File: statistic_tests.cpp

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (664 lines) | stat: -rw-r--r-- 19,340 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/* statistic_tests.cpp file
 *
 * Copyright Jens Maurer 2000, 2002
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * $Id: statistic_tests.cpp 24096 2004-07-27 03:43:34Z dgregor $
 *
 * Revision history
 */

/*
 * NOTE: This is not part of the official boost submission.  It exists
 * only as a collection of ideas.
 */

#include <iostream>
#include <iomanip>
#include <string>
#include <functional>
#include <math.h>  // lgamma is not in namespace std
#include <vector>
#include <algorithm>

#include <boost/cstdint.hpp>
#include <boost/random.hpp>

#include "statistic_tests.hpp"
#include "integrate.hpp"


namespace boost {
namespace random {

// Wikramaratna 1989  ACORN
template<class IntType, int k, IntType m, IntType val>
class additive_congruential
{
public:
  typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
  static const bool has_fixed_range = true;
  static const result_type min_value = 0;
  static const result_type max_value = m-1;
#else
  enum {
    has_fixed_range = true,
    min_value = 0,
    max_value = m-1
  };
#endif
  template<class InputIterator>
  explicit additive_congruential(InputIterator start) { seed(start); }
  template<class InputIterator>
  void seed(InputIterator start)
  {
    for(int i = 0; i <= k; ++i, ++start)
      values[i] = *start;
  }
  
  result_type operator()()
  {
    for(int i = 1; i <= k; ++i) {
      IntType tmp = values[i-1] + values[i];
      if(tmp >= m)
        tmp -= m;
      values[i] = tmp;
    }
    return values[k];
  }
  result_type validation() const { return val; }
private:
  IntType values[k+1];
};


template<class IntType, int r, int s, IntType m, IntType val>
class lagged_fibonacci_int
{
public:
  typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
  static const bool has_fixed_range = true;
  static const result_type min_value = 0;
  static const result_type max_value = m-1;
#else
  enum {
    has_fixed_range = true,
    min_value = 0,
    max_value = m-1
  };
#endif
  explicit lagged_fibonacci_int(IntType start) { seed(start); }
  template<class Generator>
  explicit lagged_fibonacci_int(Generator & gen) { seed(gen); }
  void seed(IntType start)
  {
    linear_congruential<uint32_t, 299375077, 0, 0, 0> init;
    seed(init);
  }
  template<class Generator>
  void seed(Generator & gen)
  {
    assert(r > s);
    for(int i = 0; i < 607; ++i)
      values[i] = gen();
    current = 0;
    lag = r-s;
  }
  
  result_type operator()()
  {
    result_type tmp = values[current] + values[lag];
    if(tmp >= m)
      tmp -= m;
    values[current] = tmp;
    ++current;
    if(current >= r)
      current = 0;
    ++lag;
    if(lag >= r)
      lag = 0;
    return tmp;
  }
  result_type validation() const { return val; }
private:
  result_type values[r];
  int current, lag;
};

} // namespace random
} // namespace boost

// distributions from Haertel's dissertation
// (additional parameterizations of the basic templates)
namespace Haertel {
  typedef boost::random::linear_congruential<boost::uint64_t, 45965, 453816691,
    (boost::uint64_t(1)<<31), 0> LCG_Af2;
  typedef boost::random::linear_congruential<boost::uint64_t, 211936855, 0,
    (boost::uint64_t(1)<<29)-3, 0> LCG_Die1;
  typedef boost::random::linear_congruential<boost::uint32_t, 2824527309u, 0,
    0, 0> LCG_Fis;
  typedef boost::random::linear_congruential<boost::uint64_t, 950706376u, 0,
    (boost::uint64_t(1)<<31)-1, 0> LCG_FM;
  typedef boost::random::linear_congruential<boost::int32_t, 51081, 0,
    2147483647, 0> LCG_Hae;
  typedef boost::random::linear_congruential<boost::uint32_t, 69069, 1,
    0, 0> LCG_VAX;
  typedef boost::random::inversive_congruential<boost::int64_t, 240318, 197, 
    1000081, 0> NLG_Inv1;
  typedef boost::random::inversive_congruential<boost::int64_t, 15707262,
    13262967, (1<<24)-17, 0> NLG_Inv2;
  typedef boost::random::inversive_congruential<boost::int32_t, 1, 1,
    2147483647, 0> NLG_Inv4;
  typedef boost::random::inversive_congruential<boost::int32_t, 1, 2,
    1<<30, 0> NLG_Inv5;
  typedef boost::random::additive_congruential<boost::int32_t, 6,
    (1<<30)-35, 0> MRG_Acorn7;
  typedef boost::random::lagged_fibonacci_int<boost::uint32_t, 607, 273,
    0, 0> MRG_Fib2;

  template<class Gen, class T>
  inline void check_validation(Gen & gen, T value, const std::string & name)
  {
    for(int i = 0; i < 100000-1; ++i)
      gen();
    if(value != gen())
      std::cout << name << ": validation failed" << std::endl;
  }

  // we have validation after 100000 steps with Haertel's generators
  template<class Gen, class T>
  void validate(T value, const std::string & name)
  {
    Gen gen(1234567);
    check_validation(gen, value, name);
  }

  void validate_all()
  {
    validate<LCG_Af2>(183269031u, "LCG_Af2");
    validate<LCG_Die1>(522319944u, "LCG_Die1");
    validate<LCG_Fis>(-2065162233u, "LCG_Fis");
    validate<LCG_FM>(581815473u, "LCG_FM");
    validate<LCG_Hae>(28931709, "LCG_Hae");
    validate<LCG_VAX>(1508154087u, "LCG_VAX");
    validate<NLG_Inv2>(6666884, "NLG_Inv2");
    validate<NLG_Inv4>(1521640076, "NLG_Inv4");
    validate<NLG_Inv5>(641840839, "NLG_Inv5");
    static const int acorn7_init[]
      = { 1234567, 7654321, 246810, 108642, 13579, 97531, 555555 };
    MRG_Acorn7 acorn7(acorn7_init);
    check_validation(acorn7, 874294697, "MRG_Acorn7");
    validate<MRG_Fib2>(1234567u, "MRG_Fib2");
  }
} // namespace Haertel




double normal_density(double x)
{
  const double pi = 3.14159265358979323846;
  return 1/std::sqrt(2*pi) * std::exp(-x*x/2);
}

namespace std {
#ifdef _CXXRTCF_H__
  using _CS_swamp::lgamma;
#elif defined __SGI_STL_PORT
  using ::lgamma;
#endif
}


class chi_square_density : public std::unary_function<double, double>
{
public:
  chi_square_density(int freedom)
    : _exponent( static_cast<double>(freedom)/2-1 ),
      _factor(1/(std::pow(2, _exponent+1) * std::exp(lgamma(_exponent+1))))
  { }

  double operator()(double x)
  {
    return _factor*std::pow(x, _exponent)*std::exp(-x/2);
  }
private:
  double _exponent, _factor;
};

// computes F(x) or F(y) - F(x)
class chi_square_probability : public distribution_function<double>
{
public:
  chi_square_probability(int freedom) : dens(freedom) {}
  double operator()(double x) { return operator()(0, x); }
  double operator()(double x, double y)
  { return trapezoid(dens, x, y, 1000); }
private:
  chi_square_density dens;
};

class uniform_distribution : public distribution_function<double>
{
public:
  uniform_distribution(double from, double to) : from(from), to(to) 
  { assert(from < to); }
  double operator()(double x) 
  { 
    if(x < from) 
      return 0;
    else if(x > to)
      return 1;
    else
      return (x-from)/(to-from);
  }
  double operator()(double x, double delta)
  { return operator()(x+delta) - operator()(x); }
private:
  double from, to;
};

class test_environment;

class test_base
{
protected:
  explicit test_base(test_environment & env) : environment(env) { }
  void check(double val) const; 
private:
  test_environment & environment;
};

class equidistribution_test : test_base
{
public:
  equidistribution_test(test_environment & env, unsigned int classes, 
                        unsigned int high_classes)
    : test_base(env), classes(classes),
      test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "equidistribution: " << std::flush;
    equidistribution_experiment equi(classes);
    uniform_smallint<RNG> uint_linear(rng, 0, classes-1);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(equi, uint_linear, n1), n2));
    check(run_experiment(test_distrib_chi_square, 
                         experiment_generator(equi, uint_linear, n1), 2*n2));

    std::cout << "  2D: " << std::flush;
    equidistribution_2d_experiment equi_2d(classes);
    unsigned int root = static_cast<unsigned int>(std::sqrt(double(classes)));
    assert(root * root == classes);
    uniform_smallint<RNG> uint_square(rng, 0, root-1);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(equi_2d, uint_square, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(equi_2d, uint_square, n1), 2*n2));
    std::cout << std::endl;
  }
private:
  unsigned int classes;
  distribution_experiment test_distrib_chi_square;
};

class ks_equidistribution_test : test_base
{
public:
  ks_equidistribution_test(test_environment & env, unsigned int classes)
    : test_base(env),
      test_distrib_chi_square(kolmogorov_smirnov_probability(5000), 
                              classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "KS: " << std::flush;
    // generator_reference_t<RNG> gen_ref(rng);
    RNG& gen_ref(rng);
    kolmogorov_experiment ks(n1);
    uniform_distribution ud((rng.min)(), (rng.max)());
    check(run_experiment(test_distrib_chi_square,
                         ks_experiment_generator(ks, gen_ref, ud), n2));
    check(run_experiment(test_distrib_chi_square,
                         ks_experiment_generator(ks, gen_ref, ud), 2*n2));
  }
private:
  distribution_experiment test_distrib_chi_square;
};

class runs_test : test_base
{
public:
  runs_test(test_environment & env, unsigned int classes,
            unsigned int high_classes)
    : test_base(env), classes(classes),
      test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "runs: up: " << std::flush;
    runs_experiment<true> r_up(classes);
    // generator_reference_t<RNG> gen_ref(rng);
    RNG& gen_ref(rng);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(r_up, gen_ref, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(r_up, gen_ref, n1), 2*n2));

    std::cout << "  down: " << std::flush;
    runs_experiment<false> r_down(classes);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(r_down, gen_ref, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(r_down, gen_ref, n1), 2*n2));

    std::cout << std::endl;
  }
private:
  unsigned int classes;
  distribution_experiment test_distrib_chi_square;
};

class gap_test : test_base
{
public:
  gap_test(test_environment & env, unsigned int classes,
            unsigned int high_classes)
    : test_base(env), classes(classes),
      test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "gaps: " << std::flush;
    gap_experiment gap(classes, 0.2, 0.8);
    // generator_reference_t<RNG> gen_ref(rng);
    RNG& gen_ref(rng);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(gap, gen_ref, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(gap, gen_ref, n1), 2*n2));

    std::cout << std::endl;
  }
private:
  unsigned int classes;
  distribution_experiment test_distrib_chi_square;
};

class poker_test : test_base
{
public:
  poker_test(test_environment & env, unsigned int classes,
             unsigned int high_classes)
    : test_base(env), classes(classes),
      test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "poker: " << std::flush;
    poker_experiment poker(8, classes);
    uniform_smallint<RNG> usmall(rng, 0, 7);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(poker, usmall, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(poker, usmall, n1), 2*n2));
    std::cout << std::endl;
  }
private:
  unsigned int classes;
  distribution_experiment test_distrib_chi_square;
};

class coupon_collector_test : test_base
{
public:
  coupon_collector_test(test_environment & env, unsigned int classes,
                        unsigned int high_classes)
    : test_base(env), classes(classes),
      test_distrib_chi_square(chi_square_probability(classes-1), high_classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "coupon collector: " << std::flush;
    coupon_collector_experiment coupon(5, classes);

    uniform_smallint<RNG> usmall(rng, 0, 4);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(coupon, usmall, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(coupon, usmall, n1), 2*n2));
    std::cout << std::endl;
  }
private:
  unsigned int classes;
  distribution_experiment test_distrib_chi_square;
};

class permutation_test : test_base
{
public:
  permutation_test(test_environment & env, unsigned int classes,
                   unsigned int high_classes)
    : test_base(env), classes(classes),
      test_distrib_chi_square(chi_square_probability(fac<int>(classes)-1), 
                              high_classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "permutation: " << std::flush;
    permutation_experiment perm(classes);
    
    // generator_reference_t<RNG> gen_ref(rng);
    RNG& gen_ref(rng);
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(perm, gen_ref, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(perm, gen_ref, n1), 2*n2));
    std::cout << std::endl;
  }
private:
  unsigned int classes;
  distribution_experiment test_distrib_chi_square;
};

class maximum_test : test_base
{
public:
  maximum_test(test_environment & env, unsigned int high_classes)
    : test_base(env),
      test_distrib_chi_square(kolmogorov_smirnov_probability(1000),
                              high_classes)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "maximum-of-t: " << std::flush;
    maximum_experiment<RNG> mx(rng, n1, 5);    
    check(run_experiment(test_distrib_chi_square, mx, n2));
    check(run_experiment(test_distrib_chi_square, mx, 2*n2));
    std::cout << std::endl;
  }
private:
  distribution_experiment test_distrib_chi_square;
};

class birthday_test : test_base
{
public:
  birthday_test(test_environment & env)
    : test_base(env)
  { }

  template<class RNG>
  void run(RNG & rng, int n1, int n2)
  {
    using namespace boost;
    std::cout << "birthday spacing: " << std::flush;
    uniform_int<RNG> uni(rng, 0, (1<<25)-1);
    birthday_spacing_experiment bsp(4, 512, (1<<25));
    std::cout << run_experiment(bsp, uni, n1);
#if 0
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(perm, gen_ref, n1), n2));
    check(run_experiment(test_distrib_chi_square,
                         experiment_generator(perm, gen_ref, n1), 2*n2));
#endif
    std::cout << std::endl;
  }
  
    
};

class test_environment
{
public:
  static const int classes = 20;
  explicit test_environment(double confid) 
    : confidence(confid),
      confidence_chi_square_quantil(quantil(chi_square_density(classes-1), 0, confidence, 1e-4)),
      test_distrib_chi_square6(chi_square_probability(7-1), classes),
      ksequi_test(*this, classes),
      equi_test(*this, 100, classes),
      rns_test(*this, 7, classes),
      gp_test(*this, 7, classes),
      pk_test(*this, 5, classes),
      cpn_test(*this, 15, classes),
      perm_test(*this, 5, classes),
      max_test(*this, classes),
      bday_test(*this)
  {
    std::cout << "Confidence level: " << confid 
              << "; 1-alpha = " << (1-confid)
              << "; chi_square(" << (classes-1) 
              << ", " << confidence_chi_square_quantil
              << ") = " 
              << chi_square_probability(classes-1)(0, confidence_chi_square_quantil)
              << std::endl;
  }
  
  bool check_confidence(double val, double chi_square_conf) const
  {
    std::cout << val;
    bool result = (val <= chi_square_conf);
    if(!result) {
      std::cout << "* [";
      double prob = (val > 10*chi_square_conf ? 1 :
                     chi_square_probability(classes-1)(0, val));
      std::cout << (1-prob) << "]";
    }
    std::cout << " " << std::flush;
    return result;
  }

  bool check(double chi_square_value) const
  {
    return check_confidence(chi_square_value, confidence_chi_square_quantil);
  }

  template<class RNG>
  void run_test(const std::string & name)
  {
    using namespace boost;

    std::cout << "Running tests on " << name << std::endl;

    RNG rng(1234567);
    typedef boost::uniform_01<RNG> UGen;

#if 1
    ksequi_test.run(rng, 5000, 250);
    equi_test.run(rng, 5000, 250);
    rns_test.run(rng, 100000, 250);
    gp_test.run(rng, 10000, 250);
    pk_test.run(rng, 5000, 250);
    cpn_test.run(rng, 500, 250);
    perm_test.run(rng, 1200, 250);
    max_test.run(rng, 1000, 250);
#endif
    bday_test.run(rng, 1000, 150);

    std::cout << std::endl;
  }

private:
  double confidence;
  double confidence_chi_square_quantil;
  distribution_experiment test_distrib_chi_square6;
  ks_equidistribution_test ksequi_test;
  equidistribution_test equi_test;
  runs_test rns_test;
  gap_test gp_test;
  poker_test pk_test;
  coupon_collector_test cpn_test;
  permutation_test perm_test;
  maximum_test max_test;
  birthday_test bday_test;
};

void test_base::check(double val) const
{ 
  environment.check(val);
}

void print_ks_table()
{
  std::cout.setf(std::ios::fixed);
  std::cout.precision(5);
  static const double all_p[] = { 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 };
  for(int n = 0; n <= 10000;  (n < 55 ? ++n : n *= 10)) {
    std::cout << std::setw(4) << n << " ";
    for(unsigned int i = 0; i < sizeof(all_p)/sizeof(all_p[0]); ++i) {
      std::cout << std::setw(8) 
                << (n == 0 ? all_p[i] : 
                    invert_monotone_inc(kolmogorov_smirnov_probability(n), all_p[i], 0, 10))
                << " ";
    }
    std::cout << std::endl;
  }
}

int main()
{
  //  Haertel::validate_all();
  test_environment env(0.99);
  env.run_test<boost::minstd_rand>("minstd_rand");
  env.run_test<boost::mt19937>("mt19937");
  env.run_test<Haertel::LCG_Af2>("LCG_Af2");
  env.run_test<Haertel::LCG_Die1>("LCG_Die1");
  env.run_test<Haertel::LCG_Fis>("LCG_Fis");
  env.run_test<Haertel::LCG_FM>("LCG_FM");
  env.run_test<Haertel::LCG_Hae>("LCG_Hae");
  env.run_test<Haertel::LCG_VAX>("LCG_VAX");
  env.run_test<Haertel::NLG_Inv1>("NLG_Inv1");
  env.run_test<Haertel::NLG_Inv2>("NLG_Inv2");
  env.run_test<Haertel::NLG_Inv4>("NLG_Inv4");
  env.run_test<Haertel::NLG_Inv5>("NLG_Inv5");
}