File: wg21-proposal.html

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (3608 lines) | stat: -rw-r--r-- 132,109 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
<head>
  <meta http-equiv="Content-Language" content="en-us">
  <meta http-equiv="Content-Type" content="text/html; charset=us-ascii">

  <title>A Proposal to Add an Extensible Random Number Facility to the
  Standard Library</title>
</head>

<body bgcolor="#FFFFFF" text="#000000">
  <font size="-1">Jens Maurer &lt;Jens.Maurer@gmx.net&gt;<br>
  2002-11-10<br>
  Document N1398=02-0056</font>

  <p><font size="-1"><code>$Id: proposal.html,v 1.44 2002/11/10 20:42:15
  jmaurer Exp $</code></font></p>

  <h1>A Proposal to Add an Extensible Random Number Facility to the Standard
  Library (N1398)</h1>

  <blockquote>
    Any one who considers arithmetical methods of producing random digits is,
    of course, in a state of sin.
  </blockquote>

  <p align="right">John von Neumann, 1951</p>

  <h2>Revision history</h2>

  <ul>
    <li>2002-11-10: Publication in the Post-Santa Cruz mailing.</li>

    <li>The <code>seed(first, last)</code> interface now needs "unsigned
    long" values.</li>

    <li>Introduce "variate_generator", adjust distribution interface
    accordingly.</li>

    <li>Add "add-on packages" discussion.</li>

    <li>All distribution parameters must be defaulted.</li>

    <li>Add "target audience" subsection to "motivation" section.</li>

    <li>Add discussion of manager class.</li>

    <li>Engines are independent of distributions, thus consider respective
    lifetimes.</li>

    <li>Add "sharing of engines" as a major requirement.</li>

    <li>Add some open issues.</li>

    <li>2002-10-11: First publication on the C++ committee's library
    reflector.</li>
  </ul>

  <h2>I. Motivation</h2>

  <blockquote>
    <i>Why is this important? What kinds of problems does it address, and
    what kinds of programmers, is it intended to support? Is it based on
    existing practice?</i>
  </blockquote>Computers are deterministic machines by design: equal input
  data results in equal output, given the same internal state. Sometimes,
  applications require seemingly non-deterministic behaviour, usually
  provided by generating random numbers. Such applications include:

  <ul>
    <li>numerics (simulation, Monte-Carlo integration)</li>

    <li>games (shuffling card decks, non-deterministic enemy behavior)</li>

    <li>testing (generation of test input data for good coverage)</li>

    <li>security (generation of cryptographic keys)</li>
  </ul>

  <p>Programmers in all of the above areas have to find ways to generate
  random numbers. However, the difficulty to find generators that are both
  efficient and have good quality is often underestimated, and so ad-hoc
  implementations often fail to meet either or both of these goals.</p>

  <p>The C++ standard library includes <code>std::rand</code>, inherited from
  the C standard library, as the only facility to generate pseudo-random
  numbers. It is underspecified, because the generation function is not
  defined, and indeed early C standard library implementations provided
  surprisingly bad generators. Furthermore, the interface relies on global
  state, making it difficult or inefficient to provide for correct operation
  for simultaneous invocations in multi-threaded applications.</p>

  <p>There is a lot of existing practice in this area. A multitude of
  libraries, usually implemented in C or Fortran, is available from the
  scientific community. Some implement just one random number engine, others
  seek to provide a full framework. I know of no comprehensive C++ framework
  for generating random numbers that adheres to the design principles put
  forth in section III.</p>

  <p>Random number generators are appropriate for this TR because they fall
  into one of the domains (numerics) identified in N1314 as a target for the
  TR.</p>

  <h3>Target Audience</h3>There are several different kinds of programmers
  that are assumed to use the facilities provided in this proposal.

  <ul>
    <li>programmers that provide additional engines</li>

    <li>programmers that provide additional distributions</li>

    <li>programmers that provide generic add-on packages</li>

    <li>programmers that need random numbers</li>
  </ul>This proposal specifies an infrastructure so that the needs of all
  four groups are met. The first two groups benefit from a modular design so
  that they can plug in their contributions. Providing add-on packages
  benefits from a design that suits to generic programming needs. Finally,
  users in need of random numbers benefit from an interface to the package
  that is easy to use.

  <h2>II. Impact On the Standard</h2>

  <blockquote>
    <i>What does it depend on, and what depends on it? Is it a pure
    extension, or does it require changes to standard components? Does it
    require core language changes?</i>
  </blockquote>This proposal is a pure library extension. It does not require
  changes to any standard classes or functions. It does not require changes
  to any of the standard requirement tables. It does not require any changes
  in the core language, and it has been implemented in standard C++ as per
  ISO 14882:1998.

  <p>The ISO C99 extension that specify integral types having a given minimum
  or exact bitwidth (e.g. <code>int32_t</code>) aids in implementing this
  proposal, however these types (or the equivalent thereof under another
  name) can be defined with template metaprogramming in standard C++, so
  these are not strictly necessary.</p>

  <p>In case the ISO C99 extensions become part of the TR, section IV should
  be reviewed whether some requirements could be reformulated with the ISO
  C99 extensions.</p>

  <p>In case a standard reference-counted smart pointer becomes part of the
  TR, section IV should be reviewed and instances of the smart pointer be
  added to the acceptable template parameters for a
  <code>variate_generator</code>.</p>

  <h2>III. Design Decisions</h2>

  <blockquote>
    <i>Why did you choose the specific design that you did? What alternatives
    did you consider, and what are the tradeoffs? What are the consequences
    of your choice, for users and implementors? What decisions are left up to
    implementors? If there are any similar libraries in use, how do their
    design decisions compare to yours?</i>
  </blockquote>The design decisions are compared to those in the following
  libraries:

  <ul>
    <li>CLHEP (original at http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html,
    modifications from FermiLab at (anonymous CVS)
    :pserver:anonymous@zoomcvs.fnal.gov:/usr/people/cvsuser/repository)</li>

    <li>crng 1.1: Random-number generators (RNGs) implemented as Python
    extension types coded in C (at http://www.sbc.su.se/~per/crng/)</li>

    <li>Swarm 2.1.1 (multi-agent simulation of complex systems), random
    number package, using a Smalltalk-like programming language (at
    http://www.santafe.edu/projects/swarm/swarmdocs/set/swarm.random.sgml.reference.html)</li>

    <li>GNU Scientific Library: general scientific computing library
    implemented in C, comprehensive coverage of random number engines and
    distributions (at http://sources.redhat.com/gsl)</li>
  </ul>The choice of engines and distributions is also contrasted against the
  following literature:

  <ul>
    <li>Donald E. Knuth, "The Art of Computer Programming Vol. 2"</li>

    <li>William H. Press et al., "Numerical Recipes in C"</li>
  </ul>

  <h3>A. Overview on Requirements</h3>Here is a short overview on the
  requirements for the random number framework.

  <ul>
    <li>allows users to choose in speed / size / quality trade-offs</li>

    <li>has a tight enough specification to get reliable cross-platform
    results</li>

    <li>allows storage of state on non-volatile media (e.g., in a disk file)
    to resume computation later</li>

    <li>does not impede sequence "jump-ahead" for parallel computation</li>

    <li>provides a variety of base engines, not just one</li>

    <li>allows the user to write its own base engines and use it with the
    library-provided distributions</li>

    <li>provides the most popular distributions</li>

    <li>allows the user to write its own distributions and use it with the
    library-provided engines</li>

    <li>allows sharing of engines by several distributions</li>

    <li>does not prevent implementations with utmost efficiency</li>

    <li>provides both pseudo-random number engines (for simulations etc.) and
    "true" non-deterministic random numbers (for cryptography)</li>
  </ul>All of the requirements are revisited in detail in the following
  sections.

  <h3>B. Pseudo-Random vs. Non-Deterministic Random Numbers</h3>This section
  tries to avoid philosophical discussions about randomness as much as
  possible, a certain amount of intuition is assumed.

  <p>In this proposal, a <em>pseudo-random number engine</em> is defined as
  an initial internal state x(0), a function f that moves from one internal
  state to the next x(i+1) := f(x(i)), and an output function o that produces
  the output o(x(i)) of the generator. This is an entirely deterministic
  process, it is determined by the initial state x(0) and functions f and o
  only. The initial state x(0) is determined from a seed. Apparent randomness
  is achieved only because the user has limited perception.</p>

  <p>A <em>non-deterministic random-number engine</em> provides a sequence of
  random numbers x(i) that cannot be foreseen. Examples are certain
  quantum-level physics experiments, measuring the time difference between
  radioactive decay of individual atoms or noise of a Zehner diode.
  Relatively unforeseeable random sources are also (the low bits of) timing
  between key touches, mouse movements, Ethernet packet arrivals, etc. An
  estimate for the amount of unforeseeability is the entropy, a concept from
  information theory. Completely foreseeable sequences (e.g., from
  pseudo-random number engines) have entropy 0, if all bits are
  unforeseeable, the entropy is equal to the number of bits in each
  number.</p>

  <p>Pseudo-random number engines are usually much faster than
  non-deterministic random-number engines, because the latter require I/O to
  query some randomness device outside of the computer. However, there is a
  common interface feature subset of both pseudo-random and non-deterministic
  random-number engines. For example, a non-deterministic random-number
  engine could be employed to produce random numbers with normal
  distribution; I believe this to be an unlikely scenario in practice.</p>

  <p>Other libraries, including those mentioned above, only provide either
  pseudo-random numbers, suitable for simulations and games, or
  non-deterministic random numbers, suitable for cryptographic
  applications.</p>

  <h3>C. Separation of Engines and Distributions</h3>Random-number generation
  is usually conceptually separated into <em>random-number engines</em> that
  produce uniformly distributed random numbers between a given minimum and
  maximum and <em>random-number distributions</em> that retrieve uniformly
  distributed random numbers from some engine and produce numbers according
  to some distribution (e.g., Gaussian normal or Bernoulli distribution).
  Returning to the formalism from section A, the former can be identified
  with the function f and the latter with the output function o.

  <p>This proposal honours this conceptual separation, and provides a class
  template to merge an arbitrary engine with an arbitrary distribution on
  top. To this end, this proposal sets up requirements for engines so that
  each of them can be used to provide uniformly distributed random numbers
  for any of the distributions. The resulting freedom of combination allows
  for the utmost re-use.</p>

  <p>Engines have usually been analyzed with all mathematical and empirical
  tools currently available. Nonetheless, those tools show the absence of a
  particular weakness only, and are not exhaustive. Albeit unlikely, a new
  kind of test (for example, a use of random numbers in a new kind of
  simulation or game) could show serious weaknesses in some engines that were
  not known before.</p>

  <p>This proposal attempts to specify the engines precisely; two different
  implementations, with the same seed, should return the same output
  sequence. This forces implementations to use the well-researched engines
  specified hereinafter, and users can have confidence in their quality and
  the limits thereof.</p>

  <p>On the other hand, the specifications for the distributions only define
  the statistical result, not the precise algorithm to use. This is different
  from engines, because for distribution algorithms, rigorous proofs of their
  correctness are available, usually under the precondition that the input
  random numbers are (truely) uniformly distributed. For example, there are
  at least a handful of algorithms known to produce normally distributed
  random numbers from uniformly distributed ones. Which one of these is most
  efficient depends on at least the relative execution speeds for various
  transcendental functions, cache and branch prediction behaviour of the CPU,
  and desired memory use. This proposal therefore leaves the choice of the
  algorithm to the implementation. It follows that output sequences for the
  distributions will not be identical across implementations. It is expected
  that implementations will carefully choose the algorithms for distributions
  up front, since it is certainly surprising to customers if some
  distribution produces different numbers from one implementation version to
  the next.</p>

  <p>Other libraries usually provide the same differentiation between engines
  and distributions. Libraries rarely have a wrapper around both engine and
  distribution, but it turns out that this can hide some complexities from
  the authors of distributions, since some facitilies need to be provided
  only once. A previous version of this proposal had distributions directly
  exposed to the user, and the distribution type dependent on the engine
  type. In various discussions, this was considered as too much coupling.</p>

  <p>Since other libraries do not aim to provide a portable specification
  framework, engines are sometimes only described qualitatively without
  giving the exact parameterization. Also, distributions are given as
  specific functions or classes, so the quality-of-implementation question
  which distribution algorithm to employ does not need to be addressed.</p>

  <h3>D. Templates vs. Virtual Functions</h3>The layering sketched in the
  previous subsection can be implemented by either a template mechanism or by
  using virtual functions in a class hierarchy. This proposal uses templates.
  Template parameters are usually some base type and values denoting fixed
  parameters for the functions f and o, e.g. a word size or modulus.

  <p>For virtual functions in a class hierarchy, the core language requires a
  (nearly) exact type match for a function in a derived classes overriding a
  function in a base class. This seems to be unnecessarily restrictive,
  because engines can sometimes benefit from using different integral base
  types. Also, with current compiler technology, virtual functions prevent
  inlining when a pointer to the base class is used to call a virtual
  function that is overridden in some derived class. In particular with
  applications such as simulations that sometimes use millions of
  pseudo-random numbers per second, losing significant amounts of performance
  due to missed inlining opportunities appears to not be acceptable.</p>

  <p>The CLHEP library bases all its engines on the abstract base class
  <code>HepRandomEngine</code>. Specific engines derive from this class and
  override its pure virtual functions. Similarly, all distributions are based
  on the base class <code>HepRandom</code>. Specific distributions derive
  from this class, override operator(), and provide a number of specific
  non-virtual functions.</p>

  <p>The GNU Scientific Library, while coded in C, adheres to the principles
  of object-structuring; all engines can be used with any of the
  distributions. The technical implementation is by mechanisms similar to
  virtual functions.</p>

  <h3>E. Parameterization and Initialization for Engines</h3>Engines usually
  have a "base" type which is used to store its internal state. Also, they
  usually have a choice of parameters. For example, a linear congruential
  engine is defined by x(i+1) = (a*x(i)+c) mod m, so f(x) = (a*x+c) mod m;
  the base type is "int" and parameters are a, c, and m. Finding parameters
  for a given function f that make for good randomness in the resulting
  engine's generated numbers x(i) requires extensive and specialized
  mathematical training and experience. In order to make good random numbers
  available to a large number of library users, this proposal not only
  defines generic random-number engines, but also provides a number of
  predefined well-known good parameterizations for those. Usually, there are
  only a few (less than five) well-known good parameterizations for each
  engine, so it appears feasible to provide these.

  <p>Since random-number engines are mathematically designed with computer
  implementation in mind, parameters are usually integers representable in a
  machine word, which usually coincides nicely with a C++ built-in type. The
  parameters could either be given as (compile-time) template arguments or as
  (run-time) constructor arguments.</p>

  <p>Providing parameters as template arguments allows for providing
  predefined parameterizations as simple "typedef"s. Furthermore, the
  parameters appear as integral constants, so the compiler can value-check
  the given constants against the engine's base type. Also, the library
  implementor can choose different implementations depending on the values of
  the parameters, without incurring any runtime overhead. For example, there
  is an efficient method to compute (a*x) mod m, provided that a certain
  magnitude of m relative to the underlying type is not exceeded.
  Additionally, the compiler's optimizer can benefit from the constants and
  potentially produce better code, for example by unrolling loops with fixed
  loop count.</p>

  <p>As an alternative, providing parameters as constructor arguments allows
  for more flexibility for the library user, for example when experimenting
  with several parameterizations. Predefined parameterizations can be
  provided by defining wrapper types which default the constructor
  parameters.</p>

  <p>Other libraries have hard-coded the parameters of their engines and do
  not allow the user any configuration of them at all. If the user wishes to
  change the parameters, he has to re-implement the engine's algorithm. In my
  opinion, this approach unnecessarily restricts re-use.</p>

  <p>Regarding initialization, this proposal chooses to provide
  "deterministic seeding" with the default constructor and the
  <code>seed</code> function without parameters: Two engines constructed
  using the default constructor will output the same sequence. In contrast,
  the CLHEP library's default constructed engines will take a fresh seed from
  a seed table for each instance. While this approach may be convenient for a
  certain group of users, it relies on global state and can easily be
  emulated by appropriately wrapping engines with deterministic seeding.</p>

  <p>In addition to the default constructor, all engines provide a
  constructor and <code>seed</code> function taking an iterator range
  [it1,it2) pointing to unsigned integral values. An engine initializes its
  state by successively consuming values from the iterator range, then
  returning the advanced iterator it1. This approach has the advantage that
  the user can completely exploit the large state of some engines for
  initialization. Also, it allows to initialize compound engines in a uniform
  manner. For example, a compound engine consisting of two simpler engines
  would initialize the first engine with its [it1,it2). The first engine
  returns a smaller iterator range that it has not consumed yet. This can be
  used to initialize the second engine.</p>

  <p>The iterator range [it1,it2) is specified to point to unsigned long
  values. There is no way to determine from a generic user program how the
  initialization values will be treated and what range of bits must be
  provided, except by enumerating all engines, e.g. in template
  specializations. The problem is that a given generator might have differing
  requirements on the values of the seed range even within one
  <code>seed</code> call.</p>

  <p>For example, imagine a</p>
  <pre>
   xor_combine&lt;lagged_fibonacci&lt;...&gt;, mersenne_twister&lt;...&gt; &gt;
</pre>generator. For this, <code>seed(first, last)</code> will consume values
as follows: First, seed the state of the <code>lagged_fibonacci</code>
generator by consuming one item from [first, last) for each word of state.
The values are reduced to (e.g.) 24 bits to fit the
<code>lagged_fibonacci</code> state requirements. Then, seed the state of the
<code>mersenne_twister</code> by consuming some number of items from the
remaining [first, last). The values are reduced to 32 bits to fit the <code>
  mersenne_twister</code> state requirements.

  <p>How does a concise programming interface for those increasingly complex
  and varying requirements on [first, last) look like? I don't know, and I
  don't want to complicate the specification by inventing something
  complicated here.</p>

  <p>Thus, the specification says for each generator how it uses the seed
  values, and how many are consumed. Additional features are left to the
  user.</p>

  <p>In a way, this is similar to STL containers: It is intended that the
  user can exchange iterators to various containers in generic algorithms,
  but the container itself is not meant to be exchanged, i.e. having a
  Container template parameter is often not adequate. That is analogous to
  the random number case: The user can pass an engine around and use its
  <code>operator()</code> and <code>min</code> and <code>max</code> functions
  generically. However, the user can't generically query the engine
  attributes and parameters, simply because most are entirely different in
  semantics for each engine.</p>

  <p>The <code>seed(first, last)</code> interface can serve two purposes:</p>

  <ol>
    <li>In a generic context, the user can pass several integer values &gt;=
    1 for seeding. It is unlikely that the user explores the full state space
    with the seeds she provides, but she can be reasonably sure that her
    seeds aren't entirely incorrect. (There is no formal guarantee for that,
    except that the ability to provide bad seeds usually means the
    parameterization of the engine is bad, e.g. a non-prime modulus for a
    linear congruential engine.) For example, if the user wants a
    <code>seed(uint32_t)</code> on top of <code>seed(first, last)</code>, one
    option is to use a <code>linear_congruential</code> generator that
    produces the values required for <code>seed(first, last)</code>. When the
    user defines the iterator type for <code>first</code> and
    <code>last</code> so that it encapsulates the
    <code>linear_congruential</code> engine in <code>operator++</code>, the
    user doesn't even need to know beforehand how many values
    <code>seed(first, last)</code> will need.</li>

    <li>If the user is in a non-generic context, he knows the specific
    template type of the engine (probably not the template value-based
    parameterization, though). The precise specification for
    <code>seed(first, last)</code> allows to know what values need to be
    passed in so that a specific initial state is attained, for example to
    compare one implementation of the engine with another one that uses
    different seeding.</li>

    <li>If the user requires both, he needs to inject knowledge into (1) so
    that he is in the position of (2). One way to inject the knowledge is to
    use (partial) template specialization to add the knowledge. The specific
    parameterization of some engine can then be obtained by querying the data
    members of the engines.</li>
  </ol>

  <p>I haven't seen the iterator-based approach to engine initialization in
  other libraries; most initialization approaches rely on a either a single
  value or on per-engine specific approaches to initialization.</p>

  <p>An alternative approach is to pass a zero-argument function object
  ("generator") for seeding. It is trivial to implement a generator from a
  given iterator range, but it is more complicated to implement an iterator
  range from a generator. Also, the exception object that is specified to be
  thrown when the iterator range is exhausted could be configured in a
  user-provided iterator to generator mapping. With this approach, some
  engines would have three one-argument constructors: One taking a single
  integer for seeding, one taking a (reference?) to a (templated) generator,
  and the copy constructor. It appears that the opportunities for ambiguities
  or choosing the wrong overload are too confusing to the unsuspecting
  user.</p>

  <h3>F. Parameterization and Initialization for Distributions</h3>The
  distributions specified in this proposal have template parameters that
  indicate the output data type (e.g. <code>float</code>,
  <code>double</code>, <code>long double</code>) that the user desires.

  <p>The probability density functions of distributions usually have
  parameters. These are mapped to constructor parameters, to be set at
  runtime by the library user according to her requirements. The parameters
  for a distribution object cannot change after its construction. When
  constructing the distribution, this allows to pre-compute some data
  according to the parameters given without risk of inadvertently
  invalidating them later.</p>

  <p>Distributions may implement <code>operator()(T x)</code>, for arbitrary
  type <code>T</code>, to meet special needs, for example a "one-shot" mode
  where each invocation uses different distribution parameters.</p>

  <h3>G. Properties as Traits vs. In-Class Constants</h3>Users might wish to
  query compile-time properties of the engines and distributions, e.g. their
  base types, constant parameters, etc. This is similar to querying the
  properties of the built-in types such as <code>double</code> using
  <code>std::numeric_limits&lt;&gt;</code>. However, engines and
  distributions cannot be simple types, so it does not appear to be necessary
  to separate the properties into separate traits classes. Instead,
  compile-time properties are given as members types and static member
  constants.

  <h3>H. Which Engines to Include</h3>There is a multitude of pseudo-random
  number engines available in both literature and code. Some engines, such as
  Mersenne Twister, have an independent algorithm ("base engine"). Others
  change the values or order of output of other engines to improve
  randomness, for example Knuth's "Algorithm B" ("compound engine"). The
  template mechanism allows easy combination of base and compound engines.

  <p>Engines may be categorized according to the following dimensions.</p>

  <ul>
    <li>integers or floating-point numbers produced (Some engines produce
    uniformly distributed integers in the range [min,max], however, most
    distribution functions expect uniformly distributed floating-point
    numbers in the range [0,1) as the input sequence. The obvious conversion
    requires a relatively costly integer to floating-point conversion plus a
    floating-point multiplication by (max-min+1)<sup>-1</sup> for each random
    number used. To save the multiplication, some engines can directly
    produce floating-point numbers in the range [0,1) by maintaining the
    state x(i) in an appropriately normalized form, given a sufficiently good
    implementation of basic floating-point operations (e.g. IEEE 754).</li>

    <li>quality of random numbers produced (What is the cycle length? Does
    the engine pass all relevant statistical tests? Up to what dimension are
    numbers equidistributed?)</li>

    <li>speed of generation (How many and what kind of operations have to be
    performed to produce one random number, on average?)</li>

    <li>size of state (How may machine words of storage are required to hold
    the state x(i) of the random engine?)</li>

    <li>option for independent subsequences (Is it possible to move from x(i)
    to x(i+k) with at most O(log(k)) steps? This allows to efficiently use
    subsequences x(0)...x(k-1), x(k)...x(2k-1), ..., x(jk)...x((j+1)k-1),
    ..., for example for parallel computation, where each of the m processors
    gets assigned the (independent) subsequence starting at x(jk) (0 &lt;= k
    &lt; m).)</li>
  </ul>According to the criteria above, the engines given below were chosen.
  The quality and size indications were completed according to best known
  parameterizations. Other parameterizations usually yield poorer quality
  and/or less size.

  <table border="1" summary="">
    <tr>
      <th>engine</th>

      <th>int / float</th>

      <th>quality</th>

      <th>speed</th>

      <th>size of state</th>

      <th>subsequences</th>

      <th>comments</th>
    </tr>

    <tr>
      <td>linear_congruential</td>

      <td>int</td>

      <td>medium</td>

      <td>medium</td>

      <td>1 word</td>

      <td>yes</td>

      <td>cycle length is limited to the maximum value representable in one
      machine word, passes most statisticial tests with chosen
      parameters.</td>
    </tr>

    <tr>
      <td>mersenne_twister</td>

      <td>int</td>

      <td>good</td>

      <td>fast</td>

      <td>624 words</td>

      <td>no</td>

      <td>long cycles, passes all statistical tests, good equidistribution in
      high dimensions</td>
    </tr>

    <tr>
      <td>subtract_with_carry</td>

      <td>both</td>

      <td>medium</td>

      <td>fast</td>

      <td>25 words</td>

      <td>no</td>

      <td>very long cycles possible, fails some statistical tests. Can be
      improved with the discard_block compound engine.</td>
    </tr>

    <tr>
      <td>discard_block</td>

      <td>both</td>

      <td>good</td>

      <td>slow</td>

      <td>base engine + 1 word</td>

      <td>no</td>

      <td>compound engine that removes correlation provably by throwing away
      significant chunks of the base engine's sequence, the resulting speed
      is reduced to 10% to 3% of the base engine's.</td>
    </tr>

    <tr>
      <td>xor_combine</td>

      <td>int</td>

      <td>good</td>

      <td>fast</td>

      <td>base engines</td>

      <td>yes, if one of the base engines</td>

      <td>compound engine that XOR-combines the sequences of two base
      engines</td>
    </tr>
  </table>

  <p>Some engines were considered for inclusion, but left out for the
  following reasons:</p>

  <table border="1" summary="">
    <tr>
      <th>engine</th>

      <th>int / float</th>

      <th>quality</th>

      <th>speed</th>

      <th>size of state</th>

      <th>subsequences</th>

      <th>comments</th>
    </tr>

    <tr>
      <td>shuffle_output</td>

      <td>int</td>

      <td>good</td>

      <td>fast</td>

      <td>base engine + 100 words</td>

      <td>no</td>

      <td>compound engine that reorders the base engine's output, little
      overhead for generation (one multiplication)</td>
    </tr>

    <tr>
      <td>lagged_fibonacci</td>

      <td>both</td>

      <td>medium</td>

      <td>fast</td>

      <td>up to 80,000 words</td>

      <td>no</td>

      <td>very long cycles possible, fails birthday spacings test. Same
      principle of generation as <code>subtract_with_carry</code>, i.e. x(i)
      = x(i-s) (*) x(i-r), where (*) is either of +, -, xor with or without
      carry.</td>
    </tr>

    <tr>
      <td>inversive_congruential (Hellekalek 1995)</td>

      <td>int</td>

      <td>good</td>

      <td>slow</td>

      <td>1 word</td>

      <td>no</td>

      <td>x(i+1) = a x(i)<sup>-1</sup> + c. Good equidistribution in several
      dimensions. Provides no apparent advantage compared to ranlux; the
      latter can produce floating-point numbers directly.</td>
    </tr>

    <tr>
      <td>additive_combine (L'Ecuyer 1988)</td>

      <td>int</td>

      <td>good</td>

      <td>medium</td>

      <td>2 words</td>

      <td>yes</td>

      <td>Combines two linear congruential generators. Same principle of
      combination as <code>xor_combine</code>, i.e. z(i) = x(i) (*) y(i),
      where (*) is one of +, -, xor.</td>
    </tr>

    <tr>
      <td>R250 (Kirkpatrick and Stoll)</td>

      <td>int</td>

      <td>bad</td>

      <td>fast</td>

      <td>~ 20 words</td>

      <td>no</td>

      <td>General Feedback Shift Register with two taps: Easily exploitable
      correlation.</td>
    </tr>

    <tr>
      <td>linear_feedback_shift</td>

      <td>int</td>

      <td>medium</td>

      <td>fast</td>

      <td>1 word</td>

      <td>no</td>

      <td>cycle length is limited to the maximum value representable in one
      machine word, fails some statistical tests, can be improved with the
      xor_combine compound engine.</td>
    </tr>
  </table>

  <p>The GNU Scientific Library and Swarm have additional engine that are not
  mentioned in the table below.</p>

  <table border="1" summary="">
    <tr>
      <th>Engine</th>

      <th>this proposal</th>

      <th>CLHEP</th>

      <th>crng</th>

      <th>GNU Scientific Library</th>

      <th>Swarm</th>

      <th>Numerical Recipes</th>

      <th>Knuth</th>
    </tr>

    <tr>
      <td>LCG(2<sup>31</sup>-1, 16807)</td>

      <td>minstd_rand0</td>

      <td>-</td>

      <td>ParkMiller</td>

      <td>ran0, minstd</td>

      <td>-</td>

      <td>ran0</td>

      <td>p106, table 1, line 19</td>
    </tr>

    <tr>
      <td>LCG(2<sup>32</sup>, a=1664525, c=1013904223)</td>

      <td>linear_congruential&lt; ..., 1664525, 1013904223, (1 &lt;&lt; 32)
      &gt;</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>LCG1gen</td>

      <td>-</td>

      <td>p106, table 1, line 16</td>
    </tr>

    <tr>
      <td>LCG1 + LCG2 + LCG3</td>

      <td>-</td>

      <td>-</td>

      <td>WichmannHill</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>(LCG1 - LCG2 + LCG3 - LCG4) mod m0</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>C4LCGXgen</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>LCG(2<sup>31</sup>-1, 16807) with Bays/Durham shuffle</td>

      <td>shuffle_output&lt;minstd_rand0, 32&gt; (shuffle_output not in this
      proposal)</td>

      <td>-</td>

      <td>-</td>

      <td>ran1</td>

      <td>PMMLCG1gen</td>

      <td>ran1</td>

      <td>Algorithm "B"</td>
    </tr>

    <tr>
      <td>(LCG(2<sup>31</sup>-85, 40014) + LCG(2<sup>31</sup>-249, 40692))
      mod 2<sup>31</sup>-85</td>

      <td>ecuyer1988 (additive_combine not in this proposal)</td>

      <td>Ranecu</td>

      <td>LEcuyer</td>

      <td>-</td>

      <td>C2LCGXgen</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>(LCG(2<sup>31</sup>-85, 40014) with Bays/Durham shuffle +
      LCG(2<sup>31</sup>-249, 40692)) mod 2<sup>31</sup>-85</td>

      <td>additive_combine&lt; shuffle_output&lt;<br>
      linear_congruential&lt;int, 40014, 0, 2147483563&gt;, 32&gt;,<br>
      linear_congruential&lt;int, 40692, 0, 2147483399&gt; &gt;
      (additive_combine and shuffle_output not in this proposal)</td>

      <td>-</td>

      <td>-</td>

      <td>ran2</td>

      <td>-</td>

      <td>ran2</td>

      <td>-</td>
    </tr>

    <tr>
      <td>X(i) = (X(i-55) - X(i-33)) mod 10<sup>9</sup></td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>ran3</td>

      <td>~SCGgen</td>

      <td>ran3</td>

      <td>-</td>
    </tr>

    <tr>
      <td>X(i) = (X(i-100) - X(i-37)) mod 2<sup>30</sup></td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>ran_array</td>
    </tr>

    <tr>
      <td>X(i) = (X(i-55) + X(i-24)) mod 2<sup>32</sup></td>

      <td>lagged_fibonacci&lt; ..., 32, 55, 24, ...&gt; (lagged_fibonacci not
      in this proposal)</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>ACGgen</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>DEShash(i,j)</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>ran4</td>

      <td>-</td>
    </tr>

    <tr>
      <td>MT</td>

      <td>mt19937</td>

      <td>MTwistEngine</td>

      <td>MT19937</td>

      <td>mt19937</td>

      <td>MT19937gen</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>X(i) = (X(i-37) - X(i-24) - carry) mod 2<sup>32</sup></td>

      <td>subtract_with_carry&lt; ..., (1&lt;&lt;32), 37, 24, ...&gt;</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>SWB1gen</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>X(i) = (X(i-43) - X(i-22) - carry) mod 2<sup>32</sup>-5</td>

      <td>subtract_with_carry&lt; ..., (1&lt;&lt;32)-5, 43, 22, ...&gt;</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>PSWBgen</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>RCARRY with block discard by L&uuml;scher</td>

      <td>discard_block&lt; subtract_with_carry&lt;...&gt;, ...&gt;</td>

      <td>RanluxEngine, Ranlux64Engine</td>

      <td>Ranlux</td>

      <td>ranlx*</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>Hurd</td>

      <td>-</td>

      <td>Hurd160, Hurd288</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>physical model by Ranshi</td>

      <td>-</td>

      <td>Ranshi</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>return predefined data</td>

      <td>-</td>

      <td>NonRandom</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>RANMAR: z(i) = (z(i-97) - z(i-33)) mod 2<sup>24</sup>; y(i+1) =
      (y(i)-c) mod 2<sup>24</sup>-3; X(i) = (z(i) - y(i)) mod
      2<sup>24</sup></td>

      <td>additive_combine&lt; lagged_fibonacci&lt; (1&lt;&lt;24), 97, 33,
      ... &gt;, linear_congruential&lt; (1&lt;&lt;24)-3, 1, c, ...&gt;
      (additive_combine and lagged_fibonacci not in this proposal)</td>

      <td>JamesRandom</td>

      <td>-</td>

      <td>ranmar</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>Taus88</td>

      <td>taus88 = xor_combine ...</td>

      <td>-</td>

      <td>Taus88</td>

      <td>taus, taus2</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>Taus60</td>

      <td>xor_combine&lt; linear_feedback_shift&lt; 31, 13, 12 &gt;, 0,
      linear_feedback_shift&lt; 29, 2, 4 &gt;, 2, 0&gt;
      (linear_feedback_shift not in this proposal)</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>C2TAUSgen</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>GFSR, 4-tap</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>gfsr4</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>MRG32k3a</td>

      <td>-</td>

      <td>-</td>

      <td>MRG32k3a</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>
  </table>

  <h3>I. Which Distributions to Include</h3>The following distributions were
  chosen due to their relatively widespread use:

  <ul>
    <li>Integer uniform</li>

    <li>Floating-point uniform</li>

    <li>Exponential</li>

    <li>Normal</li>

    <li>Gamma</li>

    <li>Poisson</li>

    <li>Binomial</li>

    <li>Geometric</li>

    <li>Bernoulli</li>
  </ul>The GNU Scientific Library has a multitude of additional distributions
  that are not mentioned in the table below.

  <table border="1" summary="">
    <tr>
      <th>Distribution</th>

      <th>this proposal</th>

      <th>CLHEP</th>

      <th>crng</th>

      <th>GNU Scientific Library</th>

      <th>Swarm</th>

      <th>Numerical Recipes</th>

      <th>Knuth</th>
    </tr>

    <tr>
      <td>uniform (int)</td>

      <td>uniform_int</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>UniformIntegerDist</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>uniform (float)</td>

      <td>uniform_real</td>

      <td>RandFlat</td>

      <td>UniformDeviate</td>

      <td>flat</td>

      <td>UniformDoubleDist</td>

      <td>-</td>

      <td>uniform</td>
    </tr>

    <tr>
      <td>exponential</td>

      <td>exponential_distribution</td>

      <td>RandExponential</td>

      <td>ExponentialDeviate</td>

      <td>exponential</td>

      <td>ExponentialDist</td>

      <td>exponential</td>

      <td>exponential</td>
    </tr>

    <tr>
      <td>normal</td>

      <td>normal_distribution</td>

      <td>RandGauss*</td>

      <td>NormalDeviate</td>

      <td>gaussian</td>

      <td>NormalDist</td>

      <td>normal (gaussian)</td>

      <td>normal</td>
    </tr>

    <tr>
      <td>lognormal</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>lognormal</td>

      <td>LogNormalDist</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>gamma</td>

      <td>gamma_distribution</td>

      <td>RandGamma</td>

      <td>GammaDeviate</td>

      <td>gamma</td>

      <td>GammaDist</td>

      <td>gamma</td>

      <td>gamma</td>
    </tr>

    <tr>
      <td>beta</td>

      <td>-</td>

      <td>-</td>

      <td>BetaDeviate</td>

      <td>beta</td>

      <td>-</td>

      <td>-</td>

      <td>beta</td>
    </tr>

    <tr>
      <td>poisson</td>

      <td>poisson_distribution</td>

      <td>Poisson</td>

      <td>PoissonDeviate</td>

      <td>poisson</td>

      <td>PoissonDist</td>

      <td>poisson</td>

      <td>poisson</td>
    </tr>

    <tr>
      <td>binomial</td>

      <td>binomial_distribution</td>

      <td>RandBinomial</td>

      <td>BinomialDeviate</td>

      <td>binomial</td>

      <td>-</td>

      <td>binomial</td>

      <td>binomial</td>
    </tr>

    <tr>
      <td>geometric</td>

      <td>geometric_distribution</td>

      <td>-</td>

      <td>GeometricDeviate</td>

      <td>geometric</td>

      <td>-</td>

      <td>-</td>

      <td>geometric</td>
    </tr>

    <tr>
      <td>bernoulli</td>

      <td>bernoulli_distribution</td>

      <td>-</td>

      <td>BernoulliDeviate</td>

      <td>bernoulli</td>

      <td>BernoulliDist</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>random bit</td>

      <td>-</td>

      <td>RandBit</td>

      <td>-</td>

      <td>-</td>

      <td>RandomBitDist</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>breit-wigner</td>

      <td>-</td>

      <td>RandBreitWigner</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>chi-square</td>

      <td>-</td>

      <td>RandChiSquare</td>

      <td>-</td>

      <td>chisq</td>

      <td>-</td>

      <td>-</td>

      <td>chi-square</td>
    </tr>

    <tr>
      <td>landau</td>

      <td>-</td>

      <td>Landau</td>

      <td>-</td>

      <td>landau</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>
    </tr>

    <tr>
      <td>F</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>F</td>

      <td>-</td>

      <td>-</td>

      <td>F (variance-ratio)</td>
    </tr>

    <tr>
      <td>t</td>

      <td>-</td>

      <td>-</td>

      <td>-</td>

      <td>t</td>

      <td>-</td>

      <td>-</td>

      <td>t</td>
    </tr>
  </table>

  <h3>J. Taxonomy of Concepts</h3>All of the engines support the number
  generator requirements, i.e. they are zero-argument function objects which
  return numbers. All of the distributions are one-argument function objects,
  taking a reference to an engine and returning numbers. All of the engines
  and some of the distributions return uniformly distributed random numbers.
  This is reflected in the concept of the uniform random number generator,
  which refines number generator. Engines for pseudo-random numbers model the
  requirements for pseudo-random number engine, which refines uniform random
  number generator.
  <pre>
NumberGenerator ---- UniformRandomNumberGenerator ---- PseudoRandomNumberGenerator
                \--- RandomDistribution
</pre>

  <h3>K. Validation</h3>How can a user have confidence that the
  implementation of a random-number engine is exactly as specified, correctly
  taking into account any platform pecularities (e.g., odd-sized ints)? After
  all, minor typos in the implementation might not be apparent; the numbers
  produced may look "random". This proposal therefore specifies for each
  engine the 10000th number in the random number sequence that a
  default-constructed engine object produces.

  <p>This is considered an important feature for library implementors and
  serious users to check whether the provided library on the given platform
  returns the correct numbers. It could be argued that a library implementor
  should provide a correct implementation of some standard feature in any
  case.</p>

  <p>No other library I have encountered provides explicit validation values
  in either their specification or their implementation, although some of
  them claim to be widely portable.</p>

  <p>Another design option for validation that was part of early drafts of
  this proposal is moving the reference number (10000th value in the
  sequence) from specification space to implementation space, thus providing
  a <code>validation(x)</code> static member function for each engine that
  compares the hard-coded 10000th value of the sequence with some
  user-provided value <code>x</code> presumeably obtained by actually
  invoking the random-number engine object 10000 times. Due to the
  template-based design, this amounted to a "val" template value parameter
  for each engine, and the <code>validation(x)</code> function reduced to the
  trivial comparison "val == x". Handling validation for floating-point
  engines required more machinery, because template value parameters cannot
  be of floating-point type. Also, from a conceptual perspective, it seemed
  odd to demand a validation decision from the very entitiy which one wanted
  to validate.</p>

  <h3>L. Non-Volatile Storage of Engine and Distribution
  State</h3>Pseudo-random number engines and distributions may store their
  state on a <code>std::ostream</code> in textual form and recover it from an
  appropriate <code>std::istream</code>. Each engine specifies how its
  internal state is represented. The specific algorithm of a distribution is
  left implementation-defined, thus no specifics about the representation of
  its internal state are given. A store operation must not affect the number
  sequence produced. It is expected that such external storage happens rarely
  as opposed to producing random numbers, thus no particular attention to
  performance is paid.

  <p>Engines and distributions use the usual idioms of
  <code>operator&lt;&lt;</code> and <code>operator&gt;&gt;</code>. If the
  user needs additional processing before or after storage on non-volatile
  media, there is always the option to use a temporary
  <code>std::stringstream</code>.</p>

  <p>Distributions sometimes store values from their associated source of
  random numbers across calls to their <code>operator()</code>. For example,
  a common method for generating normally distributed random numbers is to
  retrieve two uniformly distributed random numbers and compute two normally
  distributed random numbers out of them. In order to reset the
  distribution's random number cache to a defined state, each distribution
  has a <code>reset</code> member function. It should be called on a
  distribution whenever its associated engine is exchanged or restored.</p>

  <h3>M. Values vs. References</h3>Compounded engines such as
  <code>shuffle_output</code> and <code>discard_block</code> contain a base
  engine by value, because compounding is not intended to be used by
  reference to an existing (re-used) engine object.

  <p>The wrapper <code>variate_generator</code> can store engines either by
  value or by reference, explicitly chosen by the template parameters. This
  allows to use references to a single engine in several
  <code>variate_generator</code>, but makes it explicit to the user that he
  is responsible for the management of the lifetime of the engine.</p>

  <h3>N. Providing the Probability Density Function in Distributions</h3>Some
  libraries provide the probability density function of a given distribution
  as part of that distribution's interface. While this may be useful
  occasionally, this proposal does not provide for such a feature. One reason
  is separation of concerns: The distribution class templates might benefit
  from precomputing large tables of values depending on the distribution
  parameters, while the computation of the probability density function does
  not. Also, the function representation is often straightforward, so the
  user can easily code it himself.

  <h3>O. Implementation-defined behaviour</h3>This proposal specifies
  implementation-defined behaviour in a number of places. I believe this is
  unavoidable; this section provides detailed reasoning, including why the
  implementation is required to document the choice.

  <p>The precise state-holding base data types for the various engines are
  left implementation-defined, because engines are usually optimized for
  binary integers with 32 bits of word size. The specification in this
  proposal cannot foresee whether a 32 bit quantity on the machine is
  available in C++ as short, int, long, or not at all. It is up to the
  implementation to decide which data type fits best. The implementation is
  required to document the choice of data type, so that users can
  (non-portably) rely on the precise type, for example for further
  computation. Should the ISO C99 extensions become part of ISO C++, the
  implementation-defined types could be replaced by e.g.
  <code>int_least32_t</code>.</p>

  <p>The method how to produce non-deterministic random numbers is considered
  implementation-defined, because it inherently depends on the implementation
  and possibly even on the runtime environment: Imagine a platform that has
  operating system support for randomness collection, e.g. from user
  keystrokes and Ethernet inter-packet arrival timing (Linux
  <code>/dev/random</code> does this). If, in some installation, access to
  the operating system functions providing these services has been
  restricted, the C++ non-deterministic random number engine has been
  deprived of its randomness. An implementation is required to document how
  it obtains the non-deterministic random numbers, because only then can
  users' confidence in them grow. Confidence is of particular concern in the
  area of cryptography.</p>

  <p>The algorithms how to produce the various distributions are specified as
  implementation-defined, because there is a vast variety of algorithms known
  for each distribution. Each has a different trade-off in terms of speed,
  adaptation to recent computer architectures, and memory use. The
  implementation is required to document its choice so that the user can
  judge whether it is acceptable quality-wise.</p>

  <h3>P. Lower and upper bounds on UniformRandomNumberGenerator</h3>The
  member functions <code>min()</code> and <code>max()</code> return the lower
  and upper bounds of a UniformRandomNumberGenerator. This could be a
  random-number engine or one of the <code>uniform_int</code> and
  <code>uniform_real</code> distributions.

  <p>Those bounds are not specified to be tight, because for some engines,
  the bounds depend on the seeds. The seed can be changed during the lifetime
  of the engine object, while the values returned by <code>min()</code> and
  <code>max()</code> are invariant. Therefore, <code>min()</code> and
  <code>max()</code> must return conservative bounds that are independent of
  the seed.</p>

  <h3>Q. With or without manager class</h3>This proposal presents a design
  with a manager class template, <code>variate_generator</code>, after
  extensive discussion with some members of the computing division of Fermi
  National Accelerator Laboratory. User-written and library-provided engines
  and distributions plug in to the manager class. The approach is remotely
  similar to the locale design in the standard library, where (user-written)
  facets plug in to the (library-provided) locale class.

  <p>Earlier versions of this propsoal made (potentially user-written)
  distributions directly visible to (some other) user that wants to get
  random numbers distributed accordingly ("client"), there was no additional
  management layer between the distribution and the client.</p>

  <p>The following additional features could be provided by the management
  layer:</p>

  <ul>
    <li>The management layer contains an adaptor (to convert the engine's
    output into the distribution's input) in addition to the engine and the
    distribution.</li>

    <li>Adaptors and distributions do not store state, but instead, in each
    invocation, consume an arbitrary number of input values and produce a
    fixed number of output values. The management layer is responsible for
    connecting the engine - adaptor - distribution chain, invoking each part
    when more numbers are needed from the next part of the chain.</li>

    <li>On request, the management layer is responsible for saving and
    restoring the buffers that exist between engine, adaptor, and
    distribution.</li>

    <li>On request, the management layer shares engines with another instance
    of the management layer.</li>
  </ul>It is envisioned that user-written distributions will often be based
  on some arbitrary algorithmic distribution, instead of trying to implement
  a given mathematical probability density function. Here is an example:

  <ul>
    <li>Retrieve a uniform integer with value either 1 or 2.</li>

    <li>If 1, return a number with normal distribution.</li>

    <li>If 2, return a number with gamma distribution.</li>
  </ul>Both in this case and when implementing complex distributions based on
  a probability density function (e.g. the gamma distribution), it is
  important to be able to arbitrarily nest distributions. Either design
  allows for this with utmost ease: Compounding distributions are contained
  in the compound by value, and each one produces a single value on
  invocation. With the alternative design of giving distributions the freedom
  to produce more than one output number in each invocation, compound
  distributions such as the one shown above need to handle the situation that
  each of the compounding members could provide several output values, the
  number of which is unknown at the time the distribution is written.
  (Remember that it is unfeasible to prescribe a precise algorithm for each
  library-provided distribution in the standard, see subsection O.) That
  approach shifts implementation effort from the place where it came up, i.e.
  the distribution that chose to use an algorithm that produces several
  values in one invocation, to the places where that distribution is used.
  This, considered by itself, does not seem to be a good approach. Also, only
  very few distributions lead to a natural implementation that produces
  several values in one invocation; so far, the normal distribution is the
  only one known to me. However, it is expected that there will be plenty of
  distributions that use a normal distribution as its base, so far those
  known to me are lognormal and uniform_on_sphere (both not part of this
  proposal). As a conclusion, independent of whether the design provides for
  a management layer or not, distributions should always return a single
  value on each invocation, and management of buffers for additional values
  that might be produced should be internal to the distribution. Should it
  become necessary for the user to employ buffer management more often, a
  user-written base class for the distributions could be of help.

  <p>The ability to share engines is important. This proposal makes lifetime
  management issues explicit by requiring pointer or reference types in the
  template instantiation of <code>variate_generator</code> if reference
  semantics are desired. Without a management class, providing this features
  is much more cumbersome and imposes additional burden on the programmers
  that produce distributions. Alternatively, reference semantics could always
  be used, but this is an error-prone approach due to the lack of a standard
  reference-counted smart pointer. I believe it is impossible to add a
  reference-counted sharing mechanism in a manager-class-free design without
  giving its precise type. And that would certainly conflict in semantic
  scope with a smart pointer that will get into the standard eventually.</p>

  <p>The management layer allows for a few common features to be factored
  out, in particular access to the engine and some member typedefs.</p>

  <p>Comparison of other differing features between manager and non-manager
  designs:</p>

  <ul>
    <li>When passing a <code>variate_generator</code> as a an argument to a
    function, the design in this proposal allows selecting only those
    function signatures during overload resolution that are intended to be
    called with a <code>variate_generator</code>. In contrast, misbehaviour
    is possible without a manager class, similar to iterators in function
    signatures: <code>template&lt;class BiIter&gt; void f(BiIter it)</code>
    matches <code>f(5)</code>, without regard to the bidirectional iterator
    requirements. An error then happens when instantiating f. The situation
    worsens when several competing function templates are available and the
    wrong one is chosen accidentally.</li>

    <li>With the engine passed into the distribution's constructor, the full
    type hierarchy of engine (and possibly adaptor) are available to the
    distribution, allowing to cache information derived from the engine (e.g.
    its value range) . Also, (partial) specialization of distributions could
    be written that optimize the interaction with a specific engine and/or
    adaptor. In this proposal's design, this information is available in the
    <code>variate_generator</code> template only. However, optimizations by
    specialization for the engine/adaptor combination are perceived to
    possibly have high benefit, while those for the (engine+adaptor) /
    distribution combination are presumed to be much less beneficial.</li>

    <li>Having distribution classes directly exposed to the client easily
    allows that the user writes a distribution with an additional arbitrary
    member function declaration, intended to produce random numbers while
    taking additional parameters into account. In this proposal's design,
    this is possible by using the generic <code>operator()(T x)</code>
    forwarding function.</li>
  </ul>

  <h3>R. Add-on packages</h3>This proposal specifies a framework for random
  number generation. Users might have additional requirements not met by this
  framework. The following extensions have been identified, and they are
  expressly not addressed in this proposal. It is perceived that these items
  can be seamlessly implemented in an add-on package which sits on top of an
  implementation according to this proposal.

  <ul>
    <li>unique seeding: Make it easy for the user to provide a unique seed
    for each instance of a pseudo-random number engine. Design idea:
      <pre>
  class unique_seed;

  template&lt;class Engine&gt;
  Engine seed(unique_seed&amp;);
</pre>The "seed" function retrieves some unique seed from the unique_seed
class and then uses the <code>seed(first, last)</code> interface of an engine
to implant that unique seed. Specific seeding requirements for some engine
can be met by (partial) template specialization.
    </li>

    <li>runtime-replaceable distributions and associated save/restore
    functionality: Provide a class hierarchy that invokes distributions by
    means of a virtual function, thereby allowing for runtime replacement of
    the actual distribution. Provide a factory function to reconstruct the
    distribution instance after saving it to some non-volatile media.</li>
  </ul>

  <h3>S. Adaptors</h3>Sometimes, users may want to have better control how
  the bits from the engine are used to fill the mantissa of the
  floating-point value that serves as input to some distribution. This is
  possible by writing an engine wrapper and passing that in to the
  <code>variate_generator</code> as the engine. The
  <code>variate_generator</code> will only apply automatic adaptations if the
  output type of the engine is integers and the input type for the
  distribution is floating-point or vice versa.

  <h3>Z. Open issues</h3>

  <ul>
    <li>Some engines require non-negative template arguments, usually bit
    counts. Should these be given as "int" or "unsigned int"? Using "unsigned
    int" sometimes adds significant clutter to the presentation. Or "size_t",
    but this is probably too large a type?</li>
  </ul>

  <h2>IV. Proposed Text</h2>(Insert the following as a new section in clause
  26 "Numerics". Adjust the overview at the beginning of clause 26
  accordingly.)

  <p>This subclause defines a facility for generating random numbers.</p>

  <h3>Random number requirements</h3>A number generator is a function object
  (std:20.3 [lib.function.objects]).

  <p>In the following table, <code>X</code> denotes a number generator class
  returning objects of type <code>T</code>, and <code>u</code> is a (possibly
  <code>const</code>) value of <code>X</code>.</p>

  <table border="1" summary="">
    <tr>
      <th colspan="4" align="center">Number generator requirements (in
      addition to function object)</th>
    </tr>

    <tr>
      <td>expression</td>

      <td>return&nbsp;type</td>

      <td>pre/post-condition</td>

      <td>complexity</td>
    </tr>

    <tr>
      <td><code>X::result_type</code></td>

      <td>T</td>

      <td><code>std::numeric_limits&lt;T&gt;::is_specialized</code> is
      <code>true</code></td>

      <td>compile-time</td>
    </tr>
  </table>

  <p>In the following table, <code>X</code> denotes a uniform random number
  generator class returning objects of type <code>T</code>, <code>u</code> is
  a value of <code>X</code> and <code>v</code> is a (possibly
  <code>const</code>) value of <code>X</code>.</p>

  <table border="1" summary="">
    <tr>
      <th colspan="4" align="center">Uniform random number generator
      requirements (in addition to number generator)</th>
    </tr>

    <tr>
      <td>expression</td>

      <td>return&nbsp;type</td>

      <td>pre/post-condition</td>

      <td>complexity</td>
    </tr>

    <tr>
      <td><code>u()</code></td>

      <td>T</td>

      <td>-</td>

      <td>amortized constant</td>
    </tr>

    <tr>
      <td><code>v.min()</code></td>

      <td><code>T</code></td>

      <td>Returns some l where l is less than or equal to all values
      potentially returned by <code>operator()</code>. The return value of
      this function shall not change during the lifetime of
      <code>v</code>.</td>

      <td>constant</td>
    </tr>

    <tr>
      <td><code>v.max()</code></td>

      <td><code>T</code></td>

      <td>If <code>std::numeric_limits&lt;T&gt;::is_integer</code>, returns l
      where l is less than or equal to all values potentially returned by
      <code>operator()</code>, otherwise, returns l where l is strictly less
      than all values potentially returned by <code>operator()</code>. In any
      case, the return value of this function shall not change during the
      lifetime of <code>v</code>.</td>

      <td>constant</td>
    </tr>
  </table>

  <p>In the following table, <code>X</code> denotes a pseudo-random number
  engine class returning objects of type <code>T</code>, <code>t</code> is a
  value of <code>T</code>, <code>u</code> is a value of <code>X</code>,
  <code>v</code> is an lvalue of <code>X</code>, <code>it1</code> is an
  lvalue and <code>it2</code> is a (possibly <code>const</code>) value of an
  input iterator type <code>It</code> having an unsigned integral value type,
  <code>x</code>, <code>y</code> are (possibly <code>const</code>) values of
  <code>X</code>, <code>os</code> is convertible to an lvalue of type
  <code>std::ostream</code>, and <code>is</code> is convertible to an lvalue
  of type <code>std::istream</code>.</p>

  <p>A pseudo-random number engine x has a state x(i) at any given time. The
  specification of each pseudo-random number engines defines the size of its
  state in multiples of the size of its <code>result_type</code>, given as an
  integral constant expression.</p>

  <table border="1" summary="">
    <tr>
      <th colspan="4" align="center">Pseudo-random number engine requirements
      (in addition to uniform random number generator,
      <code>CopyConstructible</code>, and <code>Assignable</code>)</th>
    </tr>

    <tr>
      <td>expression</td>

      <td>return&nbsp;type</td>

      <td>pre/post-condition</td>

      <td>complexity</td>
    </tr>

    <tr>
      <td><code>X()</code></td>

      <td>-</td>

      <td>creates an engine with the same initial state as all other
      default-constructed engines of type <code>X</code> in the program.</td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>X(it1, it2)</code></td>

      <td>-</td>

      <td>creates an engine with the initial state given by the range
      <code>[it1,it2)</code>. <code>it1</code> is advanced by the size of
      state. If the size of the range [it1,it2) is insufficient, leaves
      <code>it1 == it2</code> and throws <code>invalid_argument</code>.</td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>u.seed()</code></td>

      <td>void</td>

      <td>post: <code>u == X()</code></td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>u.seed(it1, it2)</code></td>

      <td>void</td>

      <td>post: If there are sufficiently many values in [it1, it2) to
      initialize the state of <code>u</code>, then <code>u ==
      X(it1,it2)</code>. Otherwise, <code>it1 == it2</code>, throws
      <code>invalid_argument</code>, and further use of <code>u</code>
      (except destruction) is undefined until a <code>seed</code> member
      function has been executed without throwing an exception.</td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>u()</code></td>

      <td><code>T</code></td>

      <td>given the state u(i) of the engine, computes u(i+1), sets the state
      to u(i+1), and returns some output dependent on u(i+1)</td>

      <td>amortized constant</td>
    </tr>

    <tr>
      <td><code>x == y</code></td>

      <td><code>bool</code></td>

      <td><code>==</code> is an equivalence relation. The current state x(i)
      of x is equal to the current state y(j) of y.</td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>x != y</code></td>

      <td><code>bool</code></td>

      <td><code>!(x == y)</code></td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>os &lt;&lt; x</code></td>

      <td><code>std::ostream&amp;</code></td>

      <td>writes the textual representation of the state x(i) of
      <code>x</code> to <code>os</code>, with
      <code>os.<em>fmtflags</em></code> set to
      <code>ios_base::dec|ios_base::fixed|ios_base::left</code> and the fill
      character set to the space character. In the output, adjacent numbers
      are separated by one or more space characters.<br>
      post: The <code>os.<em>fmtflags</em></code> and fill character are
      unchanged.</td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>is &gt;&gt; v</code></td>

      <td><code>std::istream&amp;</code></td>

      <td>sets the state v(i) of <code>v</code> as determined by reading its
      textual representation from <code>is</code>.<br>
      post: The <code>is.<em>fmtflags</em></code> are unchanged.</td>

      <td>O(size of state)</td>
    </tr>
  </table>

  <p>In the following table, <code>X</code> denotes a random distribution
  class returning objects of type <code>T</code>, <code>u</code> is a value
  of <code>X</code>, <code>x</code> is a (possibly const) value of
  <code>X</code>, and <code>e</code> is an lvalue of an arbitrary type that
  meets the requirements of a uniform random number generator, returning
  values of type <code>U</code>.</p>

  <table border="1" summary="">
    <tr>
      <th colspan="4" align="center">Random distribution requirements (in
      addition to number generator, <code>CopyConstructible</code>, and
      <code>Assignable</code>)</th>
    </tr>

    <tr>
      <td>expression</td>

      <td>return&nbsp;type</td>

      <td>pre/post-condition</td>

      <td>complexity</td>
    </tr>

    <tr>
      <td><code>X::input_type</code></td>

      <td>U</td>

      <td>-</td>

      <td>compile-time</td>
    </tr>

    <tr>
      <td><code>u.reset()</code></td>

      <td><code>void</code></td>

      <td>subsequent uses of <code>u</code> do not depend on values produced
      by <code>e</code> prior to invoking <code>reset</code>.</td>

      <td>constant</td>
    </tr>

    <tr>
      <td><code>u(e)</code></td>

      <td><code>T</code></td>

      <td>the sequence of numbers returned by successive invocations with the
      same object <code>e</code> is randomly distributed with some
      probability density function p(x)</td>

      <td>amortized constant number of invocations of <code>e</code></td>
    </tr>

    <tr>
      <td><code>os &lt;&lt; x</code></td>

      <td><code>std::ostream&amp;</code></td>

      <td>writes a textual representation for the parameters and additional
      internal data of the distribution <code>x</code> to
      <code>os</code>.<br>
      post: The <code>os.<em>fmtflags</em></code> and fill character are
      unchanged.</td>

      <td>O(size of state)</td>
    </tr>

    <tr>
      <td><code>is &gt;&gt; u</code></td>

      <td><code>std::istream&amp;</code></td>

      <td>restores the parameters and additional internal data of the
      distribution <code>u</code>.<br>
      pre: <code>is</code> provides a textual representation that was
      previously written by <code>operator&lt;&lt;</code><br>
      post: The <code>is.<em>fmtflags</em></code> are unchanged.</td>

      <td>O(size of state)</td>
    </tr>
  </table>

  <p>Additional requirements: The sequence of numbers produced by repeated
  invocations of <code>x(e)</code> does not change whether or not <code>os
  &lt;&lt; x</code> is invoked between any of the invocations
  <code>x(e)</code>. If a textual representation is written using <code>os
  &lt;&lt; x</code> and that representation is restored into the same or a
  different object <code>y</code> of the same type using <code>is &gt;&gt;
  y</code>, repeated invocations of <code>y(e)</code> produce the same
  sequence of random numbers as would repeated invocations of
  <code>x(e)</code>.</p>

  <p>In the following subclauses, a template parameter named
  <code>UniformRandomNumberGenerator</code> shall denote a class that
  satisfies all the requirements of a uniform random number generator.
  Moreover, a template parameter named <code>Distribution</code> shall denote
  a type that satisfies all the requirements of a random distribution.
  Furthermore, a template parameter named <code>RealType</code> shall denote
  a type that holds an approximation to a real number. This type shall meet
  the requirements for a numeric type (26.1 [lib.numeric.requirements]), the
  binary operators +, -, *, / shall be applicable to it, a conversion from
  <code>double</code> shall exist, and function signatures corresponding to
  those for type <code>double</code> in subclause 26.5 [lib.c.math] shall be
  available by argument-dependent lookup (3.4.2 [basic.lookup.koenig]).
  <em>[Note: The built-in floating-point types <code>float</code> and
  <code>double</code> meet these requirements.]</em></p>

  <h3>Header <code>&lt;random&gt;</code> synopsis</h3>
  <pre>
namespace std {
  template&lt;class UniformRandomNumberGenerator, class Distribution&gt;
  class variate_generator;

  template&lt;class IntType, IntType a, IntType c, IntType m&gt;
  class linear_congruential;

  template&lt;class UIntType, int w, int n, int m, int r, UIntType a, int u,
  int s, UIntType b, int t, UIntType c, int l&gt;
  class mersenne_twister;

  template&lt;class IntType, IntType m, int s, int r&gt;
  class subtract_with_carry;

  template&lt;class RealType, int w, int s, int r&gt;
  class subtract_with_carry_01;

  template&lt;class UniformRandomNumberGenerator, int p, int r&gt;
  class discard_block;

  template&lt;class UniformRandomNumberGenerator1, int s1,
           class UniformRandomNumberGenerator2, int s2&gt;
  class xor_combine;

  class random_device;

  template&lt;class IntType = int&gt;
  class uniform_int;

  template&lt;class RealType = double&gt;
  class bernoulli_distribution;

  template&lt;class IntType = int, class RealType = double&gt;
  class geometric_distribution;

  template&lt;class IntType = int, class RealType = double&gt;
  class poisson_distribution;

  template&lt;class IntType = int, class RealType = double&gt;
  class binomial_distribution;

  template&lt;class RealType = double&gt;
  class uniform_real;

  template&lt;class RealType = double&gt;
  class exponential_distribution;

  template&lt;class RealType = double&gt;
  class normal_distribution;

  template&lt;class RealType = double&gt;
  class gamma_distribution;

} // namespace std
</pre>

  <h3>Class template <code>variate_generator</code></h3>A
  <code>variate_generator</code> produces random numbers, drawing randomness
  from an underlying uniform random number generator and shaping the
  distribution of the numbers corresponding to a distribution function.
  <pre>
template&lt;class Engine, class Distribution&gt;
class variate_generator
{
public:
  typedef Engine engine_type;
  typedef /* <em>implementation defined</em> */ engine_value_type;
  typedef Distribution distribution_type;
  typedef typename Distribution::result_type result_type;

  variate_generator(engine_type eng, distribution_type d);

  result_type operator()();
  template&lt;class T&gt;  result_type operator()(T value);

  engine_value_type&amp; engine();
  const engine_value_type&amp; engine() const;

  distribution_type&amp; distribution();
  const distribution_type&amp; distribution() const;

  result_type min() const;
  result_type max() const;
};
</pre>The template argument for the parameter <code>Engine</code> shall be of
the form <code><em>U</em></code>, <code><em>U</em>&amp;</code>, or <code><em>
  U</em>*</code>, where <code><em>U</em></code> denotes a class that
  satisfies all the requirements of a uniform random number generator. The
  member <code>engine_value_type</code> shall name <code><em>U</em></code>.

  <p>Specializations of <code>variate_generator</code> satisfy the
  requirements of CopyConstructible. They also satisfy the requirements of
  Assignable unless the template parameter <code>Engine</code> is of the form
  <code><em>U</em>&amp;</code>.</p>

  <p>The complexity of all functions specified in this section is constant.
  No function described in this section except the constructor throws an
  exception.</p>
  <pre>
    variate_generator(engine_type eng, distribution_type d)
</pre><strong>Effects:</strong> Constructs a <code>variate_generator</code>
object with the associated uniform random number generator <code>eng</code>
and the associated random distribution <code>d</code>.<br>
  <strong>Throws:</strong> If and what the copy constructor of Engine or
  Distribution throws.
  <pre>
    result_type operator()()
</pre><strong>Returns:</strong> <code>distribution()(e)</code><br>
  <strong>Notes:</strong> The sequence of numbers produced by the uniform
  random number generator <code>e</code>, s<sub>e</sub>, is obtained from the
  sequence of numbers produced by the associated uniform random number
  generator <code>eng</code>, s<sub>eng</sub>, as follows: Consider the
  values of <code>numeric_limits&lt;<em>T</em>&gt;::is_integer</code> for
  <code><em>T</em></code> both <code>Distribution::input_type</code> and
  <code>engine_value_type::result_type</code>. If the values for both types
  are <code>true</code>, then s<sub>e</sub> is identical to s<sub>eng</sub>.
  Otherwise, if the values for both types are <code>false</code>, then the
  numbers in s<sub>eng</sub> are divided by
  <code>engine().max()-engine().min()</code> to obtain the numbers in
  s<sub>e</sub>. Otherwise, if the value for
  <code>engine_value_type::result_type</code> is <code>true</code> and the
  value for <code>Distribution::input_type</code> is <code>false</code>, then
  the numbers in s<sub>eng</sub> are divided by
  <code>engine().max()-engine().min()+1</code> to obtain the numbers in
  s<sub>e</sub>. Otherwise, the mapping from s<sub>eng</sub> to s<sub>e</sub>
  is implementation-defined. In all cases, an implicit conversion from
  <code>engine_value_type::result_type</code> to
  <code>Distribution::input_type</code> is performed. If such a conversion
  does not exist, the program is ill-formed.
  <pre>
    template&lt;class T&gt; result_type operator()(T value)
</pre><strong>Returns:</strong> <code>distribution()(e, value)</code>. For
the semantics of <code>e</code>, see the description of
<code>operator()()</code>.
  <pre>
    engine_value_type&amp; engine()
</pre><strong>Returns:</strong> A reference to the associated uniform random
number generator.
  <pre>
    const engine_value_type&amp; engine() const
</pre><strong>Returns:</strong> A reference to the associated uniform random
number generator.
  <pre>
    distribution_type&amp; distribution()
</pre><strong>Returns:</strong> A reference to the associated random
distribution.
  <pre>
    const distribution_type&amp; distribution() const
</pre><strong>Returns:</strong> A reference to the associated random
distribution.
  <pre>
    result_type min() const
</pre><strong>Precondition:</strong> <code>distribution().min()</code> is
well-formed<br>
  <strong>Returns:</strong> <code>distribution().min()</code>
  <pre>
    result_type max() const
</pre><strong>Precondition:</strong> <code>distribution().max()</code> is
well-formed<br>
  <strong>Returns:</strong> <code>distribution().max()</code>

  <h3>Random number engine class templates</h3>Except where specified
  otherwise, the complexity of all functions specified in the following
  sections is constant. No function described in this section except the
  constructor and seed functions taking an iterator range [it1,it2) throws an
  exception.

  <p>The class templates specified in this section satisfy all the
  requirements of a pseudo-random number engine (given in tables in section
  x.x), except where specified otherwise. Descriptions are provided here only
  for operations on the engines that are not described in one of these tables
  or for operations where there is additional semantic information.</p>

  <p>All members declared <code>static const</code> in any of the following
  class templates shall be defined in such a way that they are usable as
  integral constant expressions.</p>

  <h4>Class template <code>linear_congruential</code></h4>A
  <code>linear_congruential</code> engine produces random numbers using a
  linear function x(i+1) := (a * x(i) + c) mod m.
  <pre>
namespace std {
  template&lt;class IntType, IntType a, IntType c, IntType m&gt;
  class linear_congruential
  {
  public:
    // <em>types</em>
    typedef IntType result_type;

    // <em>parameter values</em>
    static const IntType multiplier = a;
    static const IntType increment = c;
    static const IntType modulus = m;

    // <em> constructors and member function</em>
    explicit linear_congruential(IntType x0 = 1);
    template&lt;class In&gt; linear_congruential(In&amp; first, In last);
    void seed(IntType x0 = 1);
    template&lt;class In&gt; void seed(In&amp; first, In last);
    result_type min() const;
    result_type max() const;
    result_type operator()();
  };

  template&lt;class IntType, IntType a, IntType c, IntType m&gt;
  bool operator==(const linear_congruential&lt;IntType, a, c, m&gt;&amp; x,
                  const linear_congruential&lt;IntType, a, c, m&gt;&amp; y);
  template&lt;class IntType, IntType a, IntType c, IntType m&gt;
  bool operator!=(const linear_congruential&lt;IntType, a, c, m&gt;&amp; x,
                  const linear_congruential&lt;IntType, a, c, m&gt;&amp; y);

  template&lt;class CharT, class traits,
           class IntType, IntType a, IntType c, IntType m&gt;
  basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                           const linear_congruential&lt;IntType, a, c, m&gt;&amp; x);  
  template&lt;class CharT, class traits,
           class IntType, IntType a, IntType c, IntType m&gt;
  basic_istream&lt;CharT, traits&gt;&amp; operator&gt;&gt;(basic_istream&lt;CharT, traits&gt;&amp; is, 
                                           linear_congruential&lt;IntType, a, c, m&gt;&amp; x);
}
</pre>The template parameter <code>IntType</code> shall denote an integral
type large enough to store values up to (m-1). If the template parameter
<code>m</code> is 0, the behaviour is implementation-defined. Otherwise, the
template parameters <code>a</code> and <code>c</code> shall be less than m.

  <p>The size of the state x(i) is 1.</p>
  <pre>
    explicit linear_congruential(IntType x0 = 1)
</pre><strong>Requires:</strong> <code>c &gt; 0 || (x0 % m) &gt; 0</code><br>

  <strong>Effects:</strong> Constructs a <code>linear_congruential</code>
  engine with state x(0) := <code>x0</code> mod m.
  <pre>
    void seed(IntType x0 = 1)
</pre><strong>Requires:</strong> <code>c &gt; 0 || (x0 % m) &gt; 0</code><br>

  <strong>Effects:</strong> Sets the state x(i) of the engine to
  <code>x0</code> mod m.
  <pre>
    template&lt;class In&gt; linear_congruential(In&amp; first, In last)
</pre><strong>Requires:</strong> <code>c &gt; 0 || *first &gt; 0</code><br>
  <strong>Effects:</strong> Sets the state x(i) of the engine to
  <code>*first</code> mod m.<br>
  <strong>Complexity:</strong> Exactly one dereference of
  <code>*first</code>.
  <pre>
  template&lt;class CharT, class traits,
           class IntType, IntType a, IntType c, IntType m&gt;
  basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                           const linear_congruential&lt;IntType, a, c, m&gt;&amp; x);  
</pre><strong>Effects:</strong> Writes x(i) to <code>os</code>.

  <h4>Class template <code>mersenne_twister</code></h4>A
  <code>mersenne_twister</code> engine produces random numbers o(x(i)) using
  the following computation, performed modulo 2<sup>w</sup>. <code>um</code>
  is a value with only the upper <code>w-r</code> bits set in its binary
  representation. <code>lm</code> is a value with only its lower
  <code>r</code> bits set in its binary representation. <em>rshift</em> is a
  bitwise right shift with zero-valued bits appearing in the high bits of the
  result. <em>lshift</em> is a bitwise left shift with zero-valued bits
  appearing in the low bits of the result.

  <ul>
    <li>y(i) = (x(i-n) <em>bitand</em> um) | (x(i-(n-1)) <em>bitand</em>
    lm)</li>

    <li>If the lowest bit of the binary representation of y(i) is set, x(i) =
    x(i-(n-m)) <em>xor</em> (y(i) <em>rshift</em> 1) <em>xor</em> a;
    otherwise x(i) = x(i-(n-m)) <em>xor</em> (y(i) <em>rshift</em> 1).</li>

    <li>z1(i) = x(i) <em>xor</em> ( x(i) <em>rshift</em> u )</li>

    <li>z2(i) = z1(i) <em>xor</em> ( (z1(i) <em>lshift</em> s)
    <em>bitand</em> b )</li>

    <li>z3(i) = z2(i) <em>xor</em> ( (z2(i) <em>lshift</em> t)
    <em>bitand</em> c )</li>

    <li>o(x(i)) = z3(i) <em>xor</em> ( z3(i) <em>rshift</em> l )</li>
  </ul>
  <pre>
namespace std {
  template&lt;class UIntType, int w, int n, int m, int r, UIntType a, int u,
  int s, UIntType b, int t, UIntType c, int l&gt;
  class mersenne_twister
  {
  public:
    // <em>types</em>
    typedef UIntType result_type;

    // <em>parameter values</em>
    static const int word_size = w;
    static const int state_size = n;
    static const int shift_size = m;
    static const int mask_bits = r;
    static const UIntType parameter_a = a;
    static const int output_u = u;
    static const int output_s = s;
    static const UIntType output_b = b;
    static const int output_t = t;
    static const UIntType output_c = c;
    static const int output_l = l;

    // <em> constructors and member function</em>
    mersenne_twister();
    explicit mersenne_twister(UIntType value);
    template&lt;class In&gt; mersenne_twister(In&amp; first, In last);
    void seed();
    void seed(UIntType value);
    template&lt;class In&gt; void seed(In&amp; first, In last);
    result_type min() const;
    result_type max() const;
    result_type operator()();
  };

  template&lt;class UIntType, int w, int n, int m, int r, UIntType a, int u,
           int s, UIntType b, int t, UIntType c, int l&gt;
  bool operator==(const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; y,
                  const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; x);
  template&lt;class UIntType, int w, int n, int m, int r, UIntType a, int u,
           int s, UIntType b, int t, UIntType c, int l&gt;
  bool operator!=(const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; y,
                  const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; x);

  template&lt;class CharT, class traits,
           class UIntType, int w, int n, int m, int r, UIntType a, int u,
           int s, UIntType b, int t, UIntType c, int l&gt;
  basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                           const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; x);
  template&lt;class CharT, class traits,
           class UIntType, int w, int n, int m, int r, UIntType a, int u,
           int s, UIntType b, int t, UIntType c, int l&gt;
  basic_istream&lt;CharT, traits&gt;&amp; operator&gt;&gt;(basic_istream&lt;CharT, traits&gt;&amp; is, 
                                           mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; x);
}
</pre>The template parameter <code>UIntType</code> shall denote an unsigned
integral type large enough to store values up to 2<sup>w</sup>-1. Also, the
following relations shall hold: 1&lt;=m&lt;=n. 0&lt;=r,u,s,t,l&lt;=w.
0&lt;=a,b,c&lt;=2<sup>w</sup>-1.

  <p>The size of the state x(i) is <code>n</code>.</p>
  <pre>
    mersenne_twister()
</pre><strong>Effects:</strong> Constructs a <code>mersenne_twister</code>
engine and invokes <code>seed()</code>.
  <pre>
    explicit mersenne_twister(result_type value)
</pre><strong>Effects:</strong> Constructs a <code>mersenne_twister</code>
engine and invokes <code>seed(value)</code>.
  <pre>
    template&lt;class In&gt; mersenne_twister(In&amp; first, In last)
</pre><strong>Effects:</strong> Constructs a <code>mersenne_twister</code>
engine and invokes <code>seed(first, last)</code>.
  <pre>
    void seed()
</pre><strong>Effects:</strong> Invokes <code>seed(4357)</code>.
  <pre>
    void seed(result_type value)
</pre><strong>Requires:</strong> <code>value &gt; 0</code><br>
  <strong>Effects:</strong> With a linear congruential generator l(i) having
  parameters m<sub>l</sub> = 2<sup>32</sup>, a<sub>l</sub> = 69069,
  c<sub>l</sub> = 0, and l(0) = <code>value</code>, sets x(-n) ... x(-1) to
  l(1) ... l(n), respectively.<br>
  <strong>Complexity:</strong> O(n)
  <pre>
    template&lt;class In&gt; void seed(In&amp; first, In last)
</pre><strong>Effects:</strong> Given the values z<sub>0</sub> ...
z<sub>n-1</sub> obtained by dereferencing [first, first+n), sets x(-n) ...
x(-1) to z<sub>0</sub> mod 2<sup>w</sup> ... z<sub>n-1</sub> mod
2<sup>w</sup>.<br>
  <strong>Complexity:</strong> Exactly <code>n</code> dereferences of
  <code>first</code>.
  <pre>
    template&lt;class UIntType, int w, int n, int m, int r, UIntType a, int u,
             int s, UIntType b, int t, UIntType c, int l&gt;
    bool operator==(const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; y,
                    const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; x)
</pre><strong>Returns:</strong> x(i-n) == y(j-n) and ... and x(i-1) ==
y(j-1)<br>
  <strong>Notes:</strong> Assumes the next output of <code>x</code> is
  o(x(i)) and the next output of <code>y</code> is o(y(j)).<br>
  <strong>Complexity:</strong> O(n)
  <pre>
    template&lt;class CharT, class traits,
             class UIntType, int w, int n, int m, int r, UIntType a, int u,
             int s, UIntType b, int t, UIntType c, int l&gt;
    basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                             const mersenne_twister&lt;UIntType, w, n, m, r, a, u, s, b, t, c, l&gt;&amp; x)
</pre><strong>Effects:</strong> Writes x(i-n), ... x(i-1) to <code>os</code>,
in that order.<br>
  <strong>Complexity:</strong> O(n)

  <h4>Class template <code>subtract_with_carry</code></h4>A
  <code>subtract_with_carry</code> engine produces integer random numbers
  using x(i) = (x(i-s) - x(i-r) - carry(i-1)) mod m; carry(i) = 1 if x(i-s) -
  x(i-r) - carry(i-1) &lt; 0, else carry(i) = 0.
  <pre>
namespace std {
  template&lt;class IntType, IntType m, int s, int r&gt;
  class subtract_with_carry
  {
  public:
    // <em>types</em>
    typedef IntType result_type;

    // <em>parameter values</em>
    static const IntType modulus = m;
    static const int long_lag = r;
    static const int short_lag = s;

    // <em> constructors and member function</em>
    subtract_with_carry();
    explicit subtract_with_carry(IntType value);
    template&lt;class In&gt; subtract_with_carry(In&amp; first, In last);
    void seed(IntType value = 19780503);
    template&lt;class In&gt; void seed(In&amp; first, In last);
    result_type min() const;
    result_type max() const;
    result_type operator()();
  };
  template&lt;class IntType, IntType m, int s, int r&gt;
  bool operator==(const subtract_with_carry&lt;IntType, m, s, r&gt; &amp; x,
                  const subtract_with_carry&lt;IntType, m, s, r&gt; &amp; y);

  template&lt;class IntType, IntType m, int s, int r&gt;
  bool operator!=(const subtract_with_carry&lt;IntType, m, s, r&gt; &amp; x,
                  const subtract_with_carry&lt;IntType, m, s, r&gt; &amp; y);

  template&lt;class CharT, class Traits,
           class IntType, IntType m, int s, int r&gt;
  std::basic_ostream&lt;CharT,Traits&gt;&amp; operator&lt;&lt;(std::basic_ostream&lt;CharT,Traits&gt;&amp; os,
                                               const subtract_with_carry&lt;IntType, m, s, r&gt;&amp; f);

  template&lt;class CharT, class Traits,
          class IntType, IntType m, int s, int r&gt;
  std::basic_istream&lt;CharT,Traits&gt;&amp; operator&gt;&gt;(std::basic_istream&lt;CharT,Traits&gt;&amp; is, 
                                               subtract_with_carry&lt;IntType, m, s, r&gt;&amp; f);
}
</pre>The template parameter <code>IntType</code> shall denote a signed
integral type large enough to store values up to m-1. The following relation
shall hold: 0&lt;s&lt;r. Let w the number of bits in the binary
representation of m.

  <p>The size of the state is <code>r</code>.</p>
  <pre>
    subtract_with_carry()
</pre><strong>Effects:</strong> Constructs a <code>subtract_with_carry</code>
engine and invokes <code>seed()</code>.
  <pre>
    explicit subtract_with_carry(IntType value)
</pre><strong>Effects:</strong> Constructs a <code>subtract_with_carry</code>
engine and invokes <code>seed(value)</code>.
  <pre>
    template&lt;class In&gt; subtract_with_carry(In&amp; first, In last)
</pre><strong>Effects:</strong> Constructs a <code>subtract_with_carry</code>
engine and invokes <code>seed(first, last)</code>.
  <pre>
    void seed(IntType value = 19780503)
</pre><strong>Requires:</strong> <code>value &gt; 0</code><br>
  <strong>Effects:</strong> With a linear congruential generator l(i) having
  parameters m<sub>l</sub> = 2147483563, a<sub>l</sub> = 40014, c<sub>l</sub>
  = 0, and l(0) = <code>value</code>, sets x(-r) ... x(-1) to l(1) mod m ...
  l(r) mod m, respectively. If x(-1) == 0, sets carry(-1) = 1, else sets
  carry(-1) = 0.<br>
  <strong>Complexity:</strong> O(r)
  <pre>
    template&lt;class In&gt; void seed(In&amp; first, In last)
</pre><strong>Effects:</strong> With n=w/32+1 (rounded downward) and given
the values z<sub>0</sub> ... z<sub>n*r-1</sub> obtained by dereferencing
[first, first+n*r), sets x(-r) ... x(-1) to (z<sub>0</sub> * 2<sup>32</sup> +
... + z<sub>n-1</sub> * 2<sup>32*(n-1)</sup>) mod m ... (z<sub>(r-1)*n</sub>
* 2<sup>32</sup> + ... + z<sub>r-1</sub> * 2<sup>32*(n-1)</sup>) mod m. If
x(-1) == 0, sets carry(-1) = 1, else sets carry(-1) = 0.<br>
  <strong>Complexity:</strong> Exactly <code>r*n</code> dereferences of
  <code>first</code>.
  <pre>
    template&lt;class IntType, IntType m, int s, int r&gt;
    bool operator==(const subtract_with_carry&lt;IntType, m, s, r&gt; &amp; x,
                    const subtract_with_carry&lt;IntType, m, s, r&gt; &amp; y)
</pre><strong>Returns:</strong> x(i-r) == y(j-r) and ... and x(i-1) ==
y(j-1).<br>
  <strong>Notes:</strong> Assumes the next output of <code>x</code> is x(i)
  and the next output of <code>y</code> is y(j).<br>
  <strong>Complexity:</strong> O(r)
  <pre>
    template&lt;class CharT, class Traits,
          class IntType, IntType m, int s, int r&gt;
    std::basic_ostream&lt;CharT,Traits&gt;&amp; operator&lt;&lt;(std::basic_ostream&lt;CharT,Traits&gt;&amp; os,
                                                 const subtract_with_carry&lt;IntType, m, s, r&gt;&amp; f)
</pre><strong>Effects:</strong> Writes x(i-r) ... x(i-1), carry(i-1) to
<code>os</code>, in that order.<br>
  <strong>Complexity:</strong> O(r)

  <h4>Class template <code>subtract_with_carry_01</code></h4>A
  <code>subtract_with_carry_01</code> engine produces floating-point random
  numbers using x(i) = (x(i-s) - x(i-r) - carry(i-1)) mod 1; carry(i) =
  2<sup>-w</sup> if x(i-s) - x(i-r) - carry(i-1) &lt; 0, else carry(i) = 0.
  <pre>
namespace std {
  template&lt;class RealType, int w, int s, int r&gt;
  class subtract_with_carry_01
  {
  public:
    // <em>types</em>
    typedef RealType result_type;

    // <em>parameter values</em>
    static const int word_size = w;
    static const int long_lag = r;
    static const int short_lag = s;

    // <em> constructors and member function</em>
    subtract_with_carry_01();
    explicit subtract_with_carry_01(unsigned int value);
    template&lt;class In&gt; subtract_with_carry_01(In&amp; first, In last);
    void seed(unsigned int value = 19780503);
    template&lt;class In&gt; void seed(In&amp; first, In last);
    result_type min() const;
    result_type max() const;
    result_type operator()();
  };
  template&lt;class RealType, int w, int s, int r&gt;
  bool operator==(const subtract_with_carry_01&lt;RealType, w, s, r&gt; x,
                  const subtract_with_carry_01&lt;RealType, w, s, r&gt; y);

  template&lt;class RealType, int w, int s, int r&gt;
  bool operator!=(const subtract_with_carry_01&lt;RealType, w, s, r&gt; x,
                  const subtract_with_carry_01&lt;RealType, w, s, r&gt; y);

  template&lt;class CharT, class Traits,
           class RealType, int w, int s, int r&gt;
  std::basic_ostream&lt;CharT,Traits&gt;&amp; operator&lt;&lt;(std::basic_ostream&lt;CharT,Traits&gt;&amp; os,
                                               const subtract_with_carry_01&lt;RealType, w, s, r&gt;&amp; f);

  template&lt;class CharT, class Traits,
           class RealType, int w, int s, int r&gt;
  std::basic_istream&lt;CharT,Traits&gt;&amp; operator&gt;&gt;(std::basic_istream&lt;CharT,Traits&gt;&amp; is, 
                                               subtract_with_carry_01&lt;RealType, w, s, r&gt;&amp; f);
}
</pre>The following relation shall hold: 0&lt;s&lt;r.

  <p>The size of the state is <code>r</code>.</p>
  <pre>
    subtract_with_carry_01()
</pre><strong>Effects:</strong> Constructs a
<code>subtract_with_carry_01</code> engine and invokes <code>seed()</code>.
  <pre>
    explicit subtract_with_carry_01(unsigned int value)
</pre><strong>Effects:</strong> Constructs a
<code>subtract_with_carry_01</code> engine and invokes
<code>seed(value)</code>.
  <pre>
    template&lt;class In&gt; subtract_with_carry_01(In&amp; first, In last)
</pre><strong>Effects:</strong> Constructs a
<code>subtract_with_carry_01</code> engine and invokes <code>seed(first,
last)</code>.
  <pre>
    void seed(unsigned int value = 19780503)
</pre><strong>Effects:</strong> With a linear congruential generator l(i)
having parameters m = 2147483563, a = 40014, c = 0, and l(0) =
<code>value</code>, sets x(-r) ... x(-1) to (l(1)*2<sup>-w</sup>) mod 1 ...
(l(r)*2<sup>-w</sup>) mod 1, respectively. If x(-1) == 0, sets carry(-1) =
2<sup>-w</sup>, else sets carry(-1) = 0.<br>
  <strong>Complexity:</strong> O(r)
  <pre>
    template&lt;class In&gt; void seed(In&amp; first, In last)
</pre><strong>Effects:</strong> With n=w/32+1 (rounded downward) and given
the values z<sub>0</sub> ... z<sub>n*r-1</sub> obtained by dereferencing
[first, first+n*r), sets x(-r) ... x(-1) to (z<sub>0</sub> * 2<sup>32</sup> +
... + z<sub>n-1</sub> * 2<sup>32*(n-1)</sup>) * 2<sup>-w</sup> mod 1 ...
(z<sub>(r-1)*n</sub> * 2<sup>32</sup> + ... + z<sub>r-1</sub> *
2<sup>32*(n-1)</sup>) * 2<sup>-w</sup> mod 1. If x(-1) == 0, sets carry(-1) =
2<sup>-w</sup>, else sets carry(-1) = 0.<br>
  <strong>Complexity:</strong> O(r*n)
  <pre>
    template&lt;class RealType, int w, int s, int r&gt;
    bool operator==(const subtract_with_carry&lt;RealType, w, s, r&gt; x,
                    const subtract_with_carry&lt;RealType, w, s, r&gt; y);
</pre><strong>Returns:</strong> true, if and only if x(i-r) == y(j-r) and ...
and x(i-1) == y(j-1).<br>
  <strong>Complexity:</strong> O(r)
  <pre>
    template&lt;class CharT, class Traits,
             class RealType, int w, int s, int r&gt;
    std::basic_ostream&lt;CharT,Traits&gt;&amp; operator&lt;&lt;(std::basic_ostream&lt;CharT,Traits&gt;&amp; os,
                                                 const subtract_with_carry&lt;RealType, w, s, r&gt;&amp; f);
</pre><strong>Effects:</strong> Write x(i-r)*2<sup>w</sup> ...
x(i-1)*2<sup>w</sup>, carry(i-1)*2<sup>w</sup> to <code>os</code>, in that
order.<br>
  <strong>Complexity:</strong> O(r)

  <h4>Class template <code>discard_block</code></h4>A
  <code>discard_block</code> engine produces random numbers from some base
  engine by discarding blocks of data.
  <pre>
namespace std {
  template&lt;class UniformRandomNumberGenerator, int p, int r&gt;
  class discard_block
  {
  public:
    // <em>types</em>
    typedef UniformRandomNumberGenerator base_type;
    typedef typename base_type::result_type result_type;
  
    // <em>parameter values</em>
    static const int block_size = p;
    static const int used_block = r;
  
    // <em> constructors and member function</em>
    discard_block();
    explicit discard_block(const base_type &amp; rng);
    template&lt;class In&gt; discard_block(In&amp; first, In last);
    void seed();
    template&lt;class In&gt; void seed(In&amp; first, In last);
    const base_type&amp; base() const;
    result_type min() const;
    result_type max() const;
    result_type operator()();  
  private:
    // base_type b;                 <em>exposition only</em>
    // int n;                       <em>exposition only</em>
  };
  template&lt;class UniformRandomNumberGenerator, int p, int r&gt;
  bool operator==(const discard_block&lt;UniformRandomNumberGenerator,p,r&gt; &amp; x,
                 (const discard_block&lt;UniformRandomNumberGenerator,p,r&gt; &amp; y);
  template&lt;class UniformRandomNumberGenerator, int p, int r,
    typename UniformRandomNumberGenerator::result_type val&gt;
  bool operator!=(const discard_block&lt;UniformRandomNumberGenerator,p,r&gt; &amp; x,
                 (const discard_block&lt;UniformRandomNumberGenerator,p,r&gt; &amp; y);

  template&lt;class CharT, class traits,
           class UniformRandomNumberGenerator, int p, int r&gt;
  basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                           const discard_block&lt;UniformRandomNumberGenerator,p,r&gt; &amp; x);
  template&lt;class CharT, class traits,
           class UniformRandomNumberGenerator, int p, int r&gt;
  basic_istream&lt;CharT, traits&gt;&amp; operator&gt;&gt;(basic_istream&lt;CharT, traits&gt;&amp; is, 
                                           discard_block&lt;UniformRandomNumberGenerator,p,r&gt; &amp; x);

}
</pre>The template parameter <code>UniformRandomNumberGenerator</code> shall
denote a class that satisfies all the requirements of a uniform random number
generator, given in tables in section x.x. r &lt;= p. The size of the state
is the size of <code><em>b</em></code> plus 1.
  <pre>
    discard_block()
</pre><strong>Effects:</strong> Constructs a <code>discard_block</code>
engine. To construct the subobject <em>b</em>, invokes its default
constructor. Sets <code>n = 0</code>.
  <pre>
    explicit discard_block(const base_type &amp; rng)
</pre><strong>Effects:</strong> Constructs a <code>discard_block</code>
engine. Initializes <em>b</em> with a copy of <code>rng</code>. Sets <code>n
= 0</code>.
  <pre>
    template&lt;class In&gt; discard_block(In&amp; first, In last)
</pre><strong>Effects:</strong> Constructs a <code>discard_block</code>
engine. To construct the subobject <em>b</em>, invokes the <code>b(first,
last)</code> constructor. Sets <code>n = 0</code>.
  <pre>
    void seed()
</pre><strong>Effects:</strong> Invokes <code><em>b</em>.seed()</code> and
sets <code>n = 0</code>.
  <pre>
    template&lt;class In&gt; void seed(In&amp; first, In last)
</pre><strong>Effects:</strong> Invokes <code><em>b</em>.seed(first,
last)</code> and sets <code>n = 0</code>.
  <pre>
    const base_type&amp; base() const
</pre><strong>Returns:</strong> <em>b</em>
  <pre>
    result_type operator()()
</pre><strong>Effects:</strong> If <em>n</em> &gt;= r, invokes
<code><em>b</em></code> (p-r) times, discards the values returned, and sets
<code>n = 0</code>. In any case, then increments <code>n</code> and returns
<code><em>b()</em></code>.
  <pre>
  template&lt;class CharT, class traits,
           class UniformRandomNumberGenerator, int p, int r&gt;
  basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                           const discard_block&lt;UniformRandomNumberGenerator,p,r&gt; &amp; x);
</pre><strong>Effects:</strong> Writes <code><em>b</em></code>, then
<code><em>n</em></code> to <code>os</code>.

  <h4>Class template <code>xor_combine</code></h4>A <code>xor_combine</code>
  engine produces random numbers from two integer base engines by merging
  their random values with bitwise exclusive-or.
  <pre>
namespace std {
  template&lt;class UniformRandomNumberGenerator1, int s1,
           class UniformRandomNumberGenerator2, int s2&gt;
  class xor_combine
  {
  public:
    // <em>types</em>
    typedef UniformRandomNumberGenerator1 base1_type;
    typedef UniformRandomNumberGenerator2 base2_type;
    typedef typename base_type::result_type result_type;
  
    // <em>parameter values</em>
    static const int shift1 = s1;
    static const int shift2 = s2;
  
    // <em> constructors and member function</em>
    xor_combine();
    xor_combine(const base1_type &amp; rng1, const base2_type &amp; rng2);
    template&lt;class In&gt; xor_combine(In&amp; first, In last);
    void seed();
    template&lt;class In&gt; void seed(In&amp; first, In last);
    const base1_type&amp; base1() const;
    const base2_type&amp; base2() const;
    result_type min() const;
    result_type max() const;
    result_type operator()();  
  private:
    // base1_type b1;               <em>exposition only</em>
    // base2_type b2;               <em>exposition only</em>
  };
  template&lt;class UniformRandomNumberGenerator1, int s1,
           class UniformRandomNumberGenerator2, int s2&gt;
  bool operator==(const xor_combine&lt;UniformRandomNumberGenerator1, s1, 
                                    UniformRandomNumberGenerator2, s2&gt; &amp; x,
                 (const xor_combine&lt;UniformRandomNumberGenerator1, s1,
                                    UniformRandomNumberGenerator2, s2&gt; &amp; y);
  template&lt;class UniformRandomNumberGenerator1, int s1,
           class UniformRandomNumberGenerator2, int s2&gt;
  bool operator!=(const xor_combine&lt;UniformRandomNumberGenerator1, s1,
                                    UniformRandomNumberGenerator2, s2&gt; &amp; x,
                 (const xor_combine&lt;UniformRandomNumberGenerator1, s1,
                                    UniformRandomNumberGenerator2, s2&gt; &amp; y);

  template&lt;class CharT, class traits,
           class UniformRandomNumberGenerator1, int s1,
           class UniformRandomNumberGenerator2, int s2&gt;
  basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                           const xor_combine&lt;UniformRandomNumberGenerator1, s1,
                                                             UniformRandomNumberGenerator2, s2&gt; &amp; x);
  template&lt;class CharT, class traits,
           class UniformRandomNumberGenerator1, int s1,
           class UniformRandomNumberGenerator2, int s2&gt;
  basic_istream&lt;CharT, traits&gt;&amp; operator&gt;&gt;(basic_istream&lt;CharT, traits&gt;&amp; is, 
                                           xor_combine&lt;UniformRandomNumberGenerator1, s1,
                                                       UniformRandomNumberGenerator2, s2&gt; &amp; x);

}
</pre>The template parameters <code>UniformRandomNumberGenerator1</code> and
<code>UniformRandomNumberGenerator1</code> shall denote classes that satisfy
all the requirements of a uniform random number generator, given in tables in
section x.x . The size of the state is the size of <code><em>b1</em></code>
plus the size of <code><em>b2</em></code>.
  <pre>
    xor_combine()
</pre><strong>Effects:</strong> Constructs a <code>xor_combine</code> engine.
To construct each of the subobjects <em>b1</em> and <em>b2</em>, invokes
their respective default constructors.
  <pre>
    xor_combine(const base1_type &amp; rng1, const base2_type &amp; rng2)
</pre><strong>Effects:</strong> Constructs a <code>xor_combine</code> engine.
Initializes <em>b1</em> with a copy of <code>rng1</code> and <em>b2</em> with
a copy of <code>rng2</code>.
  <pre>
    template&lt;class In&gt; xor_combine(In&amp; first, In last)
</pre><strong>Effects:</strong> Constructs a <code>xor_combine</code> engine.
To construct the subobject <em>b1</em>, invokes the <code>b1(first,
last)</code> constructor. Then, to construct the subobject <em>b2</em>,
invokes the <code>b2(first, last)</code> constructor.
  <pre>
    void seed()
</pre><strong>Effects:</strong> Invokes <code><em>b1</em>.seed()</code> and
<code><em>b2</em>.seed()</code>.
  <pre>
    template&lt;class In&gt; void seed(In&amp; first, In last)
</pre><strong>Effects:</strong> Invokes <code><em>b1</em>.seed(first,
last)</code>, then invokes <code><em>b2</em>.seed(first, last)</code>.
  <pre>
    const base1_type&amp; base1() const
</pre><strong>Returns:</strong> <em>b1</em>
  <pre>
    const base2_type&amp; base2() const
</pre><strong>Returns:</strong> <em>b2</em>
  <pre>
    result_type operator()()
</pre><strong>Returns:</strong> (<code><em>b1</em>() &lt;&lt; s1) ^
(<em>b2</em>() &lt;&lt; s2)</code>.
  <pre>
  template&lt;class CharT, class traits,
           class UniformRandomNumberGenerator1, int s1,
           class UniformRandomNumberGenerator2, int s2&gt;
  basic_ostream&lt;CharT, traits&gt;&amp; operator&lt;&lt;(basic_ostream&lt;CharT, traits&gt;&amp; os,
                                           const xor_combine&lt;UniformRandomNumberGenerator1, s1,
                                                             UniformRandomNumberGenerator2, s2&gt; &amp; x);
</pre><strong>Effects:</strong> Writes <code><em>b1</em></code>, then <code>
  <em>b2</em></code> to <code>os</code>.

  <h3>Engines with predefined parameters</h3>
  <pre>
namespace std {
  typedef linear_congruential&lt;/* <em>implementation defined</em> */, 16807, 0, 2147483647&gt; minstd_rand0;
  typedef linear_congruential&lt;/* <em>implementation defined</em> */, 48271, 0, 2147483647&gt; minstd_rand;

  typedef mersenne_twister&lt;/* <em>implementation defined</em> */,32,624,397,31,0x9908b0df,11,7,0x9d2c5680,15,0xefc60000,18&gt; mt19937;

  typedef subtract_with_carry_01&lt;float, 24, 10, 24&gt; ranlux_base_01;
  typedef subtract_with_carry_01&lt;double, 48, 10, 24&gt; ranlux64_base_01;

  typedef discard_block&lt;subtract_with_carry&lt;/* <em>implementation defined</em> */, (1&lt;&lt;24), 10, 24&gt;, 223, 24&gt; ranlux3;
  typedef discard_block&lt;subtract_with_carry&lt;/* <em>implementation defined</em> */, (1&lt;&lt;24), 10, 24&gt;, 389, 24&gt; ranlux4;

  typedef discard_block&lt;subtract_with_carry_01&lt;float, 24, 10, 24&gt;, 223, 24&gt; ranlux3_01;
  typedef discard_block&lt;subtract_with_carry_01&lt;float, 24, 10, 24&gt;, 389, 24&gt; ranlux4_01;
}
</pre>For a default-constructed <code>minstd_rand0</code> object, x(10000) =
1043618065. For a default-constructed <code>minstd_rand</code> object,
x(10000) = 399268537.

  <p>For a default-constructed <code>mt19937</code> object, x(10000) =
  3346425566.</p>

  <p>For a default-constructed <code>ranlux3</code> object, x(10000) =
  5957620. For a default-constructed <code>ranlux4</code> object, x(10000) =
  8587295. For a default-constructed <code>ranlux3_01</code> object, x(10000)
  = 5957620 * 2<sup>-24</sup>. For a default-constructed
  <code>ranlux4_01</code> object, x(10000) = 8587295 * 2<sup>-24</sup>.</p>

  <h3>Class <code>random_device</code></h3>A <code>random_device</code>
  produces non-deterministic random numbers. It satisfies all the
  requirements of a uniform random number generator (given in tables in
  section x.x). Descriptions are provided here only for operations on the
  engines that are not described in one of these tables or for operations
  where there is additional semantic information.

  <p>If implementation limitations prevent generating non-deterministic
  random numbers, the implementation can employ a pseudo-random number
  engine.</p>
  <pre>
namespace std {
  class random_device
  {
  public:
    // <em>types</em>
    typedef unsigned int result_type;

    // <em>constructors, destructors and member functions</em>
    explicit random_device(const std::string&amp; token = /* <em>implementation-defined</em> */);
    result_type min() const;
    result_type max() const;
    double entropy() const;
    result_type operator()();
  
  private:
    random_device(const random_device&amp; );
    void operator=(const random_device&amp; );
  };
}
</pre>
  <pre>
    explicit random_device(const std::string&amp; token = /* <em>implementation-defined</em> */)
</pre><strong>Effects:</strong> Constructs a <code>random_device</code>
non-deterministic random number engine. The semantics and default value of
the <code>token</code> parameter are implementation-defined. [Footnote: The
parameter is intended to allow an implementation to differentiate between
different sources of randomness.]<br>
  <strong>Throws:</strong> A value of some type derived from
  <code>exception</code> if the <code>random_device</code> could not be
  initialized.
  <pre>
    result_type min() const
</pre><strong>Returns:</strong>
<code>numeric_limits&lt;result_type&gt;::min()</code>
  <pre>
    result_type max() const
</pre><strong>Returns:</strong>
<code>numeric_limits&lt;result_type&gt;::max()</code>
  <pre>
    double entropy() const
</pre><strong>Returns:</strong> An entropy estimate for the random numbers
returned by operator(), in the range <code>min()</code> to log<sub>2</sub>(
<code>max()</code>+1). A deterministic random number generator (e.g. a
pseudo-random number engine) has entropy 0.<br>
  <strong>Throws:</strong> Nothing.
  <pre>
    result_type operator()()
</pre><strong>Returns:</strong> A non-deterministic random value, uniformly
distributed between <code>min()</code> and <code>max()</code>, inclusive. It
is implementation-defined how these values are generated.<br>
  <strong>Throws:</strong> A value of some type derived from
  <code>exception</code> if a random number could not be obtained.

  <h3>Random distribution class templates</h3>The class templates specified
  in this section satisfy all the requirements of a random distribution
  (given in tables in section x.x). Descriptions are provided here only for
  operations on the distributions that are not described in one of these
  tables or for operations where there is additional semantic information.

  <p>A template parameter named <code>IntType</code> shall denote a type that
  represents an integer number. This type shall meet the requirements for a
  numeric type (26.1 [lib.numeric.requirements]), the binary operators +, -,
  *, /, % shall be applicable to it, and a conversion from <code>int</code>
  shall exist. <em>[Footnote: The built-in types <code>int</code> and
  <code>long</code> meet these requirements.]</em></p>

  <p>Given an object whose type is specified in this subclause, if the
  lifetime of the uniform random number generator referred to in the
  constructor invocation for that object has ended, any use of that object is
  undefined.</p>

  <p>No function described in this section throws an exception, unless an
  operation on values of <code>IntType</code> or <code>RealType</code> throws
  an exception. <em>[Note: Then, the effects are undefined, see
  [lib.numeric.requirements]. ]</em></p>

  <p>The algorithms for producing each of the specified distributions are
  implementation-defined.</p>

  <h4>Class template <code>uniform_int</code></h4>A <code>uniform_int</code>
  random distribution produces integer random numbers x in the range min
  &lt;= x &lt;= max, with equal probability. min and max are the parameters
  of the distribution.

  <p>A <code>uniform_int</code> random distribution satisfies all the
  requirements of a uniform random number generator (given in tables in
  section x.x).</p>
  <pre>
namespace std {
  template&lt;class IntType = int&gt;
  class uniform_int
  {
  public:
    // <em>types</em>
    typedef IntType input_type;
    typedef IntType result_type;

    // <em> constructors and member function</em>
    explicit uniform_int(IntType min = 0, IntType max = 9);
    result_type min() const;
    result_type max() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng, result_type n);
  };
}
</pre>
  <pre>
    uniform_int(IntType min = 0, IntType max = 9)
</pre><strong>Requires:</strong> min &lt;= max<br>
  <strong>Effects:</strong> Constructs a <code>uniform_int</code> object.
  <code>min</code> and <code>max</code> are the parameters of the
  distribution.
  <pre>
    result_type min() const
</pre><strong>Returns:</strong> The "min" parameter of the distribution.
  <pre>
    result_type max() const
</pre><strong>Returns:</strong> The "max" parameter of the distribution.
  <pre>
    result_type operator()(UniformRandomNumberGenerator&amp; urng, result_type n)
</pre><strong>Returns:</strong> A uniform random number x in the range 0
&lt;= x &lt; n. <em>[Note: This allows a <code>variate_generator</code>
object with a <code>uniform_int</code> distribution to be used with
std::random_shuffe, see [lib.alg.random.shuffle]. ]</em>

  <h4>Class template <code>bernoulli_distribution</code></h4>A
  <code>bernoulli_distribution</code> random distribution produces
  <code>bool</code> values distributed with probabilities p(true) = p and
  p(false) = 1-p. p is the parameter of the distribution.
  <pre>
namespace std {
  template&lt;class RealType = double&gt;
  class bernoulli_distribution
  {
  public:
    // <em>types</em>
    typedef int input_type;
    typedef bool result_type;

    // <em> constructors and member function</em>
    explicit bernoulli_distribution(const RealType&amp; p = RealType(0.5));
    RealType p() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    bernoulli_distribution(const RealType&amp; p = RealType(0.5))
</pre><strong>Requires:</strong> 0 &lt;= p &lt;= 1<br>
  <strong>Effects:</strong> Constructs a <code>bernoulli_distribution</code>
  object. <code>p</code> is the parameter of the distribution.
  <pre>
    RealType p() const
</pre><strong>Returns:</strong> The "p" parameter of the distribution.

  <h4>Class template <code>geometric_distribution</code></h4>A
  <code>geometric_distribution</code> random distribution produces integer
  values <em>i</em> &gt;= 1 with p(i) = (1-p) * p<sup>i-1</sup>. p is the
  parameter of the distribution.
  <pre>
namespace std {
  template&lt;class IntType = int, class RealType = double&gt;
  class geometric_distribution
  {
  public:
    // <em>types</em>
    typedef RealType input_type;
    typedef IntType result_type;

    // <em> constructors and member function</em>
    explicit geometric_distribution(const RealType&amp; p = RealType(0.5));
    RealType p() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    geometric_distribution(const RealType&amp; p = RealType(0.5))
</pre><strong>Requires:</strong> 0 &lt; p &lt; 1<br>
  <strong>Effects:</strong> Constructs a <code>geometric_distribution</code>
  object; <code>p</code> is the parameter of the distribution.
  <pre>
   RealType p() const
</pre><strong>Returns:</strong> The "p" parameter of the distribution.

  <h4>Class template <code>poisson_distribution</code></h4>A
  <code>poisson_distribution</code> random distribution produces integer
  values <em>i</em> &gt;= 0 with p(i) = exp(-mean) * mean<sup>i</sup> / i!.
  mean is the parameter of the distribution.
  <pre>
namespace std {
  template&lt;class IntType = int, class RealType = double&gt;
  class poisson_distribution
  {
  public:
    // <em>types</em>
    typedef RealType input_type;
    typedef IntType result_type;

    // <em> constructors and member function</em>
    explicit poisson_distribution(const RealType&amp; mean = RealType(1));
    RealType mean() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    poisson_distribution(const RealType&amp; mean = RealType(1))
</pre><strong>Requires:</strong> mean &gt; 0<br>
  <strong>Effects:</strong> Constructs a <code>poisson_distribution</code>
  object; <code>mean</code> is the parameter of the distribution.
  <pre>
   RealType mean() const
</pre><strong>Returns:</strong> The "mean" parameter of the distribution.

  <h4>Class template <code>binomial_distribution</code></h4>A
  <code>binomial_distribution</code> random distribution produces integer
  values <em>i</em> &gt;= 0 with p(i) = (n over i) * p<sup>i</sup> *
  (1-p)<sup>t-i</sup>. t and p are the parameters of the distribution.
  <pre>
namespace std {
  template&lt;class IntType = int, class RealType = double&gt;
  class binomial_distribution
  {
  public:
    // <em>types</em>
    typedef /* <em>implementation-defined</em> */ input_type;
    typedef IntType result_type;

    // <em> constructors and member function</em>
    explicit binomial_distribution(IntType t = 1, const RealType&amp; p = RealType(0.5));
    IntType t() const;
    RealType p() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    binomial_distribution(IntType t = 1, const RealType&amp; p = RealType(0.5))
</pre><strong>Requires:</strong> 0 &lt;= p &lt;= 1 and t &gt;= 0<br>
  <strong>Effects:</strong> Constructs a <code>binomial_distribution</code>
  object; <code>t</code> and <code>p</code> are the parameters of the
  distribution.
  <pre>
   IntType t() const
</pre><strong>Returns:</strong> The "t" parameter of the distribution.
  <pre>
   RealType p() const
</pre><strong>Returns:</strong> The "p" parameter of the distribution.

  <h4>Class template <code>uniform_real</code></h4>A
  <code>uniform_real</code> random distribution produces floating-point
  random numbers x in the range min &lt;= x &lt;= max, with equal
  probability. min and max are the parameters of the distribution.

  <p>A <code>uniform_real</code> random distribution satisfies all the
  requirements of a uniform random number generator (given in tables in
  section x.x).</p>
  <pre>
namespace std {
  template&lt;class RealType = double&gt;
  class uniform_real
  {
  public:
    // <em>types</em>
    typedef RealType input_type;
    typedef RealType result_type;

    // <em> constructors and member function</em>
    explicit uniform_real(RealType min = RealType(0), RealType max = RealType(1));
    result_type min() const;
    result_type max() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    uniform_real(RealType min = RealType(0), RealType max = RealType(1))
</pre><strong>Requires:</strong> min &lt;= max<br>
  <strong>Effects:</strong> Constructs a <code>uniform_real</code> object;
  <code>min</code> and <code>max</code> are the parameters of the
  distribution.
  <pre>
    result_type min() const
</pre><strong>Returns:</strong> The "min" parameter of the distribution.
  <pre>
    result_type max() const
</pre><strong>Returns:</strong> The "max" parameter of the distribution.

  <h4>Class template <code>exponential_distribution</code></h4>An
  <code>exponential_distribution</code> random distribution produces random
  numbers x &gt; 0 distributed with probability density function p(x) =
  lambda * exp(-lambda * x), where lambda is the parameter of the
  distribution.
  <pre>
namespace std {
  template&lt;class RealType = double&gt;
  class exponential_distribution
  {
  public:
    // <em>types</em>
    typedef RealType input_type;
    typedef RealType result_type;

    // <em> constructors and member function</em>
    explicit exponential_distribution(const result_type&amp; lambda = result_type(1));
    RealType lambda() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    exponential_distribution(const result_type&amp; lambda = result_type(1))
</pre><strong>Requires:</strong> lambda &gt; 0<br>
  <strong>Effects:</strong> Constructs an
  <code>exponential_distribution</code> object with <code>rng</code> as the
  reference to the underlying source of random numbers. <code>lambda</code>
  is the parameter for the distribution.
  <pre>
    RealType lambda() const
</pre><strong>Returns:</strong> The "lambda" parameter of the distribution.

  <h4>Class template <code>normal_distribution</code></h4>A
  <code>normal_distribution</code> random distribution produces random
  numbers x distributed with probability density function p(x) =
  1/sqrt(2*pi*sigma) * exp(- (x-mean)<sup>2</sup> / (2*sigma<sup>2</sup>) ),
  where mean and sigma are the parameters of the distribution.
  <pre>
namespace std {
  template&lt;class RealType = double&gt;
  class normal_distribution
  {
  public:
    // <em>types</em>
    typedef RealType input_type;
    typedef RealType result_type;

    // <em> constructors and member function</em>
    explicit normal_distribution(base_type &amp; rng, const result_type&amp; mean = 0,
                                 const result_type&amp; sigma = 1);
    RealType mean() const;
    RealType sigma() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    explicit normal_distribution( const result_type&amp; mean = 0,
                                 const result_type&amp; sigma = 1);
</pre><strong>Requires:</strong> sigma &gt; 0<br>
  <strong>Effects:</strong> Constructs a <code>normal_distribution</code>
  object; <code>mean</code> and <code>sigma</code> are the parameters for the
  distribution.
  <pre>
    RealType mean() const
</pre><strong>Returns:</strong> The "mean" parameter of the distribution.
  <pre>
    RealType sigma() const
</pre><strong>Returns:</strong> The "sigma" parameter of the distribution.

  <h4>Class template <code>gamma_distribution</code></h4>A
  <code>gamma_distribution</code> random distribution produces random numbers
  x distributed with probability density function p(x) = 1/Gamma(alpha) *
  x<sup>alpha-1</sup> * exp(-x), where alpha is the parameter of the
  distribution.
  <pre>
namespace std {
  template&lt;class RealType = double&gt;
  class gamma_distribution
  {
  public:
    // <em>types</em>
    typedef RealType input_type;
    typedef RealType result_type;

    // <em> constructors and member function</em>
    explicit gamma_distribution(const result_type&amp; alpha = result_type(1));
    RealType alpha() const;
    void reset();
    template&lt;class UniformRandomNumberGenerator&gt;
    result_type operator()(UniformRandomNumberGenerator&amp; urng);
  };
}
</pre>
  <pre>
    explicit gamma_distribution(const result_type&amp; alpha = result_type(1));
</pre><strong>Requires:</strong> alpha &gt; 0<br>
  <strong>Effects:</strong> Constructs a <code>gamma_distribution</code>
  object; <code>alpha</code> is the parameter for the distribution.
  <pre>
    RealType alpha() const
</pre><strong>Returns:</strong> The "alpha" parameter of the distribution.

  <h2>V. Acknowledgements</h2>

  <ul>
    <li>Thanks to Walter Brown, Mark Fischler and Marc Paterno from Fermilab
    for input about the requirements of high-energy physics.</li>

    <li>Thanks to David Abrahams for additional comments on the design.</li>

    <li>Thanks to the Boost community for a platform for
    experimentation.</li>
  </ul>

  <h2>VI. References</h2>

  <ul>
    <li>William H. Press, Saul A. Teukolsky, William A. Vetterling, Brian P.
    Flannery, "Numerical Recipes in C: The art of scientific computing", 2nd
    ed., 1992, pp. 274-328</li>

    <li>Bruce Schneier, "Applied Cryptography", 2nd ed., 1996, ch. 16-17. [I
    haven't read this myself. Yet.]</li>

    <li>D. H. Lehmer, "Mathematical methods in large-scale computing units",
    Proc. 2nd Symposium on Large-Scale Digital Calculating Machines, Harvard
    University Press, 1951, pp. 141-146</li>

    <li>P.A. Lewis, A.S. Goodman, J.M. Miller, "A pseudo-random number
    generator for the System/360", IBM Systems Journal, Vol. 8, No. 2, 1969,
    pp. 136-146</li>

    <li>Stephen K. Park and Keith W. Miller, "Random Number Generators: Good
    ones are hard to find", Communications of the ACM, Vol. 31, No. 10,
    October 1988, pp. 1192-1201</li>

    <li>Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A
    623-dimensionally equidistributed uniform pseudo-random number
    generator", ACM Transactions on Modeling and Computer Simulation: Special
    Issue on Uniform Random Number Generation, Vol. 8, No. 1, January 1998,
    pp. 3-30. http://www.math.keio.ac.jp/matumoto/emt.html.</li>

    <li>Donald E. Knuth, "The Art of Computer Programming, Vol. 2", 3rd ed.,
    1997, pp. 1-193.</li>

    <li>Carter Bays and S.D. Durham, "Improving a poor random number
    generator", ACM Transactions on Mathematical Software, Vol. 2, 1979, pp.
    59-64.</li>

    <li>Martin L&uuml;scher, "A portable high-quality random number generator
    for lattice field theory simulations.", Computer Physics Communications,
    Vol. 79, 1994, pp. 100-110.</li>

    <li>William J. Hurd, "Efficient Generation of Statistically Good
    Pseudonoise by Linearly Interconnected Shift Registers", Technical Report
    32-1526, Volume XI, The Deep Space Network Progress Report for July and
    August 1972, NASA Jet Propulsion Laboratory, 1972 and IEEE Transactions
    on Computers Vol. 23, 1974.</li>

    <li>Pierre L'Ecuyer, "Efficient and Portable Combined Random Number
    Generators", Communications of the ACM, Vol. 31, pp. 742-749+774,
    1988.</li>

    <li>Pierre L'Ecuyer, "Maximally equidistributed combined Tausworthe
    generators", Mathematics of Computation Vol. 65, pp. 203-213, 1996.</li>

    <li>Pierre L'Ecuyer, "Good parameters and implementations for combined
    multple recursive random number generators", Operations Research Vol. 47,
    pp. 159-164, 1999.</li>

    <li>S. Kirkpatrick and E. Stoll, "A very fast shift-register sequence
    random number generator", Journal of Computational Physics, Vol. 40, pp.
    517-526, 1981.</li>

    <li>R. C. Tausworthe, "Random numbers generated by iinear recurrence
    modulo two", Mathematics of Computation, Vol. 19, pp. 201-209, 1965.</li>

    <li>George Marsaglia and Arif Zaman, "A New Class of Random Number
    Generators", Annals of Applied Probability, Vol. 1, No. 3, 1991.</li>
  </ul>
  <hr>

  <p><a href="http://validator.w3.org/check?uri=referer"><img border="0" src=
  "http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Transitional"
  height="31" width="88"></a></p>

  <p>Revised 
  <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->05 December, 2006<!--webbot bot="Timestamp" endspan i-checksum="38516" --></p>

  <p><i>Copyright &copy; 2002 <a href=
  "http://www.boost.org/people/jens_maurer.htm">Jens Maurer</a></i></p>

  <p><i>Distributed under the Boost Software License, Version 1.0. (See
  accompanying file <a href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or
  copy at <a href=
  "http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</i></p>
</body>
</html>