoid violating the One Definition Rule (ODR)
[#odr]_ when the named parameter interface is used by function
templates that are instantiated in multiple translation
units (MSVC6.x users see `this note`__).
__ `Compiler Can't See References In Unnamed Namespace`_
Writing the Function
====================
Now that we have our keywords defined, the function template
definition follows a simple pattern using the
``BOOST_PARAMETER_FUNCTION`` macro::
#include <boost/parameter/preprocessor.hpp>
namespace graphs
{
BOOST_PARAMETER_FUNCTION(
(void), // 1. parenthesized return type
depth_first_search, // 2. name of the function template
tag, // 3. namespace of tag types
(required (graph, *) ) // 4. one required parameter, and
(optional // four optional parameters, with defaults
(visitor, *, boost::dfs_visitor<>())
(root_vertex, *, *vertices(graph).first)
(index_map, *, get(boost::vertex_index,graph))
(in_out(color_map), *,
default_color_map(num_vertices(graph), index_map) )
)
)
{
// ... body of function goes here...
// use graph, visitor, index_map, and color_map
}
}
.. @example.prepend('''
#include <boost/parameter/name.hpp>
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(root_vertex)
BOOST_PARAMETER_NAME(index_map)
BOOST_PARAMETER_NAME(color_map)
namespace boost {
template <class T = int>
struct dfs_visitor
{};
int vertex_index = 0;
}''')
.. @test('compile')
The arguments to ``BOOST_PARAMETER_FUNCTION`` are:
1. The return type of the resulting function template. Parentheses
around the return type prevent any commas it might contain from
confusing the preprocessor, and are always required.
2. The name of the resulting function template.
3. The name of a namespace where we can find tag types whose names
match the function's parameter names.
4. The function signature.
Function Signatures
===================
Function signatures are described as one or two adjacent
parenthesized terms (a Boost.Preprocessor_ sequence_) describing
the function's parameters in the order in which they'd be expected
if passed positionally. Any required parameters must come first,
but the ``(required … )`` clause can be omitted when all the
parameters are optional.
.. _Boost.Preprocessor: ../../../preprocessor/index.html
Required Parameters
-------------------
.. compound::
Required parameters are given first—nested in a ``(required … )``
clause—as a series of two-element tuples describing each parameter
name and any requirements on the argument type. In this case there
is only a single required parameter, so there's just a single
tuple:
.. parsed-literal::
(required **(graph, \*)** )
Since ``depth_first_search`` doesn't require any particular type
for its ``graph`` parameter, we use an asterix to indicate that
any type is allowed. Required parameters must always precede any
optional parameters in a signature, but if there are *no*
required parameters, the ``(required … )`` clause can be omitted
entirely.
.. @example.prepend('''
#include <boost/parameter.hpp>
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_FUNCTION((void), f, tag,
''')
.. @example.append(') {}')
.. @test('compile')
Optional Parameters
-------------------
.. compound::
Optional parameters—nested in an ``(optional … )`` clause—are given
as a series of adjacent *three*\ -element tuples describing the
parameter name, any requirements on the argument type, *and* and an
expression representing the parameter's default value:
.. parsed-literal::
(optional **\
(visitor, \*, boost::dfs_visitor<>())
(root_vertex, \*, \*vertices(graph).first)
(index_map, \*, get(boost::vertex_index,graph))
(in_out(color_map), \*,
default_color_map(num_vertices(graph), index_map) )**
)
.. @example.prepend('''
#include <boost/parameter.hpp>
namespace boost
{
int vertex_index = 0;
template <class T = int>
struct dfs_visitor
{};
}
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(root_vertex)
BOOST_PARAMETER_NAME(index_map)
BOOST_PARAMETER_NAME(color_map)
BOOST_PARAMETER_FUNCTION((void), f, tag,
(required (graph, *))
''')
.. @example.append(') {}')
.. @test('compile')
Handling “Out” Parameters
-------------------------
.. compound::
Within the function body, a parameter name such as ``visitor`` is
a *C++ reference*, bound either to an actual argument passed by
the caller or to the result of evaluating a default expression.
In most cases, parameter types are of the form ``T const&`` for
some ``T``. Parameters whose values are expected to be modified,
however, must be passed by reference to *non*\ -``const``. To
indicate that ``color_map`` is both read and written, we wrap
its name in ``in_out(…)``:
.. parsed-literal::
(optional
(visitor, \*, boost::dfs_visitor<>())
(root_vertex, \*, \*vertices(graph).first)
(index_map, \*, get(boost::vertex_index,graph))
(**in_out(color_map)**, \*,
default_color_map(num_vertices(graph), index_map) )
)
.. @example.prepend('''
#include <boost/parameter.hpp>
namespace boost
{
int vertex_index = 0;
template <class T = int>
struct dfs_visitor
{};
}
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(root_vertex)
BOOST_PARAMETER_NAME(index_map)
BOOST_PARAMETER_NAME(color_map)
BOOST_PARAMETER_FUNCTION((void), f, tag,
(required (graph, *))
''')
.. @example.append(') {}')
.. @test('compile')
If ``color_map`` were strictly going to be modified but not examined,
we could have written ``out(color_map)``. There is no functional
difference between ``out`` and ``in_out``; the library provides
both so you can make your interfaces more self-documenting.
Positional Arguments
--------------------
When arguments are passed positionally (without the use of
keywords), they will be mapped onto parameters in the order the
parameters are given in the signature, so for example in this
call ::
graphs::depth_first_search(x, y);
.. @ignore()
``x`` will always be interpreted as a graph and ``y`` will always
be interpreted as a visitor.
.. _sequence: http://boost-consulting.com/mplbook/preprocessor.html#sequences
Default Expression Evaluation
-----------------------------
.. compound::
Note that in our example, the value of the graph parameter is
used in the default expressions for ``root_vertex``,
``index_map`` and ``color_map``.
.. parsed-literal::
(required (**graph**, \*) )
(optional
(visitor, \*, boost::dfs_visitor<>())
(root_vertex, \*, \*vertices(**graph**).first)
(index_map, \*, get(boost::vertex_index,\ **graph**))
(in_out(color_map), \*,
default_color_map(num_vertices(**graph**), index_map) )
)
.. @ignore()
A default expression is evaluated in the context of all preceding
parameters, so you can use any of their values by name.
.. compound::
A default expression is never evaluated—or even instantiated—if
an actual argument is passed for that parameter. We can actually
demonstrate that with our code so far by replacing the body of
``depth_first_search`` with something that prints the arguments:
.. parsed-literal::
#include <boost/graph/depth_first_search.hpp> // for dfs_visitor
BOOST_PARAMETER_FUNCTION(
(void), depth_first_search, tag
*…signature goes here…*
)
{
std::cout << "graph=" << graph << std::endl;
std::cout << "visitor=" << visitor << std::endl;
std::cout << "root_vertex=" << root_vertex << std::endl;
std::cout << "index_map=" << index_map << std::endl;
std::cout << "color_map=" << color_map << std::endl;
}
int main()
{
depth_first_search(1, 2, 3, 4, 5);
depth_first_search(
"1", '2', _color_map = '5',
_index_map = "4", _root_vertex = "3");
}
Despite the fact that default expressions such as
``vertices(graph).first`` are ill-formed for the given ``graph``
arguments, both calls will compile, and each one will print
exactly the same thing.
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>
BOOST_PARAMETER_NAME(graph)
BOOST_PARAMETER_NAME(visitor)
BOOST_PARAMETER_NAME(root_vertex)
BOOST_PARAMETER_NAME(index_map)
BOOST_PARAMETER_NAME(color_map)''')
.. @example.replace_emphasis('''
, (required
(graph, *)
(visitor, *)
(root_vertex, *)
(index_map, *)
(color_map, *)
)
''')
.. @test('compile')
Signature Matching and Overloading
----------------------------------
In fact, the function signature is so general that any call to
``depth_first_search`` with fewer than five arguments will match
our function, provided we pass *something* for the required
``graph`` parameter. That might not seem to be a problem at first;
after all, if the arguments don't match the requirements imposed by
the implementation of ``depth_first_search``, a compilation error
will occur later, when its body is instantiated.
There are at least three problems with very general function
signatures.
1. By the time our ``depth_first_search`` is instantiated, it has
been selected as the best matching overload. Some other
``depth_first_search`` overload might've worked had it been
chosen instead. By the time we see a compilation error, there's
no chance to change that decision.
2. Even if there are no overloads, error messages generated at
instantiation time usually expose users to confusing
implementation details. For example, users might see references
to names generated by ``BOOST_PARAMETER_FUNCTION`` such as
``graphs::detail::depth_first_search_with_named_params`` (or
worse—think of the kinds of errors you get from your STL
implementation when you make a mistake). [#ConceptCpp]_
3. The problems with exposing such permissive function template
signatures have been the subject of much discussion, especially
in the presence of `unqualified calls`__. If all we want is to
avoid unintentional argument-dependent lookup (ADL), we can
isolate ``depth_first_search`` in a namespace containing no
types [#using]_, but suppose we *want* it to found via ADL?
__ http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#225
It's usually a good idea to prevent functions from being considered
for overload resolution when the passed argument types aren't
appropriate. The library already does this when the required
``graph`` parameter is not supplied, but we're not likely to see a
depth first search that doesn't take a graph to operate on.
Suppose, instead, that we found a different depth first search
algorithm that could work on graphs that don't model
|IncidenceGraph|_? If we just added a simple overload,
it would be ambiguous::
// new overload
BOOST_PARAMETER_FUNCTION(
(void), depth_first_search, (tag), (required (graph,*))( … ))
{
// new algorithm implementation
}
…
// ambiguous!
depth_first_search(boost::adjacency_list<>(), 2, "hello");
.. @ignore()
Adding Type Requirements
........................
We really don't want the compiler to consider the original version
of ``depth_first_search`` because the ``root_vertex`` argument,
``"hello"``, doesn't meet the requirement__ that it match the
``graph`` parameter's vertex descriptor type. Instead, this call
should just invoke our new overload. To take the original
``depth_first_search`` overload out of contention, we need to tell
the library about this requirement by replacing the ``*`` element
of the signature with the required type, in parentheses:
__ `parameter table`_
.. parsed-literal::
(root_vertex,
**(typename boost::graph_traits<graph_type>::vertex_descriptor)**,
\*vertices(graph).first)
.. @ignore()
Now the original ``depth_first_search`` will only be called when
the ``root_vertex`` argument can be converted to the graph's vertex
descriptor type, and our example that *was* ambiguous will smoothly
call the new overload.
.. Note:: The *type* of the ``graph`` argument is available in the
signature—and in the function body—as ``graph_type``. In
general, to access the type of any parameter *foo*, write *foo*\
``_type``.
Predicate Requirements
......................
The requirements on other arguments are a bit more interesting than
those on ``root_vertex``; they can't be described in terms of simple
type matching. Instead, they must be described in terms of `MPL
Metafunctions`__. There's no space to give a complete description
of metafunctions or of graph library details here, but we'll show
you the complete signature with maximal checking, just to give you
a feel for how it's done. Each predicate metafunction is enclosed
in parentheses *and preceded by an asterix*, as follows:
.. parsed-literal::
BOOST_PARAMETER_FUNCTION(
(void), depth_first_search, graphs
, (required
(graph
, **\ \*(boost::mpl::and_<
boost::is_convertible<
boost::graph_traits<_>::traversal_category
, boost::incidence_graph_tag
>
, boost::is_convertible<
boost::graph_traits<_>::traversal_category
, boost::vertex_list_graph_tag
>
>)** ))
(optional
(visitor, \*, boost::dfs_visitor<>()) // not checkable
(root_vertex
, (typename boost::graph_traits<graphs::graph::_>::vertex_descriptor)
, \*vertices(graph).first)
(index_map
, **\ \*(boost::mpl::and_<
boost::is_integral<
boost::property_traits<_>::value_type
>
, boost::is_same<
typename boost::graph_traits<graphs::graph::_>::vertex_descriptor
, boost::property_traits<_>::key_type
>
>)**
, get(boost::vertex_index,graph))
(in_out(color_map)
, **\ \*(boost::is_same<
typename boost::graph_traits<graphs::graph::_>::vertex_descriptor
, boost::property_traits<_>::key_type
>)**
, default_color_map(num_vertices(graph), index_map) )
)
)
.. @example.prepend('''
#include <boost/parameter.hpp>
BOOST_PARAMETER_NAME((_graph, graphs) graph)
BOOST_PARAMETER_NAME((_visitor, graphs) visitor)
BOOST_PARAMETER_NAME((_root_vertex, graphs) root_vertex)
BOOST_PARAMETER_NAME((_index_map, graphs) index_map)
BOOST_PARAMETER_NAME((_color_map, graphs) color_map)
using boost::mpl::_;
namespace boost
{
struct incidence_graph_tag {};
struct vertex_list_graph_tag {};
int vertex_index = 0;
template <class T>
struct graph_traits
{
typedef int traversal_category;
typedef int vertex_descriptor;
};
template <class T>
struct property_traits
{
typedef int value_type;
typedef int key_type;
};
template <class T = int>
struct dfs_visitor
{};
}''')
.. @example.append('''
{}''')
.. @test('compile')
__ ../../../mpl/doc/refmanual/metafunction.html
We acknowledge that this signature is pretty hairy looking.
Fortunately, it usually isn't necessary to so completely encode the
type requirements on arguments to generic functions. However, it
is usally worth the effort to do so: your code will be more
self-documenting and will often provide a better user experience.
You'll also have an easier transition to an upcoming C++ standard
with `language support for concepts`__.
__ `ConceptC++`_
Deduced Parameters
------------------
To illustrate deduced parameter support we'll have to leave behind
our example from the Graph library. Instead, consider the example
of the |def|_ function from Boost.Python_. Its signature is
roughly as follows::
template <
class Function, Class KeywordExpression, class CallPolicies
>
void def(
// Required parameters
char const* name, Function func
// Optional, deduced parameters
, char const* docstring = ""
, KeywordExpression keywords = no_keywords()
, CallPolicies policies = default_call_policies()
);
.. @ignore()
Try not to be too distracted by the use of the term “keywords” in
this example: although it means something analogous in Boost.Python
to what it means in the Parameter library, for the purposes of this
exercise you can think of it as being completely different.
When calling ``def``, only two arguments are required. The
association between any additional arguments and their parameters
can be determined by the types of the arguments actually passed, so
the caller is neither required to remember argument positions or
explicitly specify parameter names for those arguments. To
generate this interface using ``BOOST_PARAMETER_FUNCTION``, we need
only enclose the deduced parameters in a ``(deduced …)`` clause, as
follows:
.. parsed-literal::
namespace mpl = boost::mpl;
BOOST_PARAMETER_FUNCTION(
(void), def, tag,
(required (name,(char const\*)) (func,\*) ) // nondeduced
**(deduced**
(optional
(docstring, (char const\*), "")
(keywords
, \*(is_keyword_expression<mpl::_>) // see [#is_keyword_expression]_
, no_keywords())
(policies
, \*(mpl::not_<
mpl::or_<
boost::is_convertible<mpl::_, char const\*>
, is_keyword_expression<mpl::_> // see [#is_keyword_expression]_
>
>)
, default_call_policies()
)
)
**)**
)
{
*…*
}
.. @example.replace_emphasis('')
.. @example.prepend('''
#include <boost/parameter.hpp>
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(func)
BOOST_PARAMETER_NAME(docstring)
BOOST_PARAMETER_NAME(keywords)
BOOST_PARAMETER_NAME(policies)
struct default_call_policies
{};
struct no_keywords
{};
struct keywords
{};
template <class T>
struct is_keyword_expression
: boost::mpl::false_
{};
template <>
struct is_keyword_expression<keywords>
: boost::mpl::true_
{};
default_call_policies some_policies;
void f()
{}
''')
.. Admonition:: Syntax Note
A ``(deduced …)`` clause always contains a ``(required …)``
and/or an ``(optional …)`` subclause, and must follow any
``(required …)`` or ``(optional …)`` clauses indicating
nondeduced parameters at the outer level.
With the declaration above, the following two calls are equivalent:
.. parsed-literal::
def("f", &f, **some_policies**, **"Documentation for f"**);
def("f", &f, **"Documentation for f"**, **some_policies**);
.. @example.prepend('''
int main()
{''')
If the user wants to pass a ``policies`` argument that was also,
for some reason, convertible to ``char const*``, she can always
specify the parameter name explicitly, as follows:
.. parsed-literal::
def(
"f", &f
, **_policies = some_policies**, "Documentation for f");
.. @example.append('}')
.. @test('compile', howmany='all')
.. _Boost.Python: ../../../python/doc/index.html
.. |def| replace:: ``def``
.. _def: ../../../python/doc/v2/def.html
----------------------------------
Parameter-Enabled Member Functions
----------------------------------
The ``BOOST_PARAMETER_MEMBER_FUNCTION`` and
``BOOST_PARAMETER_CONST_MEMBER_FUNCTION`` macros accept exactly the
same arguments as ``BOOST_PARAMETER_FUNCTION``, but are designed to
be used within the body of a class::
BOOST_PARAMETER_NAME(arg1)
BOOST_PARAMETER_NAME(arg2)
struct callable2
{
BOOST_PARAMETER_CONST_MEMBER_FUNCTION(
(void), operator(), tag, (required (arg1,(int))(arg2,(int))))
{
std::cout << arg1 << ", " << arg2 << std::endl;
}
};
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>''')
.. @test('compile')
These macros don't directly allow a function's interface to be
separated from its implementation, but you can always forward
arguments on to a separate implementation function::
struct callable2
{
BOOST_PARAMETER_CONST_MEMBER_FUNCTION(
(void), operator(), tag, (required (arg1,(int))(arg2,(int))))
{
call_impl(arg1,arg2);
}
private:
void call_impl(int, int); // implemented elsewhere.
};
.. @example.prepend('''
#include <boost/parameter.hpp>
BOOST_PARAMETER_NAME(arg1)
BOOST_PARAMETER_NAME(arg2)''')
.. @test('compile')
------------------------------
Parameter-Enabled Constructors
------------------------------
The lack of a “delegating constructor”
feature in C++
(http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf)
limits somewhat the quality of interface this library can provide
for defining parameter-enabled constructors. The usual workaround
for a lack of constructor delegation applies: one must factor the
common logic into a base class.
Let's build a parameter-enabled constructor that simply prints its
arguments. The first step is to write a base class whose
constructor accepts a single argument known as an |ArgumentPack|_:
a bundle of references to the actual arguments, tagged with their
keywords. The values of the actual arguments are extracted from
the |ArgumentPack| by *indexing* it with keyword objects::
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)
struct myclass_impl
{
template <class ArgumentPack>
myclass_impl(ArgumentPack const& args)
{
std::cout << "name = " << args[_name]
<< "; index = " << args[_index | 42]
<< std::endl;
}
};
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>''')
Note that the bitwise or (“\ ``|``\ ”) operator has a special
meaning when applied to keyword objects that are passed to an
|ArgumentPack|\ 's indexing operator: it is used to indicate a
default value. In this case if there is no ``index`` parameter in
the |ArgumentPack|, ``42`` will be used instead.
Now we are ready to write the parameter-enabled constructor
interface::
struct myclass : myclass_impl
{
BOOST_PARAMETER_CONSTRUCTOR(
myclass, (myclass_impl), tag
, (required (name,*)) (optional (index,*))) // no semicolon
};
Since we have supplied a default value for ``index`` but not for
``name``, only ``name`` is required. We can exercise our new
interface as follows::
myclass x("bob", 3); // positional
myclass y(_index = 12, _name = "sally"); // named
myclass z("june"); // positional/defaulted
.. @example.wrap('int main() {', '}')
.. @test('run', howmany='all')
For more on |ArgumentPack| manipulation, see the `Advanced Topics`_
section.
---------------------------------
Parameter-Enabled Class Templates
---------------------------------
In this section we'll use Boost.Parameter to build Boost.Python_\
's `class_`_ template, whose “signature” is:
.. parsed-literal::
template class<
ValueType, BaseList = bases<>
, HeldType = ValueType, Copyable = void
>
class class\_;
.. @ignore()
Only the first argument, ``ValueType``, is required.
.. _class_: http://www.boost.org/libs/python/doc/v2/class.html#class_-spec
Named Template Parameters
=========================
First, we'll build an interface that allows users to pass arguments
positionally or by name:
.. parsed-literal::
struct B { virtual ~B() = 0; };
struct D : B { ~D(); };
class_<
**class_type<B>**, **copyable<boost::noncopyable>**
> …;
class_<
**D**, **held_type<std::auto_ptr<D> >**, **base_list<bases<B> >**
> …;
.. @ignore()
Template Keywords
-----------------
The first step is to define keywords for each template parameter::
namespace boost { namespace python {
BOOST_PARAMETER_TEMPLATE_KEYWORD(class_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(base_list)
BOOST_PARAMETER_TEMPLATE_KEYWORD(held_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copyable)
}}
.. @example.prepend('#include <boost/parameter.hpp>')
.. @test('compile')
The declaration of the ``class_type`` keyword you see here is
equivalent to::
namespace boost { namespace python {
namespace tag { struct class_type; } // keyword tag type
template <class T>
struct class_type
: parameter::template_keyword<tag::class_type,T>
{};
}}
.. @example.prepend('#include <boost/parameter.hpp>')
.. @test('compile')
It defines a keyword tag type named ``tag::class_type`` and a
*parameter passing template* named ``class_type``.
Class Template Skeleton
-----------------------
The next step is to define the skeleton of our class template,
which has three optional parameters. Because the user may pass
arguments in any order, we don't know the actual identities of
these parameters, so it would be premature to use descriptive names
or write out the actual default values for any of them. Instead,
we'll give them generic names and use the special type
``boost::parameter::void_`` as a default:
.. parsed-literal::
namespace boost { namespace python {
template <
class A0
, class A1 = parameter::void\_
, class A2 = parameter::void\_
, class A3 = parameter::void\_
>
struct class\_
{
*…*
};
}}
.. @example.prepend('#include <boost/parameter.hpp>')
.. @example.replace_emphasis('')
.. @test('compile')
Class Template Signatures
-------------------------
Next, we need to build a type, known as a |ParameterSpec|_,
describing the “signature” of ``boost::python::class_``. A
|ParameterSpec|_ enumerates the required and optional parameters in
their positional order, along with any type requirements (note that
it does *not* specify defaults -- those will be dealt with
separately)::
namespace boost { namespace python {
using boost::mpl::_;
typedef parameter::parameters<
required<tag::class_type, is_class<_> >
, optional<tag::base_list, mpl::is_sequence<_> >
, optional<tag::held_type>
, optional<tag::copyable>
> class_signature;
}}
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <boost/mpl/is_sequence.hpp>
#include <boost/noncopyable.hpp>
#include <memory>
using namespace boost::parameter;
namespace boost { namespace python {
BOOST_PARAMETER_TEMPLATE_KEYWORD(class_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(base_list)
BOOST_PARAMETER_TEMPLATE_KEYWORD(held_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copyable)
template <class B = int>
struct bases
{};
}}''')
.. |ParameterSpec| replace:: :concept:`ParameterSpec`
.. _ParameterSpec: reference.html#parameterspec
.. _binding_intro:
Argument Packs and Parameter Extraction
---------------------------------------
Next, within the body of ``class_`` , we use the |ParameterSpec|\
's nested ``::bind< … >`` template to bundle the actual arguments
into an |ArgumentPack|_ type, and then use the library's ``binding<
… >`` metafunction to extract “logical parameters”. Note that
defaults are specified by supplying an optional third argument to
``binding< … >``::
namespace boost { namespace python {
template <
class A0
, class A1 = parameter::void_
, class A2 = parameter::void_
, class A3 = parameter::void_
>
struct class_
{
// Create ArgumentPack
typedef typename
class_signature::bind<A0,A1,A2,A3>::type
args;
// Extract first logical parameter.
typedef typename parameter::binding<
args, tag::class_type>::type class_type;
typedef typename parameter::binding<
args, tag::base_list, bases<> >::type base_list;
typedef typename parameter::binding<
args, tag::held_type, class_type>::type held_type;
typedef typename parameter::binding<
args, tag::copyable, void>::type copyable;
};
}}
.. |ArgumentPack| replace:: :concept:`ArgumentPack`
.. _ArgumentPack: reference.html#argumentpack
Exercising the Code So Far
==========================
.. compound::
Revisiting our original examples, ::
typedef boost::python::class_<
class_type<B>, copyable<boost::noncopyable>
> c1;
typedef boost::python::class_<
D, held_type<std::auto_ptr<D> >, base_list<bases<B> >
> c2;
.. @example.prepend('''
using boost::python::class_type;
using boost::python::copyable;
using boost::python::held_type;
using boost::python::base_list;
using boost::python::bases;
struct B {};
struct D {};''')
we can now examine the intended parameters::
BOOST_MPL_ASSERT((boost::is_same<c1::class_type, B>));
BOOST_MPL_ASSERT((boost::is_same<c1::base_list, bases<> >));
BOOST_MPL_ASSERT((boost::is_same<c1::held_type, B>));
BOOST_MPL_ASSERT((
boost::is_same<c1::copyable, boost::noncopyable>
));
BOOST_MPL_ASSERT((boost::is_same<c2::class_type, D>));
BOOST_MPL_ASSERT((boost::is_same<c2::base_list, bases<B> >));
BOOST_MPL_ASSERT((
boost::is_same<c2::held_type, std::auto_ptr<D> >
));
BOOST_MPL_ASSERT((boost::is_same<c2::copyable, void>));
.. @test('compile', howmany='all')
Deduced Template Parameters
===========================
To apply a deduced parameter interface here, we need only make the
type requirements a bit tighter so the ``held_type`` and
``copyable`` parameters can be crisply distinguished from the
others. Boost.Python_ does this by requiring that ``base_list`` be
a specialization of its ``bases< … >`` template (as opposed to
being any old MPL sequence) and by requiring that ``copyable``, if
explicitly supplied, be ``boost::noncopyable``. One easy way of
identifying specializations of ``bases< … >`` is to derive them all
from the same class, as an implementation detail:
.. parsed-literal::
namespace boost { namespace python {
namespace detail { struct bases_base {}; }
template <class A0 = void, class A1 = void, class A2 = void *…* >
struct bases **: detail::bases_base**
{};
}}
.. @example.replace_emphasis('')
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <boost/mpl/is_sequence.hpp>
#include <boost/noncopyable.hpp>
#include <memory>
using namespace boost::parameter;
using boost::mpl::_;
namespace boost { namespace python {
BOOST_PARAMETER_TEMPLATE_KEYWORD(class_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(base_list)
BOOST_PARAMETER_TEMPLATE_KEYWORD(held_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(copyable)
}}''')
Now we can rewrite our signature to make all three optional
parameters deducible::
typedef parameter::parameters<
required<tag::class_type, is_class<_> >
, optional<
deduced<tag::base_list>
, is_base_and_derived<detail::bases_base,_>
>
, optional<
deduced<tag::held_type>
, mpl::not_<
mpl::or_<
is_base_and_derived<detail::bases_base,_>
, is_same<noncopyable,_>
>
>
>
, optional<deduced<tag::copyable>, is_same<noncopyable,_> >
> class_signature;
.. @example.prepend('''
namespace boost { namespace python {''')
.. @example.append('''
template <
class A0
, class A1 = parameter::void_
, class A2 = parameter::void_
, class A3 = parameter::void_
>
struct class_
{
// Create ArgumentPack
typedef typename
class_signature::bind<A0,A1,A2,A3>::type
args;
// Extract first logical parameter.
typedef typename parameter::binding<
args, tag::class_type>::type class_type;
typedef typename parameter::binding<
args, tag::base_list, bases<> >::type base_list;
typedef typename parameter::binding<
args, tag::held_type, class_type>::type held_type;
typedef typename parameter::binding<
args, tag::copyable, void>::type copyable;
};
}}''')
It may seem like we've added a great deal of complexity, but the
benefits to our users are greater. Our original examples can now
be written without explicit parameter names:
.. parsed-literal::
typedef boost::python::class_<**B**, **boost::noncopyable**> c1;
typedef boost::python::class_<**D**, **std::auto_ptr<D>**, **bases<B>** > c2;
.. @example.prepend('''
struct B {};
struct D {};
using boost::python::bases;''')
.. @example.append('''
BOOST_MPL_ASSERT((boost::is_same<c1::class_type, B>));
BOOST_MPL_ASSERT((boost::is_same<c1::base_list, bases<> >));
BOOST_MPL_ASSERT((boost::is_same<c1::held_type, B>));
BOOST_MPL_ASSERT((
boost::is_same<c1::copyable, boost::noncopyable>
));
BOOST_MPL_ASSERT((boost::is_same<c2::class_type, D>));
BOOST_MPL_ASSERT((boost::is_same<c2::base_list, bases<B> >));
BOOST_MPL_ASSERT((
boost::is_same<c2::held_type, std::auto_ptr<D> >
));
BOOST_MPL_ASSERT((boost::is_same<c2::copyable, void>));''')
.. @test('compile', howmany='all')
===============
Advanced Topics
===============
At this point, you should have a good grasp of the basics. In this
section we'll cover some more esoteric uses of the library.
-------------------------
Fine-Grained Name Control
-------------------------
If you don't like the leading-underscore naming convention used
to refer to keyword objects, or you need the name ``tag`` for
something other than the keyword type namespace, there's another
way to use ``BOOST_PARAMETER_NAME``:
.. parsed-literal::
BOOST_PARAMETER_NAME(\ **(**\ *object-name*\ **,** *tag-namespace*\ **)** *parameter-name*\ )
.. @ignore()
Here is a usage example:
.. parsed-literal::
BOOST_PARAMETER_NAME((**pass_foo**, **keywords**) **foo**)
BOOST_PARAMETER_FUNCTION(
(int), f,
**keywords**, (required (**foo**, \*)))
{
return **foo** + 1;
}
int x = f(**pass_foo** = 41);
.. @example.prepend('#include <boost/parameter.hpp>')
.. @example.append('''
int main()
{}''')
.. @test('run')
Before you use this more verbose form, however, please read the
section on `best practices for keyword object naming`__.
__ `Keyword Naming`_
-----------------------
More |ArgumentPack|\ s
-----------------------
We've already seen |ArgumentPack|\ s when we looked at
`parameter-enabled constructors`_ and `class templates`__. As you
might have guessed, |ArgumentPack|\ s actually lie at the heart of
everything this library does; in this section we'll examine ways to
build and manipulate them more effectively.
__ binding_intro_
Building |ArgumentPack|\ s
==========================
The simplest |ArgumentPack| is the result of assigning into a
keyword object::
BOOST_PARAMETER_NAME(index)
template <class ArgumentPack>
int print_index(ArgumentPack const& args)
{
std::cout << "index = " << args[_index] << std::endl;
return 0;
}
int x = print_index(_index = 3); // prints "index = 3"
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>''')
Also, |ArgumentPack|\ s can be composed using the comma operator.
The extra parentheses below are used to prevent the compiler from
seeing two separate arguments to ``print_name_and_index``::
BOOST_PARAMETER_NAME(name)
template <class ArgumentPack>
int print_name_and_index(ArgumentPack const& args)
{
std::cout << "name = " << args[_name] << "; ";
return print_index(args);
}
int y = print_name_and_index((_index = 3, _name = "jones"));
To build an |ArgumentPack| with positional arguments, we can use a
|ParameterSpec|_. As introduced described in the section on `Class
Template Signatures`_, a |ParameterSpec| describes the positional
order of parameters and any associated type requirements. Just as
we can build an |ArgumentPack| *type* with its nested ``::bind< …
>`` template, we can build an |ArgumentPack| *object* by invoking
its function call operator:
.. parsed-literal::
parameter::parameters<
required<tag::\ name, is_convertible<_,char const*> >
, optional<tag::\ index, is_convertible<_,int> >
> spec;
char const sam[] = "sam";
int twelve = 12;
int z0 = print_name_and_index( **spec(**\ sam, twelve\ **)** );
int z1 = print_name_and_index(
**spec(**\ _index=12, _name="sam"\ **)**
);
.. @example.prepend('''
namespace parameter = boost::parameter;
using parameter::required;
using parameter::optional;
using boost::is_convertible;
using boost::mpl::_;''')
.. @example.append('''
int main()
{}''')
.. @test('run', howmany='all')
Note that because of the `forwarding problem`_, ``parameter::parameters::operator()``
can't accept non-const rvalues.
.. _`forwarding problem`: http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
Extracting Parameter Types
==========================
If we want to know the types of the arguments passed to
``print_name_and_index``, we have a couple of options. The
simplest and least error-prone approach is to forward them to a
function template and allow *it* to do type deduction::
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)
template <class Name, class Index>
int deduce_arg_types_impl(Name& name, Index& index)
{
Name& n2 = name; // we know the types
Index& i2 = index;
return index;
}
template <class ArgumentPack>
int deduce_arg_types(ArgumentPack const& args)
{
return deduce_arg_types_impl(args[_name], args[_index|42]);
}
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <cassert>''')
.. @example.append('''
int a1 = deduce_arg_types((_name = "foo"));
int a2 = deduce_arg_types((_name = "foo", _index = 3));
int main()
{
assert(a1 == 42);
assert(a2 == 3);
}''')
.. @test('run')
Occasionally one needs to deduce argument types without an extra
layer of function call. For example, suppose we wanted to return
twice the value of the ``index`` parameter? In that
case we can use the ``binding< … >`` metafunction introduced
`earlier`__::
BOOST_PARAMETER_NAME(index)
template <class ArgumentPack>
typename remove_reference<
typename parameter::binding<ArgumentPack, tag::index, int>::type
>::type
twice_index(ArgumentPack const& args)
{
return 2 * args[_index|42];
}
int six = twice_index(_index = 3);
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <boost/type_traits/remove_reference.hpp>
#include <cassert>
namespace parameter = boost::parameter;
using boost::remove_reference;''')
Note that the ``remove_reference< … >`` dance is necessary because
``binding< … >`` will return a reference type when the argument
is bound in the argument pack. If we don't strip the reference we
end up returning a reference to the temporary created in the ``2 * …``
expression. A convenient shortcut would be to use the ``value_type< … >``
metafunction:
.. parsed-literal::
template <class ArgumentPack>
typename **parameter::value_type<ArgumentPack, tag::index, int>**::type
twice_index(ArgumentPack const& args)
{
return 2 * args[_index|42];
}
.. @example.wrap('namespace with_value_type {', '''
int six = twice_index(_index = 3);
}''')
.. TODO: binding<> returns a reference. We should use value_type<> here.
.. @example.append('''
int main()
{
assert(six == 6);
assert(with_value_type::six == 6);
}''')
.. @test('run', howmany='all')
__ binding_intro_
Lazy Default Computation
========================
When a default value is expensive to compute, it would be
preferable to avoid it until we're sure it's absolutely necessary.
``BOOST_PARAMETER_FUNCTION`` takes care of that problem for us, but
when using |ArgumentPack|\ s explicitly, we need a tool other than
``operator|``::
BOOST_PARAMETER_NAME(s1)
BOOST_PARAMETER_NAME(s2)
BOOST_PARAMETER_NAME(s3)
template <class ArgumentPack>
std::string f(ArgumentPack const& args)
{
std::string const& s1 = args[_s1];
std::string const& s2 = args[_s2];
typename parameter::binding<
ArgumentPack,tag::s3,std::string
>::type s3 = args[_s3|(s1+s2)]; // always constructs s1+s2
return s3;
}
std::string x = f((_s1="hello,", _s2=" world", _s3="hi world"));
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <string>
namespace parameter = boost::parameter;''')
.. @example.append('''
int main()
{}''')
.. @test('run')
In the example above, the string ``"hello, world"`` is constructed
despite the fact that the user passed us a value for ``s3``. To
remedy that, we can compute the default value *lazily* (that is,
only on demand), by using ``boost::bind()`` to create a function
object.
.. danielw: I'm leaving the text below in the source, because we might
.. want to change back to it after 1.34, and if I remove it now we
.. might forget about it.
.. by combining the logical-or (“``||``”) operator
.. with a function object built by the Boost Lambda_ library: [#bind]_
.. parsed-literal::
using boost::bind;
using boost::ref;
typename parameter::binding<
ArgumentPack, tag::s3, std::string
>::type s3 = args[_s3 **|| bind(std::plus<std::string>(), ref(s1), ref(s2))** ];
.. @example.prepend('''
#include <boost/bind.hpp>
#include <boost/ref.hpp>
#include <boost/parameter.hpp>
#include <string>
#include <functional>
namespace parameter = boost::parameter;
BOOST_PARAMETER_NAME(s1)
BOOST_PARAMETER_NAME(s2)
BOOST_PARAMETER_NAME(s3)
template <class ArgumentPack>
std::string f(ArgumentPack const& args)
{
std::string const& s1 = args[_s1];
std::string const& s2 = args[_s2];''')
.. @example.append('''
return s3;
}
std::string x = f((_s1="hello,", _s2=" world", _s3="hi world"));
int main()
{}''')
.. @test('run')
.. .. _Lambda: ../../../lambda/index.html
.. sidebar:: Mnemonics
To remember the difference between ``|`` and ``||``, recall that
``||`` normally uses short-circuit evaluation: its second
argument is only evaluated if its first argument is ``false``.
Similarly, in ``color_map[param||f]``, ``f`` is only invoked if
no ``color_map`` argument was supplied.
The expression ``bind(std::plus<std::string>(), ref(s1), ref(s2))`` yields
a *function object* that, when invoked, adds the two strings together.
That function will only be invoked if no ``s3`` argument is supplied by
the caller.
.. The expression ``lambda::var(s1)+lambda::var(s2)`` yields a
.. *function object* that, when invoked, adds the two strings
.. together. That function will only be invoked if no ``s3`` argument
.. is supplied by the caller.
================
Best Practices
================
By now you should have a fairly good idea of how to use the
Parameter library. This section points out a few more-marginal
issues that will help you use the library more effectively.
--------------
Keyword Naming
--------------
``BOOST_PARAMETER_NAME`` prepends a leading underscore to the names
of all our keyword objects in order to avoid the following
usually-silent bug:
.. parsed-literal::
namespace people
{
namespace tag { struct name; struct age; }
namespace // unnamed
{
boost::parameter::keyword<tag::name>& **name**
= boost::parameter::keyword<tag::name>::instance;
boost::parameter::keyword<tag::age>& **age**
= boost::parameter::keyword<tag::age>::instance;
}
BOOST_PARAMETER_FUNCTION(
(void), g, tag, (optional (name, \*, "bob")(age, \*, 42)))
{
std::cout << name << ":" << age;
}
void f(int age)
{
:vellipsis:`\
.
.
.
`
g(**age** = 3); // whoops!
}
}
.. @ignore()
Although in the case above, the user was trying to pass the value
``3`` as the ``age`` parameter to ``g``, what happened instead
was that ``f``\ 's ``age`` argument got reassigned the value 3,
and was then passed as a positional argument to ``g``. Since
``g``'s first positional parameter is ``name``, the default value
for ``age`` is used, and g prints ``3:42``. Our leading
underscore naming convention that makes this problem less likely
to occur.
In this particular case, the problem could have been detected if
f's ``age`` parameter had been made ``const``, which is always a
good idea whenever possible. Finally, we recommend that you use
an enclosing namespace for all your code, but particularly for
names with leading underscores. If we were to leave out the
``people`` namespace above, names in the global namespace
beginning with leading underscores—which are reserved to your C++
compiler—might become irretrievably ambiguous with those in our
unnamed namespace.
----------
Namespaces
----------
In our examples we've always declared keyword objects in (an
unnamed namespace within) the same namespace as the
Boost.Parameter-enabled functions using those keywords:
.. parsed-literal::
namespace lib
{
**BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)**
BOOST_PARAMETER_FUNCTION(
(int), f, tag,
(optional (name,*,"bob")(index,(int),1))
)
{
std::cout << name << ":" << index << std::endl;
return index;
}
}
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>''')
.. @namespace_setup = str(example)
.. @ignore()
Users of these functions have a few choices:
1. Full qualification:
.. parsed-literal::
int x = **lib::**\ f(**lib::**\ _name = "jill", **lib::**\ _index = 1);
This approach is more verbose than many users would like.
.. @example.prepend(namespace_setup)
.. @example.append('int main() {}')
.. @test('run')
2. Make keyword objects available through
*using-declarations*:
.. parsed-literal::
**using lib::_name;
using lib::_index;**
int x = lib::f(_name = "jill", _index = 1);
This version is much better at the actual call site, but the
*using-declarations* themselves can be verbose and hard-to
manage.
.. @example.prepend(namespace_setup)
.. @example.append('int main() {}')
.. @test('run')
3. Bring in the entire namespace with a *using-directive*:
.. parsed-literal::
**using namespace lib;**
int x = **f**\ (_name = "jill", _index = 3);
This option is convenient, but it indiscriminately makes the
*entire* contents of ``lib`` available without qualification.
.. @example.prepend(namespace_setup)
.. @example.append('int main() {}')
.. @test('run')
If we add an additional namespace around keyword declarations,
though, we can give users more control:
.. parsed-literal::
namespace lib
{
**namespace keywords
{**
BOOST_PARAMETER_NAME(name)
BOOST_PARAMETER_NAME(index)
**}**
BOOST_PARAMETER_FUNCTION(
(int), f, **keywords::**\ tag,
(optional (name,*,"bob")(index,(int),1))
)
{
std::cout << name << ":" << index << std::endl;
return index;
}
}
.. @example.prepend('''
#include <boost/parameter.hpp>
#include <iostream>''')
Now users need only a single *using-directive* to bring in just the
names of all keywords associated with ``lib``:
.. parsed-literal::
**using namespace lib::keywords;**
int y = lib::f(_name = "bob", _index = 2);
.. @example.append('int main() {}')
.. @test('run', howmany='all')
-------------
Documentation
-------------
The interface idioms enabled by Boost.Parameter are completely new
(to C++), and as such are not served by pre-existing documentation
conventions.
.. Note:: This space is empty because we haven't settled on any
best practices yet. We'd be very pleased to link to your
documentation if you've got a style that you think is worth
sharing.
============================
Portability Considerations
============================
Use the `regression test results`_ for the latest Boost release of
the Parameter library to see how it fares on your favorite
compiler. Additionally, you may need to be aware of the following
issues and workarounds for particular compilers.
.. _`regression test results`: http://www.boost.org/regression/release/user/parameter.html
-----------------
No SFINAE Support
-----------------
Some older compilers don't support SFINAE. If your compiler meets
that criterion, then Boost headers will ``#define`` the preprocessor
symbol ``BOOST_NO_SFINAE``, and parameter-enabled functions won't be
removed from the overload set based on their signatures.
---------------------------
No Support for |result_of|_
---------------------------
.. |result_of| replace:: ``result_of``
.. _result_of: ../../../utility/utility.htm#result_of
`Lazy default computation`_ relies on the |result_of| class
template to compute the types of default arguments given the type
of the function object that constructs them. On compilers that
don't support |result_of|, ``BOOST_NO_RESULT_OF`` will be
``#define``\ d, and the compiler will expect the function object to
contain a nested type name, ``result_type``, that indicates its
return type when invoked without arguments. To use an ordinary
function as a default generator on those compilers, you'll need to
wrap it in a class that provides ``result_type`` as a ``typedef``
and invokes the function via its ``operator()``.
..
Can't Declare |ParameterSpec| via ``typedef``
=============================================
In principle you can declare a |ParameterSpec| as a ``typedef``
for a specialization of ``parameters<…>``, but Microsoft Visual C++
6.x has been seen to choke on that usage. The workaround is to use
inheritance and declare your |ParameterSpec| as a class:
.. parsed-literal::
**struct dfs_parameters
:** parameter::parameters<
tag::graph, tag::visitor, tag::root_vertex
, tag::index_map, tag::color_map
> **{};**
Default Arguments Unsupported on Nested Templates
=================================================
As of this writing, Borland compilers don't support the use of
default template arguments on member class templates. As a result,
you have to supply ``BOOST_PARAMETER_MAX_ARITY`` arguments to every
use of ``parameters<…>::match``. Since the actual defaults used
are unspecified, the workaround is to use
|BOOST_PARAMETER_MATCH|_ to declare default arguments for SFINAE.
.. |BOOST_PARAMETER_MATCH| replace:: ``BOOST_PARAMETER_MATCH``
--------------------------------------------------
Compiler Can't See References In Unnamed Namespace
--------------------------------------------------
If you use Microsoft Visual C++ 6.x, you may find that the compiler
has trouble finding your keyword objects. This problem has been
observed, but only on this one compiler, and it disappeared as the
test code evolved, so we suggest you use it only as a last resort
rather than as a preventative measure. The solution is to add
*using-declarations* to force the names to be available in the
enclosing namespace without qualification::
namespace graphs
{
using graphs::graph;
using graphs::visitor;
using graphs::root_vertex;
using graphs::index_map;
using graphs::color_map;
}
================
Python Binding
================
.. _python: python.html
Follow `this link`__ for documentation on how to expose
Boost.Parameter-enabled functions to Python with `Boost.Python`_.
__ python.html
===========
Reference
===========
.. _reference: reference.html
Follow `this link`__ to the Boost.Parameter reference
documentation.
__ reference.html
==========
Glossary
==========
.. _arguments:
:Argument (or “actual argument”): the value actually passed to a
function or class template
.. _parameter:
:Parameter (or “formal parameter”): the name used to refer to an
argument within a function or class template. For example, the
value of ``f``'s *parameter* ``x`` is given by the *argument*
``3``::
int f(int x) { return x + 1 }
int y = f(3);
==================
Acknowledgements
==================
The authors would like to thank all the Boosters who participated
in the review of this library and its documentation, most
especially our review manager, Doug Gregor.
--------------------------
.. [#old_interface] As of Boost 1.33.0 the Graph library was still
using an `older named parameter mechanism`__, but there are
plans to change it to use Boost.Parameter (this library) in an
upcoming release, while keeping the old interface available for
backward-compatibility.
__ ../../../graph/doc/bgl_named_params.html
.. [#odr] The **One Definition Rule** says that any given entity in
a C++ program must have the same definition in all translation
units (object files) that make up a program.
.. [#vertex_descriptor] If you're not familiar with the Boost Graph
Library, don't worry about the meaning of any
Graph-library-specific details you encounter. In this case you
could replace all mentions of vertex descriptor types with
``int`` in the text, and your understanding of the Parameter
library wouldn't suffer.
.. [#ConceptCpp] This is a major motivation behind `ConceptC++`_.
.. _`ConceptC++`: http://www.generic-programming.org/software/ConceptGCC/
.. .. [#bind] The Lambda library is known not to work on `some
.. less-conformant compilers`__. When using one of those you could
.. use `Boost.Bind`_ to generate the function object::
.. boost::bind(std::plus<std::string>(),s1,s2)
.. [#is_keyword_expression] Here we're assuming there's a predicate
metafunction ``is_keyword_expression`` that can be used to
identify models of Boost.Python's KeywordExpression concept.
.. .. __ http://www.boost.org/regression/release/user/lambda.html
.. _Boost.Bind: ../../../bind/index.html
.. [#using] You can always give the illusion that the function
lives in an outer namespace by applying a *using-declaration*::
namespace foo_overloads
{
// foo declarations here
void foo() { ... }
...
}
using foo_overloads::foo;
This technique for avoiding unintentional argument-dependent
lookup is due to Herb Sutter.
.. [#sfinae] This capability depends on your compiler's support for SFINAE.
**SFINAE**: **S**\ ubstitution **F**\ ailure **I**\ s
**N**\ ot **A**\ n **E** rror. If type substitution during the
instantiation of a function template results in an invalid type,
no compilation error is emitted; instead the overload is removed
from the overload set. By producing an invalid type in the
function signature depending on the result of some condition,
we can decide whether or not an overload is considered during overload
resolution. The technique is formalized in
the |enable_if|_ utility. Most recent compilers support SFINAE;
on compilers that don't support it, the Boost config library
will ``#define`` the symbol ``BOOST_NO_SFINAE``.
See
http://www.semantics.org/once_weakly/w02_SFINAE.pdf for more
information on SFINAE.
.. |enable_if| replace:: ``enable_if``
.. _enable_if: ../../../utility/enable_if.html
|