1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
/* statistic_tests.hpp header file
*
* Copyright Jens Maurer 2000
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* $Id: statistic_tests.hpp 24096 2004-07-27 03:43:34Z dgregor $
*
*/
#ifndef STATISTIC_TESTS_HPP
#define STATISTIC_TESTS_HPP
#include <stdexcept>
#include <iterator>
#include <vector>
#include <boost/limits.hpp>
#include <algorithm>
#include <cmath>
#include <boost/random.hpp>
#include <boost/config.hpp>
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
namespace std
{
inline double pow(double a, double b) { return ::pow(a,b); }
inline double ceil(double x) { return ::ceil(x); }
} // namespace std
#endif
template<class T>
inline T fac(int k)
{
T result = 1;
for(T i = 2; i <= k; ++i)
result *= i;
return result;
}
template<class T>
T binomial(int n, int k)
{
if(k < n/2)
k = n-k;
T result = 1;
for(int i = k+1; i<= n; ++i)
result *= i;
return result / fac<T>(n-k);
}
template<class T>
T stirling2(int n, int m)
{
T sum = 0;
for(int k = 0; k <= m; ++k)
sum += binomial<T>(m, k) * std::pow(double(k), n) *
( (m-k)%2 == 0 ? 1 : -1);
return sum / fac<T>(m);
}
/*
* Experiments which create an empirical distribution in classes,
* suitable for the chi-square test.
*/
// std::floor(gen() * classes)
class experiment_base
{
public:
experiment_base(int cls) : _classes(cls) { }
unsigned int classes() const { return _classes; }
protected:
unsigned int _classes;
};
class equidistribution_experiment : public experiment_base
{
public:
explicit equidistribution_experiment(unsigned int classes)
: experiment_base(classes) { }
template<class NumberGenerator, class Counter>
void run(NumberGenerator f, Counter & count, int n) const
{
assert((f.min)() == 0 &&
static_cast<unsigned int>((f.max)()) == classes()-1);
for(int i = 0; i < n; ++i)
count(f());
}
double probability(int i) const { return 1.0/classes(); }
};
// two-dimensional equidistribution experiment
class equidistribution_2d_experiment : public equidistribution_experiment
{
public:
explicit equidistribution_2d_experiment(unsigned int classes)
: equidistribution_experiment(classes) { }
template<class NumberGenerator, class Counter>
void run(NumberGenerator f, Counter & count, int n) const
{
unsigned int range = (f.max)()+1;
assert((f.min)() == 0 && range*range == classes());
for(int i = 0; i < n; ++i) {
int y1 = f();
int y2 = f();
count(y1 + range * y2);
}
}
};
// distribution experiment: assume a probability density and
// count events so that an equidistribution results.
class distribution_experiment : public equidistribution_experiment
{
public:
template<class UnaryFunction>
distribution_experiment(UnaryFunction probability , unsigned int classes)
: equidistribution_experiment(classes), limit(classes)
{
for(unsigned int i = 0; i < classes-1; ++i)
limit[i] = invert_monotone_inc(probability, (i+1)*0.05, 0, 1000);
limit[classes-1] = std::numeric_limits<double>::infinity();
if(limit[classes-1] < (std::numeric_limits<double>::max)())
limit[classes-1] = (std::numeric_limits<double>::max)();
#if 0
std::cout << __PRETTY_FUNCTION__ << ": ";
for(unsigned int i = 0; i < classes; ++i)
std::cout << limit[i] << " ";
std::cout << std::endl;
#endif
}
template<class NumberGenerator, class Counter>
void run(NumberGenerator f, Counter & count, int n) const
{
for(int i = 0; i < n; ++i) {
limits_type::const_iterator it =
std::lower_bound(limit.begin(), limit.end(), f());
count(it-limit.begin());
}
}
private:
typedef std::vector<double> limits_type;
limits_type limit;
};
// runs-up/runs-down experiment
template<bool up>
class runs_experiment : public experiment_base
{
public:
explicit runs_experiment(unsigned int classes) : experiment_base(classes) { }
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
result_type init = (up ? (f.min)() : (f.max)());
result_type previous = init;
unsigned int length = 0;
for(int i = 0; i < n; ++i) {
result_type val = f();
if(up ? previous <= val : previous >= val) {
previous = val;
++length;
} else {
count((std::min)(length, classes())-1);
length = 0;
previous = init;
// don't use this value, so that runs are independent
}
}
}
double probability(unsigned int r) const
{
if(r == classes()-1)
return 1.0/fac<double>(classes());
else
return static_cast<double>(r+1)/fac<double>(r+2);
}
};
// gap length experiment
class gap_experiment : public experiment_base
{
public:
gap_experiment(unsigned int classes, double alpha, double beta)
: experiment_base(classes), alpha(alpha), beta(beta) { }
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
double range = (f.max)() - (f.min)() + 1.0;
result_type low = static_cast<result_type>(alpha * range);
result_type high = static_cast<result_type>(beta * range);
unsigned int length = 0;
for(int i = 0; i < n; ) {
result_type value = f() - (f.min)();
if(value < low || value > high)
++length;
else {
count((std::min)(length, classes()-1));
length = 0;
++i;
}
}
}
double probability(unsigned int r) const
{
double p = beta-alpha;
if(r == classes()-1)
return std::pow(1-p, static_cast<double>(r));
else
return p * std::pow(1-p, static_cast<double>(r));
}
private:
double alpha, beta;
};
// poker experiment
class poker_experiment : public experiment_base
{
public:
poker_experiment(unsigned int d, unsigned int k)
: experiment_base(k), range(d)
{
assert(range > 1);
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
assert((f.min)() == 0);
assert((f.max)() == static_cast<result_type>(range-1));
std::vector<result_type> v(classes());
for(int i = 0; i < n; ++i) {
for(unsigned int j = 0; j < classes(); ++j)
v[j] = f();
std::sort(v.begin(), v.end());
result_type prev = v[0];
int r = 1; // count different values in v
for(unsigned int i = 1; i < classes(); ++i) {
if(prev != v[i]) {
prev = v[i];
++r;
}
}
count(r-1);
}
}
double probability(unsigned int r) const
{
++r; // transform to 1 <= r <= 5
double result = range;
for(unsigned int i = 1; i < r; ++i)
result *= range-i;
return result / std::pow(range, static_cast<double>(classes())) *
stirling2<double>(classes(), r);
}
private:
unsigned int range;
};
// coupon collector experiment
class coupon_collector_experiment : public experiment_base
{
public:
coupon_collector_experiment(unsigned int d, unsigned int cls)
: experiment_base(cls), d(d)
{
assert(d > 1);
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
assert((f.min)() == 0);
assert((f.max)() == static_cast<result_type>(d-1));
std::vector<bool> occurs(d);
for(int i = 0; i < n; ++i) {
occurs.assign(d, false);
unsigned int r = 0; // length of current sequence
int q = 0; // number of non-duplicates in current set
for(;;) {
result_type val = f();
++r;
if(!occurs[val]) { // new set element
occurs[val] = true;
++q;
if(q == d)
break; // one complete set
}
}
count((std::min)(r-d, classes()-1));
}
}
double probability(unsigned int r) const
{
if(r == classes()-1)
return 1-fac<double>(d)/std::pow(d, static_cast<double>(d+classes()-2))*
stirling2<double>(d+classes()-2, d);
else
return fac<double>(d)/std::pow(d, static_cast<double>(d+r)) *
stirling2<double>(d+r-1, d-1);
}
private:
int d;
};
// permutation test
class permutation_experiment : public equidistribution_experiment
{
public:
permutation_experiment(unsigned int t)
: equidistribution_experiment(fac<int>(t)), t(t)
{
assert(t > 1);
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
std::vector<result_type> v(t);
for(int i = 0; i < n; ++i) {
std::generate_n(v.begin(), t, f);
int x = 0;
for(int r = t-1; r > 0; r--) {
typename std::vector<result_type>::iterator it =
std::max_element(v.begin(), v.begin()+r+1);
x = (r+1)*x + (it-v.begin());
std::iter_swap(it, v.begin()+r);
}
count(x);
}
}
private:
int t;
};
// birthday spacing experiment test
class birthday_spacing_experiment : public experiment_base
{
public:
birthday_spacing_experiment(unsigned int d, int n, int m)
: experiment_base(d), n(n), m(m)
{
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator f, Counter & count, int n_total) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
assert((f.min)() == 0);
assert((f.max)() == static_cast<result_type>(m-1));
for(int j = 0; j < n_total; j++) {
std::vector<result_type> v(n);
std::generate_n(v.begin(), n, f);
std::sort(v.begin(), v.end());
std::vector<result_type> spacing(n);
for(int i = 0; i < n-1; i++)
spacing[i] = v[i+1]-v[i];
spacing[n-1] = v[0] + m - v[n-1];
std::sort(spacing.begin(), spacing.end());
unsigned int k = 0;
for(int i = 0; i < n-1; ++i) {
if(spacing[i] == spacing[i+1])
++k;
}
count((std::min)(k, classes()-1));
}
}
double probability(unsigned int r) const
{
assert(classes() == 4);
assert(m == (1<<25));
assert(n == 512);
static const double prob[] = { 0.368801577, 0.369035243, 0.183471182,
0.078691997 };
return prob[r];
}
private:
int n, m;
};
/*
* Misc. helper functions.
*/
template<class Float>
struct distribution_function
{
typedef Float result_type;
typedef Float argument_type;
typedef Float first_argument_type;
typedef Float second_argument_type;
};
// computes P(K_n <= t) or P(t1 <= K_n <= t2). See Knuth, 3.3.1
class kolmogorov_smirnov_probability : public distribution_function<double>
{
public:
kolmogorov_smirnov_probability(int n)
: approx(n > 50), n(n), sqrt_n(std::sqrt(double(n)))
{
if(!approx)
n_n = std::pow(static_cast<double>(n), n);
}
double operator()(double t) const
{
if(approx) {
return 1-std::exp(-2*t*t)*(1-2.0/3.0*t/sqrt_n);
} else {
t *= sqrt_n;
double sum = 0;
for(int k = static_cast<int>(std::ceil(t)); k <= n; k++)
sum += binomial<double>(n, k) * std::pow(k-t, k) *
std::pow(t+n-k, n-k-1);
return 1 - t/n_n * sum;
}
}
double operator()(double t1, double t2) const
{ return operator()(t2) - operator()(t1); }
private:
bool approx;
int n;
double sqrt_n;
double n_n;
};
/*
* Experiments for generators with continuous distribution functions
*/
class kolmogorov_experiment
{
public:
kolmogorov_experiment(int n) : n(n), ksp(n) { }
template<class NumberGenerator, class Distribution>
double run(NumberGenerator gen, Distribution distrib) const
{
const int m = n;
typedef std::vector<double> saved_temp;
saved_temp a(m,1.0), b(m,0);
std::vector<int> c(m,0);
for(int i = 0; i < n; ++i) {
double val = gen();
double y = distrib(val);
int k = static_cast<int>(std::floor(m*y));
if(k >= m)
--k; // should not happen
a[k] = (std::min)(a[k], y);
b[k] = (std::max)(b[k], y);
++c[k];
}
double kplus = 0, kminus = 0;
int j = 0;
for(int k = 0; k < m; ++k) {
if(c[k] > 0) {
kminus = (std::max)(kminus, a[k]-j/static_cast<double>(n));
j += c[k];
kplus = (std::max)(kplus, j/static_cast<double>(n) - b[k]);
}
}
kplus *= std::sqrt(double(n));
kminus *= std::sqrt(double(n));
// std::cout << "k+ " << kplus << " k- " << kminus << std::endl;
return kplus;
}
double probability(double x) const
{
return ksp(x);
}
private:
int n;
kolmogorov_smirnov_probability ksp;
};
// maximum-of-t test (KS-based)
template<class UniformRandomNumberGenerator>
class maximum_experiment
{
public:
typedef UniformRandomNumberGenerator base_type;
maximum_experiment(base_type & f, int n, int t) : f(f), ke(n), t(t)
{ }
double operator()() const
{
double res = ke.run(generator(f, t),
std::bind2nd(std::ptr_fun(static_cast<double (*)(double, double)>(&std::pow)), t));
return res;
}
private:
struct generator {
generator(base_type & f, int t) : f(f), t(t) { }
double operator()()
{
double mx = f();
for(int i = 1; i < t; ++i)
mx = (std::max)(mx, f());
return mx;
}
private:
boost::uniform_01<base_type> f;
int t;
};
base_type & f;
kolmogorov_experiment ke;
int t;
};
// compute a chi-square value for the distribution approximation error
template<class ForwardIterator, class UnaryFunction>
typename UnaryFunction::result_type
chi_square_value(ForwardIterator first, ForwardIterator last,
UnaryFunction probability)
{
typedef std::iterator_traits<ForwardIterator> iter_traits;
typedef typename iter_traits::value_type counter_type;
typedef typename UnaryFunction::result_type result_type;
unsigned int classes = std::distance(first, last);
result_type sum = 0;
counter_type n = 0;
for(unsigned int i = 0; i < classes; ++first, ++i) {
counter_type count = *first;
n += count;
sum += (count/probability(i)) * count; // avoid overflow
}
#if 0
for(unsigned int i = 0; i < classes; ++i) {
// std::cout << (n*probability(i)) << " ";
if(n * probability(i) < 5)
std::cerr << "Not enough test runs for slot " << i
<< " p=" << probability(i) << ", n=" << n
<< std::endl;
}
#endif
// std::cout << std::endl;
// throw std::invalid_argument("not enough test runs");
return sum/n - n;
}
template<class RandomAccessContainer>
class generic_counter
{
public:
explicit generic_counter(unsigned int classes) : container(classes, 0) { }
void operator()(int i)
{
assert(i >= 0);
assert(static_cast<unsigned int>(i) < container.size());
++container[i];
}
typename RandomAccessContainer::const_iterator begin() const
{ return container.begin(); }
typename RandomAccessContainer::const_iterator end() const
{ return container.end(); }
private:
RandomAccessContainer container;
};
// chi_square test
template<class Experiment, class Generator>
double run_experiment(const Experiment & experiment, Generator gen, int n)
{
generic_counter<std::vector<int> > v(experiment.classes());
experiment.run(gen, v, n);
return chi_square_value(v.begin(), v.end(),
std::bind1st(std::mem_fun_ref(&Experiment::probability),
experiment));
}
// number generator with experiment results (for nesting)
template<class Experiment, class Generator>
class experiment_generator_t
{
public:
experiment_generator_t(const Experiment & exper, Generator & gen, int n)
: experiment(exper), generator(gen), n(n) { }
double operator()() { return run_experiment(experiment, generator, n); }
private:
const Experiment & experiment;
Generator & generator;
int n;
};
template<class Experiment, class Generator>
experiment_generator_t<Experiment, Generator>
experiment_generator(const Experiment & e, Generator & gen, int n)
{
return experiment_generator_t<Experiment, Generator>(e, gen, n);
}
template<class Experiment, class Generator, class Distribution>
class ks_experiment_generator_t
{
public:
ks_experiment_generator_t(const Experiment & exper, Generator & gen,
const Distribution & distrib)
: experiment(exper), generator(gen), distribution(distrib) { }
double operator()() { return experiment.run(generator, distribution); }
private:
const Experiment & experiment;
Generator & generator;
Distribution distribution;
};
template<class Experiment, class Generator, class Distribution>
ks_experiment_generator_t<Experiment, Generator, Distribution>
ks_experiment_generator(const Experiment & e, Generator & gen,
const Distribution & distrib)
{
return ks_experiment_generator_t<Experiment, Generator, Distribution>
(e, gen, distrib);
}
#endif /* STATISTIC_TESTS_HPP */
|