1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
/* statistic_tests.cpp file
*
* Copyright Jens Maurer 2000, 2002
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* $Id: statistic_tests.cpp 24096 2004-07-27 03:43:34Z dgregor $
*
* Revision history
*/
/*
* NOTE: This is not part of the official boost submission. It exists
* only as a collection of ideas.
*/
#include <iostream>
#include <iomanip>
#include <string>
#include <functional>
#include <math.h> // lgamma is not in namespace std
#include <vector>
#include <algorithm>
#include <boost/cstdint.hpp>
#include <boost/random.hpp>
#include "statistic_tests.hpp"
#include "integrate.hpp"
namespace boost {
namespace random {
// Wikramaratna 1989 ACORN
template<class IntType, int k, IntType m, IntType val>
class additive_congruential
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = 0;
static const result_type max_value = m-1;
#else
enum {
has_fixed_range = true,
min_value = 0,
max_value = m-1
};
#endif
template<class InputIterator>
explicit additive_congruential(InputIterator start) { seed(start); }
template<class InputIterator>
void seed(InputIterator start)
{
for(int i = 0; i <= k; ++i, ++start)
values[i] = *start;
}
result_type operator()()
{
for(int i = 1; i <= k; ++i) {
IntType tmp = values[i-1] + values[i];
if(tmp >= m)
tmp -= m;
values[i] = tmp;
}
return values[k];
}
result_type validation() const { return val; }
private:
IntType values[k+1];
};
template<class IntType, int r, int s, IntType m, IntType val>
class lagged_fibonacci_int
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = 0;
static const result_type max_value = m-1;
#else
enum {
has_fixed_range = true,
min_value = 0,
max_value = m-1
};
#endif
explicit lagged_fibonacci_int(IntType start) { seed(start); }
template<class Generator>
explicit lagged_fibonacci_int(Generator & gen) { seed(gen); }
void seed(IntType start)
{
linear_congruential<uint32_t, 299375077, 0, 0, 0> init;
seed(init);
}
template<class Generator>
void seed(Generator & gen)
{
assert(r > s);
for(int i = 0; i < 607; ++i)
values[i] = gen();
current = 0;
lag = r-s;
}
result_type operator()()
{
result_type tmp = values[current] + values[lag];
if(tmp >= m)
tmp -= m;
values[current] = tmp;
++current;
if(current >= r)
current = 0;
++lag;
if(lag >= r)
lag = 0;
return tmp;
}
result_type validation() const { return val; }
private:
result_type values[r];
int current, lag;
};
} // namespace random
} // namespace boost
// distributions from Haertel's dissertation
// (additional parameterizations of the basic templates)
namespace Haertel {
typedef boost::random::linear_congruential<boost::uint64_t, 45965, 453816691,
(boost::uint64_t(1)<<31), 0> LCG_Af2;
typedef boost::random::linear_congruential<boost::uint64_t, 211936855, 0,
(boost::uint64_t(1)<<29)-3, 0> LCG_Die1;
typedef boost::random::linear_congruential<boost::uint32_t, 2824527309u, 0,
0, 0> LCG_Fis;
typedef boost::random::linear_congruential<boost::uint64_t, 950706376u, 0,
(boost::uint64_t(1)<<31)-1, 0> LCG_FM;
typedef boost::random::linear_congruential<boost::int32_t, 51081, 0,
2147483647, 0> LCG_Hae;
typedef boost::random::linear_congruential<boost::uint32_t, 69069, 1,
0, 0> LCG_VAX;
typedef boost::random::inversive_congruential<boost::int64_t, 240318, 197,
1000081, 0> NLG_Inv1;
typedef boost::random::inversive_congruential<boost::int64_t, 15707262,
13262967, (1<<24)-17, 0> NLG_Inv2;
typedef boost::random::inversive_congruential<boost::int32_t, 1, 1,
2147483647, 0> NLG_Inv4;
typedef boost::random::inversive_congruential<boost::int32_t, 1, 2,
1<<30, 0> NLG_Inv5;
typedef boost::random::additive_congruential<boost::int32_t, 6,
(1<<30)-35, 0> MRG_Acorn7;
typedef boost::random::lagged_fibonacci_int<boost::uint32_t, 607, 273,
0, 0> MRG_Fib2;
template<class Gen, class T>
inline void check_validation(Gen & gen, T value, const std::string & name)
{
for(int i = 0; i < 100000-1; ++i)
gen();
if(value != gen())
std::cout << name << ": validation failed" << std::endl;
}
// we have validation after 100000 steps with Haertel's generators
template<class Gen, class T>
void validate(T value, const std::string & name)
{
Gen gen(1234567);
check_validation(gen, value, name);
}
void validate_all()
{
validate<LCG_Af2>(183269031u, "LCG_Af2");
validate<LCG_Die1>(522319944u, "LCG_Die1");
validate<LCG_Fis>(-2065162233u, "LCG_Fis");
validate<LCG_FM>(581815473u, "LCG_FM");
validate<LCG_Hae>(28931709, "LCG_Hae");
validate<LCG_VAX>(1508154087u, "LCG_VAX");
validate<NLG_Inv2>(6666884, "NLG_Inv2");
validate<NLG_Inv4>(1521640076, "NLG_Inv4");
validate<NLG_Inv5>(641840839, "NLG_Inv5");
static const int acorn7_init[]
= { 1234567, 7654321, 246810, 108642, 13579, 97531, 555555 };
MRG_Acorn7 acorn7(acorn7_init);
check_validation(acorn7, 874294697, "MRG_Acorn7");
validate<MRG_Fib2>(1234567u, "MRG_Fib2");
}
} // namespace Haertel
double normal_density(double x)
{
const double pi = 3.14159265358979323846;
return 1/std::sqrt(2*pi) * std::exp(-x*x/2);
}
namespace std {
#ifdef _CXXRTCF_H__
using _CS_swamp::lgamma;
#elif defined __SGI_STL_PORT
using ::lgamma;
#endif
}
class chi_square_density : public std::unary_function<double, double>
{
public:
chi_square_density(int freedom)
: _exponent( static_cast<double>(freedom)/2-1 ),
_factor(1/(std::pow(2, _exponent+1) * std::exp(lgamma(_exponent+1))))
{ }
double operator()(double x)
{
return _factor*std::pow(x, _exponent)*std::exp(-x/2);
}
private:
double _exponent, _factor;
};
// computes F(x) or F(y) - F(x)
class chi_square_probability : public distribution_function<double>
{
public:
chi_square_probability(int freedom) : dens(freedom) {}
double operator()(double x) { return operator()(0, x); }
double operator()(double x, double y)
{ return trapezoid(dens, x, y, 1000); }
private:
chi_square_density dens;
};
class uniform_distribution : public distribution_function<double>
{
public:
uniform_distribution(double from, double to) : from(from), to(to)
{ assert(from < to); }
double operator()(double x)
{
if(x < from)
return 0;
else if(x > to)
return 1;
else
return (x-from)/(to-from);
}
double operator()(double x, double delta)
{ return operator()(x+delta) - operator()(x); }
private:
double from, to;
};
class test_environment;
class test_base
{
protected:
explicit test_base(test_environment & env) : environment(env) { }
void check(double val) const;
private:
test_environment & environment;
};
class equidistribution_test : test_base
{
public:
equidistribution_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "equidistribution: " << std::flush;
equidistribution_experiment equi(classes);
uniform_smallint<RNG> uint_linear(rng, 0, classes-1);
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi, uint_linear, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi, uint_linear, n1), 2*n2));
std::cout << " 2D: " << std::flush;
equidistribution_2d_experiment equi_2d(classes);
unsigned int root = static_cast<unsigned int>(std::sqrt(double(classes)));
assert(root * root == classes);
uniform_smallint<RNG> uint_square(rng, 0, root-1);
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi_2d, uint_square, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(equi_2d, uint_square, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class ks_equidistribution_test : test_base
{
public:
ks_equidistribution_test(test_environment & env, unsigned int classes)
: test_base(env),
test_distrib_chi_square(kolmogorov_smirnov_probability(5000),
classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "KS: " << std::flush;
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
kolmogorov_experiment ks(n1);
uniform_distribution ud((rng.min)(), (rng.max)());
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), n2));
check(run_experiment(test_distrib_chi_square,
ks_experiment_generator(ks, gen_ref, ud), 2*n2));
}
private:
distribution_experiment test_distrib_chi_square;
};
class runs_test : test_base
{
public:
runs_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "runs: up: " << std::flush;
runs_experiment<true> r_up(classes);
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_up, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_up, gen_ref, n1), 2*n2));
std::cout << " down: " << std::flush;
runs_experiment<false> r_down(classes);
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_down, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(r_down, gen_ref, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class gap_test : test_base
{
public:
gap_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "gaps: " << std::flush;
gap_experiment gap(classes, 0.2, 0.8);
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
check(run_experiment(test_distrib_chi_square,
experiment_generator(gap, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(gap, gen_ref, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class poker_test : test_base
{
public:
poker_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "poker: " << std::flush;
poker_experiment poker(8, classes);
uniform_smallint<RNG> usmall(rng, 0, 7);
check(run_experiment(test_distrib_chi_square,
experiment_generator(poker, usmall, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(poker, usmall, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class coupon_collector_test : test_base
{
public:
coupon_collector_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "coupon collector: " << std::flush;
coupon_collector_experiment coupon(5, classes);
uniform_smallint<RNG> usmall(rng, 0, 4);
check(run_experiment(test_distrib_chi_square,
experiment_generator(coupon, usmall, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(coupon, usmall, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class permutation_test : test_base
{
public:
permutation_test(test_environment & env, unsigned int classes,
unsigned int high_classes)
: test_base(env), classes(classes),
test_distrib_chi_square(chi_square_probability(fac<int>(classes)-1),
high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "permutation: " << std::flush;
permutation_experiment perm(classes);
// generator_reference_t<RNG> gen_ref(rng);
RNG& gen_ref(rng);
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), 2*n2));
std::cout << std::endl;
}
private:
unsigned int classes;
distribution_experiment test_distrib_chi_square;
};
class maximum_test : test_base
{
public:
maximum_test(test_environment & env, unsigned int high_classes)
: test_base(env),
test_distrib_chi_square(kolmogorov_smirnov_probability(1000),
high_classes)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "maximum-of-t: " << std::flush;
maximum_experiment<RNG> mx(rng, n1, 5);
check(run_experiment(test_distrib_chi_square, mx, n2));
check(run_experiment(test_distrib_chi_square, mx, 2*n2));
std::cout << std::endl;
}
private:
distribution_experiment test_distrib_chi_square;
};
class birthday_test : test_base
{
public:
birthday_test(test_environment & env)
: test_base(env)
{ }
template<class RNG>
void run(RNG & rng, int n1, int n2)
{
using namespace boost;
std::cout << "birthday spacing: " << std::flush;
uniform_int<RNG> uni(rng, 0, (1<<25)-1);
birthday_spacing_experiment bsp(4, 512, (1<<25));
std::cout << run_experiment(bsp, uni, n1);
#if 0
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), n2));
check(run_experiment(test_distrib_chi_square,
experiment_generator(perm, gen_ref, n1), 2*n2));
#endif
std::cout << std::endl;
}
};
class test_environment
{
public:
static const int classes = 20;
explicit test_environment(double confid)
: confidence(confid),
confidence_chi_square_quantil(quantil(chi_square_density(classes-1), 0, confidence, 1e-4)),
test_distrib_chi_square6(chi_square_probability(7-1), classes),
ksequi_test(*this, classes),
equi_test(*this, 100, classes),
rns_test(*this, 7, classes),
gp_test(*this, 7, classes),
pk_test(*this, 5, classes),
cpn_test(*this, 15, classes),
perm_test(*this, 5, classes),
max_test(*this, classes),
bday_test(*this)
{
std::cout << "Confidence level: " << confid
<< "; 1-alpha = " << (1-confid)
<< "; chi_square(" << (classes-1)
<< ", " << confidence_chi_square_quantil
<< ") = "
<< chi_square_probability(classes-1)(0, confidence_chi_square_quantil)
<< std::endl;
}
bool check_confidence(double val, double chi_square_conf) const
{
std::cout << val;
bool result = (val <= chi_square_conf);
if(!result) {
std::cout << "* [";
double prob = (val > 10*chi_square_conf ? 1 :
chi_square_probability(classes-1)(0, val));
std::cout << (1-prob) << "]";
}
std::cout << " " << std::flush;
return result;
}
bool check(double chi_square_value) const
{
return check_confidence(chi_square_value, confidence_chi_square_quantil);
}
template<class RNG>
void run_test(const std::string & name)
{
using namespace boost;
std::cout << "Running tests on " << name << std::endl;
RNG rng(1234567);
typedef boost::uniform_01<RNG> UGen;
#if 1
ksequi_test.run(rng, 5000, 250);
equi_test.run(rng, 5000, 250);
rns_test.run(rng, 100000, 250);
gp_test.run(rng, 10000, 250);
pk_test.run(rng, 5000, 250);
cpn_test.run(rng, 500, 250);
perm_test.run(rng, 1200, 250);
max_test.run(rng, 1000, 250);
#endif
bday_test.run(rng, 1000, 150);
std::cout << std::endl;
}
private:
double confidence;
double confidence_chi_square_quantil;
distribution_experiment test_distrib_chi_square6;
ks_equidistribution_test ksequi_test;
equidistribution_test equi_test;
runs_test rns_test;
gap_test gp_test;
poker_test pk_test;
coupon_collector_test cpn_test;
permutation_test perm_test;
maximum_test max_test;
birthday_test bday_test;
};
void test_base::check(double val) const
{
environment.check(val);
}
void print_ks_table()
{
std::cout.setf(std::ios::fixed);
std::cout.precision(5);
static const double all_p[] = { 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 };
for(int n = 0; n <= 10000; (n < 55 ? ++n : n *= 10)) {
std::cout << std::setw(4) << n << " ";
for(unsigned int i = 0; i < sizeof(all_p)/sizeof(all_p[0]); ++i) {
std::cout << std::setw(8)
<< (n == 0 ? all_p[i] :
invert_monotone_inc(kolmogorov_smirnov_probability(n), all_p[i], 0, 10))
<< " ";
}
std::cout << std::endl;
}
}
int main()
{
// Haertel::validate_all();
test_environment env(0.99);
env.run_test<boost::minstd_rand>("minstd_rand");
env.run_test<boost::mt19937>("mt19937");
env.run_test<Haertel::LCG_Af2>("LCG_Af2");
env.run_test<Haertel::LCG_Die1>("LCG_Die1");
env.run_test<Haertel::LCG_Fis>("LCG_Fis");
env.run_test<Haertel::LCG_FM>("LCG_FM");
env.run_test<Haertel::LCG_Hae>("LCG_Hae");
env.run_test<Haertel::LCG_VAX>("LCG_VAX");
env.run_test<Haertel::NLG_Inv1>("NLG_Inv1");
env.run_test<Haertel::NLG_Inv2>("NLG_Inv2");
env.run_test<Haertel::NLG_Inv4>("NLG_Inv4");
env.run_test<Haertel::NLG_Inv5>("NLG_Inv5");
}
|