1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
|
/*
* A test program for boost/rational.hpp.
* Change the typedef at the beginning of run_tests() to try out different
* integer types. (These tests are designed only for signed integer
* types. They should work for short, int and long.)
*
* (C) Copyright Stephen Silver, 2001. Permission to copy, use, modify, sell
* and distribute this software is granted provided this copyright notice
* appears in all copies. This software is provided "as is" without express or
* implied warranty, and with no claim as to its suitability for any purpose.
*
* Incorporated into the boost rational number library, and modified and
* extended, by Paul Moore, with permission.
*/
// Revision History
// 05 Nov 06 Add testing of zero-valued denominators & divisors; casting with
// types that are not implicitly convertible (Daryle Walker)
// 04 Nov 06 Resolve GCD issue with depreciation (Daryle Walker)
// 02 Nov 06 Add testing for operator<(int_type) w/ unsigneds (Daryle Walker)
// 31 Oct 06 Add testing for operator<(rational) overflow (Daryle Walker)
// 18 Oct 06 Various fixes for old compilers (Joaqun M Lpez Muoz)
// 27 Dec 05 Add testing for Boolean conversion operator (Daryle Walker)
// 24 Dec 05 Change code to use Boost.Test (Daryle Walker)
// 04 Mar 01 Patches for Intel C++ and GCC (David Abrahams)
#define BOOST_TEST_MAIN "Boost::Rational unit tests"
#include <boost/mpl/list.hpp>
#include <boost/operators.hpp>
#include <boost/preprocessor/stringize.hpp>
#include <boost/math/common_factor_rt.hpp>
#include <boost/rational.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/test/test_case_template.hpp>
#include <climits>
#include <iostream>
#include <istream>
#include <limits>
#include <ostream>
#include <sstream>
#include <stdexcept>
#include <string>
// We can override this on the compile, as -DINT_TYPE=short or whatever.
// The default test is against rational<long>.
#ifndef INT_TYPE
#define INT_TYPE long
#endif
namespace {
class MyOverflowingUnsigned;
// This is a trivial user-defined wrapper around the built in int type.
// It can be used as a test type for rational<>
class MyInt : boost::operators<MyInt>
{
friend class MyOverflowingUnsigned;
int val;
public:
MyInt(int n = 0) : val(n) {}
friend MyInt operator+ (const MyInt&);
friend MyInt operator- (const MyInt&);
MyInt& operator+= (const MyInt& rhs) { val += rhs.val; return *this; }
MyInt& operator-= (const MyInt& rhs) { val -= rhs.val; return *this; }
MyInt& operator*= (const MyInt& rhs) { val *= rhs.val; return *this; }
MyInt& operator/= (const MyInt& rhs) { val /= rhs.val; return *this; }
MyInt& operator%= (const MyInt& rhs) { val %= rhs.val; return *this; }
MyInt& operator|= (const MyInt& rhs) { val |= rhs.val; return *this; }
MyInt& operator&= (const MyInt& rhs) { val &= rhs.val; return *this; }
MyInt& operator^= (const MyInt& rhs) { val ^= rhs.val; return *this; }
const MyInt& operator++() { ++val; return *this; }
const MyInt& operator--() { --val; return *this; }
bool operator< (const MyInt& rhs) const { return val < rhs.val; }
bool operator== (const MyInt& rhs) const { return val == rhs.val; }
bool operator! () const { return !val; }
friend std::istream& operator>>(std::istream&, MyInt&);
friend std::ostream& operator<<(std::ostream&, const MyInt&);
};
inline MyInt operator+(const MyInt& rhs) { return rhs; }
inline MyInt operator-(const MyInt& rhs) { return MyInt(-rhs.val); }
inline std::istream& operator>>(std::istream& is, MyInt& i) { is >> i.val; return is; }
inline std::ostream& operator<<(std::ostream& os, const MyInt& i) { os << i.val; return os; }
inline MyInt abs(MyInt rhs) { if (rhs < MyInt()) rhs = -rhs; return rhs; }
// This is an "unsigned" wrapper, that throws on overflow. It can be used to
// test rational<> when an operation goes out of bounds.
class MyOverflowingUnsigned
: private boost::unit_steppable<MyOverflowingUnsigned>
, private boost::ordered_euclidian_ring_operators1<MyOverflowingUnsigned>
{
// Helper type-aliases
typedef MyOverflowingUnsigned self_type;
typedef unsigned self_type::* bool_type;
// Member data
unsigned v_;
public:
// Exception base class
class exception_base { protected: virtual ~exception_base() throw() {} };
// Divide-by-zero exception class
class divide_by_0_error
: public virtual exception_base
, public std::domain_error
{
public:
explicit divide_by_0_error( std::string const &w )
: std::domain_error( w ) {}
virtual ~divide_by_0_error() throw() {}
};
// Overflow exception class
class overflowing_error
: public virtual exception_base
, public std::overflow_error
{
public:
explicit overflowing_error( std::string const &w )
: std::overflow_error( w ) {}
virtual ~overflowing_error() throw() {}
};
// Lifetime management (use automatic dtr & copy-ctr)
MyOverflowingUnsigned( unsigned v = 0 ) : v_( v ) {}
explicit MyOverflowingUnsigned( MyInt const &m ) : v_( m.val ) {}
// Operators (use automatic copy-assignment); arithmetic & comparison only
self_type & operator ++()
{
if ( this->v_ == UINT_MAX ) throw overflowing_error( "increment" );
else ++this->v_;
return *this;
}
self_type & operator --()
{
if ( !this->v_ ) throw overflowing_error( "decrement" );
else --this->v_;
return *this;
}
operator bool_type() const { return this->v_ ? &self_type::v_ : 0; }
bool operator !() const { return !this->v_; }
self_type operator +() const { return self_type( +this->v_ ); }
self_type operator -() const { return self_type( -this->v_ ); }
bool operator <(self_type const &r) const { return this->v_ < r.v_; }
bool operator ==(self_type const &r) const { return this->v_ == r.v_; }
self_type & operator *=( self_type const &r )
{
if ( r.v_ && this->v_ > UINT_MAX / r.v_ )
{
throw overflowing_error( "oversized factors" );
}
this->v_ *= r.v_;
return *this;
}
self_type & operator /=( self_type const &r )
{
if ( !r.v_ ) throw divide_by_0_error( "division" );
this->v_ /= r.v_;
return *this;
}
self_type & operator %=( self_type const &r )
{
if ( !r.v_ ) throw divide_by_0_error( "modulus" );
this->v_ %= r.v_;
return *this;
}
self_type & operator +=( self_type const &r )
{
if ( this->v_ > UINT_MAX - r.v_ )
{
throw overflowing_error( "oversized addends" );
}
this->v_ += r.v_;
return *this;
}
self_type & operator -=( self_type const &r )
{
if ( this->v_ < r.v_ )
{
throw overflowing_error( "oversized subtrahend" );
}
this->v_ -= r.v_;
return *this;
}
// Input & output
template < typename Ch, class Tr >
friend std::basic_istream<Ch, Tr> &
operator >>( std::basic_istream<Ch, Tr> &i, self_type &x )
{ return i >> x.v_; }
template < typename Ch, class Tr >
friend std::basic_ostream<Ch, Tr> &
operator <<( std::basic_ostream<Ch, Tr> &o, self_type const &x )
{ return o << x.v_; }
}; // MyOverflowingUnsigned
inline MyOverflowingUnsigned abs( MyOverflowingUnsigned const &x ) { return x; }
} // namespace
// Specialize numeric_limits for the custom types
namespace std
{
template < >
class numeric_limits< MyInt >
{
typedef numeric_limits<int> limits_type;
public:
static const bool is_specialized = limits_type::is_specialized;
static MyInt min() throw() { return limits_type::min(); }
static MyInt max() throw() { return limits_type::max(); }
static const int digits = limits_type::digits;
static const int digits10 = limits_type::digits10;
static const bool is_signed = limits_type::is_signed;
static const bool is_integer = limits_type::is_integer;
static const bool is_exact = limits_type::is_exact;
static const int radix = limits_type::radix;
static MyInt epsilon() throw() { return limits_type::epsilon(); }
static MyInt round_error() throw() { return limits_type::round_error(); }
static const int min_exponent = limits_type::min_exponent;
static const int min_exponent10 = limits_type::min_exponent10;
static const int max_exponent = limits_type::max_exponent;
static const int max_exponent10 = limits_type::max_exponent10;
static const bool has_infinity = limits_type::has_infinity;
static const bool has_quiet_NaN = limits_type::has_quiet_NaN;
static const bool has_signaling_NaN = limits_type::has_signaling_NaN;
static const float_denorm_style has_denorm = limits_type::has_denorm;
static const bool has_denorm_loss = limits_type::has_denorm_loss;
static MyInt infinity() throw() { return limits_type::infinity(); }
static MyInt quiet_NaN() throw() { return limits_type::quiet_NaN(); }
static MyInt signaling_NaN() throw() {return limits_type::signaling_NaN();}
static MyInt denorm_min() throw() { return limits_type::denorm_min(); }
static const bool is_iec559 = limits_type::is_iec559;
static const bool is_bounded = limits_type::is_bounded;
static const bool is_modulo = limits_type::is_modulo;
static const bool traps = limits_type::traps;
static const bool tinyness_before = limits_type::tinyness_before;
static const float_round_style round_style = limits_type::round_style;
}; // std::numeric_limits<MyInt>
template < >
class numeric_limits< MyOverflowingUnsigned >
{
typedef numeric_limits<unsigned> limits_type;
public:
static const bool is_specialized = limits_type::is_specialized;
static MyOverflowingUnsigned min() throw() { return limits_type::min(); }
static MyOverflowingUnsigned max() throw() { return limits_type::max(); }
static const int digits = limits_type::digits;
static const int digits10 = limits_type::digits10;
static const bool is_signed = limits_type::is_signed;
static const bool is_integer = limits_type::is_integer;
static const bool is_exact = limits_type::is_exact;
static const int radix = limits_type::radix;
static MyOverflowingUnsigned epsilon() throw()
{ return limits_type::epsilon(); }
static MyOverflowingUnsigned round_error() throw()
{return limits_type::round_error();}
static const int min_exponent = limits_type::min_exponent;
static const int min_exponent10 = limits_type::min_exponent10;
static const int max_exponent = limits_type::max_exponent;
static const int max_exponent10 = limits_type::max_exponent10;
static const bool has_infinity = limits_type::has_infinity;
static const bool has_quiet_NaN = limits_type::has_quiet_NaN;
static const bool has_signaling_NaN = limits_type::has_signaling_NaN;
static const float_denorm_style has_denorm = limits_type::has_denorm;
static const bool has_denorm_loss = limits_type::has_denorm_loss;
static MyOverflowingUnsigned infinity() throw()
{ return limits_type::infinity(); }
static MyOverflowingUnsigned quiet_NaN() throw()
{ return limits_type::quiet_NaN(); }
static MyOverflowingUnsigned signaling_NaN() throw()
{ return limits_type::signaling_NaN(); }
static MyOverflowingUnsigned denorm_min() throw()
{ return limits_type::denorm_min(); }
static const bool is_iec559 = limits_type::is_iec559;
static const bool is_bounded = limits_type::is_bounded;
static const bool is_modulo = limits_type::is_modulo;
static const bool traps = limits_type::traps;
static const bool tinyness_before = limits_type::tinyness_before;
static const float_round_style round_style = limits_type::round_style;
}; // std::numeric_limits<MyOverflowingUnsigned>
} // namespace std
namespace {
// This fixture replaces the check of rational's packing at the start of main.
class rational_size_check
{
typedef INT_TYPE int_type;
typedef ::boost::rational<int_type> rational_type;
public:
rational_size_check()
{
using ::std::cout;
char const * const int_name = BOOST_PP_STRINGIZE( INT_TYPE );
cout << "Running tests for boost::rational<" << int_name << ">\n\n";
cout << "Implementation issue: the minimal size for a rational\n"
<< "is twice the size of the underlying integer type.\n\n";
cout << "Checking to see if space is being wasted.\n"
<< "\tsizeof(" << int_name << ") == " << sizeof( int_type )
<< "\n";
cout << "\tsizeof(boost::rational<" << int_name << ">) == "
<< sizeof( rational_type ) << "\n\n";
cout << "Implementation has "
<< (
(sizeof( rational_type ) > 2u * sizeof( int_type ))
? "included padding bytes"
: "minimal size"
)
<< "\n\n";
}
};
// This fixture groups all the common settings.
class my_configuration
{
public:
template < typename T >
class hook
{
public:
typedef ::boost::rational<T> rational_type;
private:
struct parts { rational_type parts_[ 9 ]; };
static parts generate_rationals()
{
rational_type r1, r2( 0 ), r3( 1 ), r4( -3 ), r5( 7, 2 ),
r6( 5, 15 ), r7( 14, -21 ), r8( -4, 6 ),
r9( -14, -70 );
parts result;
result.parts_[0] = r1;
result.parts_[1] = r2;
result.parts_[2] = r3;
result.parts_[3] = r4;
result.parts_[4] = r5;
result.parts_[5] = r6;
result.parts_[6] = r7;
result.parts_[7] = r8;
result.parts_[8] = r9;
return result;
}
parts p_; // Order Dependency
public:
rational_type ( &r_ )[ 9 ]; // Order Dependency
hook() : p_( generate_rationals() ), r_( p_.parts_ ) {}
};
};
// Instead of controlling the integer type needed with a #define, use a list of
// all available types. Since the headers #included don't change because of the
// integer #define, only the built-in types and MyInt are available. (Any other
// arbitrary integer type introduced by the #define would get compiler errors
// because its header can't be #included.)
typedef ::boost::mpl::list<short, int, long> builtin_signed_test_types;
typedef ::boost::mpl::list<short, int, long, MyInt> all_signed_test_types;
// Without these explicit instantiations, MSVC++ 6.5/7.0 does not find
// some friend operators in certain contexts.
::boost::rational<short> dummy1;
::boost::rational<int> dummy2;
::boost::rational<long> dummy3;
::boost::rational<MyInt> dummy4;
::boost::rational<MyOverflowingUnsigned> dummy5;
// Should there be regular tests with unsigned integer types?
} // namespace
// Check if rational is the smallest size possible
BOOST_GLOBAL_FIXTURE( rational_size_check )
#if BOOST_CONTROL_RATIONAL_HAS_GCD
// The factoring function template suite
BOOST_AUTO_TEST_SUITE( factoring_suite )
// GCD tests
BOOST_AUTO_TEST_CASE_TEMPLATE( gcd_test, T, all_signed_test_types )
{
BOOST_CHECK_EQUAL( boost::gcd<T>( 1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( -1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( -1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 0, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 7, 0), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 0, 9), static_cast<T>( 9) );
BOOST_CHECK_EQUAL( boost::gcd<T>( -7, 0), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 0, -9), static_cast<T>( 9) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 42, 30), static_cast<T>( 6) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 6, -9), static_cast<T>( 3) );
BOOST_CHECK_EQUAL( boost::gcd<T>(-10, -10), static_cast<T>(10) );
BOOST_CHECK_EQUAL( boost::gcd<T>(-25, -10), static_cast<T>( 5) );
}
// LCM tests
BOOST_AUTO_TEST_CASE_TEMPLATE( lcm_test, T, all_signed_test_types )
{
BOOST_CHECK_EQUAL( boost::lcm<T>( 1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 0, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 6, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 0, 7), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -5, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 0, -4), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 18, 30), static_cast<T>(90) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -6, 9), static_cast<T>(18) );
BOOST_CHECK_EQUAL( boost::lcm<T>(-10, -10), static_cast<T>(10) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 25, -10), static_cast<T>(50) );
}
BOOST_AUTO_TEST_SUITE_END()
#endif // BOOST_CONTROL_RATIONAL_HAS_GCD
// The basic test suite
BOOST_FIXTURE_TEST_SUITE( basic_rational_suite, my_configuration )
// Initialization tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_initialization_test, T,
all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ], &r6 = h.r_[ 5 ],
&r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ], &r9 = h.r_[ 8 ];
BOOST_CHECK_EQUAL( r1.numerator(), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( r2.numerator(), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( r3.numerator(), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( r4.numerator(), static_cast<T>(-3) );
BOOST_CHECK_EQUAL( r5.numerator(), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( r6.numerator(), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( r7.numerator(), static_cast<T>(-2) );
BOOST_CHECK_EQUAL( r8.numerator(), static_cast<T>(-2) );
BOOST_CHECK_EQUAL( r9.numerator(), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( r1.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r2.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r3.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r4.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r5.denominator(), static_cast<T>(2) );
BOOST_CHECK_EQUAL( r6.denominator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r7.denominator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r8.denominator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r9.denominator(), static_cast<T>(5) );
BOOST_CHECK_THROW( boost::rational<T>( 3, 0), boost::bad_rational );
BOOST_CHECK_THROW( boost::rational<T>(-2, 0), boost::bad_rational );
BOOST_CHECK_THROW( boost::rational<T>( 0, 0), boost::bad_rational );
}
// Assignment (non-operator) tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_assign_test, T, all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> & r = h.r_[ 0 ];
r.assign( 6, 8 );
BOOST_CHECK_EQUAL( r.numerator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r.denominator(), static_cast<T>(4) );
r.assign( 0, -7 );
BOOST_CHECK_EQUAL( r.numerator(), static_cast<T>(0) );
BOOST_CHECK_EQUAL( r.denominator(), static_cast<T>(1) );
BOOST_CHECK_THROW( r.assign( 4, 0), boost::bad_rational );
BOOST_CHECK_THROW( r.assign( 0, 0), boost::bad_rational );
BOOST_CHECK_THROW( r.assign(-7, 0), boost::bad_rational );
}
// Comparison tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_comparison_test, T,
all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ], &r6 = h.r_[ 5 ],
&r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ], &r9 = h.r_[ 8 ];
BOOST_CHECK( r1 == r2 );
BOOST_CHECK( r2 != r3 );
BOOST_CHECK( r4 < r3 );
BOOST_CHECK( r4 <= r5 );
BOOST_CHECK( r1 <= r2 );
BOOST_CHECK( r5 > r6 );
BOOST_CHECK( r5 >= r6 );
BOOST_CHECK( r7 >= r8 );
BOOST_CHECK( !(r3 == r2) );
BOOST_CHECK( !(r1 != r2) );
BOOST_CHECK( !(r1 < r2) );
BOOST_CHECK( !(r5 < r6) );
BOOST_CHECK( !(r9 <= r2) );
BOOST_CHECK( !(r8 > r7) );
BOOST_CHECK( !(r8 > r2) );
BOOST_CHECK( !(r4 >= r6) );
BOOST_CHECK( r1 == static_cast<T>( 0) );
BOOST_CHECK( r2 != static_cast<T>(-1) );
BOOST_CHECK( r3 < static_cast<T>( 2) );
BOOST_CHECK( r4 <= static_cast<T>(-3) );
BOOST_CHECK( r5 > static_cast<T>( 3) );
BOOST_CHECK( r6 >= static_cast<T>( 0) );
BOOST_CHECK( static_cast<T>( 0) == r2 );
BOOST_CHECK( static_cast<T>( 0) != r7 );
BOOST_CHECK( static_cast<T>(-1) < r8 );
BOOST_CHECK( static_cast<T>(-2) <= r9 );
BOOST_CHECK( static_cast<T>( 1) > r1 );
BOOST_CHECK( static_cast<T>( 1) >= r3 );
// Extra tests with values close in continued-fraction notation
boost::rational<T> const x1( static_cast<T>(9), static_cast<T>(4) );
boost::rational<T> const x2( static_cast<T>(61), static_cast<T>(27) );
boost::rational<T> const x3( static_cast<T>(52), static_cast<T>(23) );
boost::rational<T> const x4( static_cast<T>(70), static_cast<T>(31) );
BOOST_CHECK( x1 < x2 );
BOOST_CHECK( !(x1 < x1) );
BOOST_CHECK( !(x2 < x2) );
BOOST_CHECK( !(x2 < x1) );
BOOST_CHECK( x2 < x3 );
BOOST_CHECK( x4 < x2 );
BOOST_CHECK( !(x3 < x4) );
BOOST_CHECK( r7 < x1 ); // not actually close; wanted -ve v. +ve instead
BOOST_CHECK( !(x2 < r7) );
}
// Increment & decrement tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_1step_test, T, all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ];
BOOST_CHECK( r1++ == r2 );
BOOST_CHECK( r1 != r2 );
BOOST_CHECK( r1 == r3 );
BOOST_CHECK( --r1 == r2 );
BOOST_CHECK( r8-- == r7 );
BOOST_CHECK( r8 != r7 );
BOOST_CHECK( ++r8 == r7 );
}
// Absolute value tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_abs_test, T, all_signed_test_types )
{
typedef my_configuration::hook<T> hook_type;
typedef typename hook_type::rational_type rational_type;
hook_type h;
rational_type &r2 = h.r_[ 1 ], &r5 = h.r_[ 4 ], &r8 = h.r_[ 7 ];
#ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
// This is a nasty hack, required because some compilers do not implement
// "Koenig Lookup." Basically, if I call abs(r), the C++ standard says that
// the compiler should look for a definition of abs in the namespace which
// contains r's class (in this case boost)--among other places.
using boost::abs;
#endif
BOOST_CHECK_EQUAL( abs(r2), r2 );
BOOST_CHECK_EQUAL( abs(r5), r5 );
BOOST_CHECK_EQUAL( abs(r8), rational_type(2, 3) );
}
// Unary operator tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_unary_test, T, all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ];
BOOST_CHECK_EQUAL( +r5, r5 );
BOOST_CHECK( -r3 != r3 );
BOOST_CHECK_EQUAL( -(-r3), r3 );
BOOST_CHECK_EQUAL( -r4, static_cast<T>(3) );
BOOST_CHECK( !r2 );
BOOST_CHECK( !!r3 );
BOOST_CHECK( ! static_cast<bool>(r2) );
BOOST_CHECK( r3 );
}
BOOST_AUTO_TEST_SUITE_END()
// The rational arithmetic operations suite
BOOST_AUTO_TEST_SUITE( rational_arithmetic_suite )
// Addition & subtraction tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_additive_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
BOOST_CHECK_EQUAL( rational_type( 1, 2) + rational_type(1, 2),
static_cast<T>(1) );
BOOST_CHECK_EQUAL( rational_type(11, 3) + rational_type(1, 2),
rational_type( 25, 6) );
BOOST_CHECK_EQUAL( rational_type(-8, 3) + rational_type(1, 5),
rational_type(-37, 15) );
BOOST_CHECK_EQUAL( rational_type(-7, 6) + rational_type(1, 7),
rational_type( 1, 7) - rational_type(7, 6) );
BOOST_CHECK_EQUAL( rational_type(13, 5) - rational_type(1, 2),
rational_type( 21, 10) );
BOOST_CHECK_EQUAL( rational_type(22, 3) + static_cast<T>(1),
rational_type( 25, 3) );
BOOST_CHECK_EQUAL( rational_type(12, 7) - static_cast<T>(2),
rational_type( -2, 7) );
BOOST_CHECK_EQUAL( static_cast<T>(3) + rational_type(4, 5),
rational_type( 19, 5) );
BOOST_CHECK_EQUAL( static_cast<T>(4) - rational_type(9, 2),
rational_type( -1, 2) );
rational_type r( 11 );
r -= rational_type( 20, 3 );
BOOST_CHECK_EQUAL( r, rational_type(13, 3) );
r += rational_type( 1, 2 );
BOOST_CHECK_EQUAL( r, rational_type(29, 6) );
r -= static_cast<T>( 5 );
BOOST_CHECK_EQUAL( r, rational_type( 1, -6) );
r += rational_type( 1, 5 );
BOOST_CHECK_EQUAL( r, rational_type( 1, 30) );
r += static_cast<T>( 2 );
BOOST_CHECK_EQUAL( r, rational_type(61, 30) );
}
// Assignment tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_assignment_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
rational_type r;
r = rational_type( 1, 10 );
BOOST_CHECK_EQUAL( r, rational_type( 1, 10) );
r = static_cast<T>( -9 );
BOOST_CHECK_EQUAL( r, rational_type(-9, 1) );
}
// Multiplication tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_multiplication_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
BOOST_CHECK_EQUAL( rational_type(1, 3) * rational_type(-3, 4),
rational_type(-1, 4) );
BOOST_CHECK_EQUAL( rational_type(2, 5) * static_cast<T>(7),
rational_type(14, 5) );
BOOST_CHECK_EQUAL( static_cast<T>(-2) * rational_type(1, 6),
rational_type(-1, 3) );
rational_type r = rational_type( 3, 7 );
r *= static_cast<T>( 14 );
BOOST_CHECK_EQUAL( r, static_cast<T>(6) );
r *= rational_type( 3, 8 );
BOOST_CHECK_EQUAL( r, rational_type(9, 4) );
}
// Division tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_division_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
BOOST_CHECK_EQUAL( rational_type(-1, 20) / rational_type(4, 5),
rational_type(-1, 16) );
BOOST_CHECK_EQUAL( rational_type( 5, 6) / static_cast<T>(7),
rational_type( 5, 42) );
BOOST_CHECK_EQUAL( static_cast<T>(8) / rational_type(2, 7),
static_cast<T>(28) );
BOOST_CHECK_THROW( rational_type(23, 17) / rational_type(),
boost::bad_rational );
BOOST_CHECK_THROW( rational_type( 4, 15) / static_cast<T>(0),
boost::bad_rational );
rational_type r = rational_type( 4, 3 );
r /= rational_type( 5, 4 );
BOOST_CHECK_EQUAL( r, rational_type(16, 15) );
r /= static_cast<T>( 4 );
BOOST_CHECK_EQUAL( r, rational_type( 4, 15) );
BOOST_CHECK_THROW( r /= rational_type(), boost::bad_rational );
BOOST_CHECK_THROW( r /= static_cast<T>(0), boost::bad_rational );
BOOST_CHECK_EQUAL( rational_type(-1) / rational_type(-3),
rational_type(1, 3) );
}
// Tests for operations on self
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_self_operations_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
rational_type r = rational_type( 4, 3 );
r += r;
BOOST_CHECK_EQUAL( r, rational_type( 8, 3) );
r *= r;
BOOST_CHECK_EQUAL( r, rational_type(64, 9) );
r /= r;
BOOST_CHECK_EQUAL( r, rational_type( 1, 1) );
r -= r;
BOOST_CHECK_EQUAL( r, rational_type( 0, 1) );
BOOST_CHECK_THROW( r /= r, boost::bad_rational );
}
BOOST_AUTO_TEST_SUITE_END()
// The non-basic rational operations suite
BOOST_AUTO_TEST_SUITE( rational_extras_suite )
// Output test
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_output_test, T, all_signed_test_types )
{
std::ostringstream oss;
oss << boost::rational<T>( 44, 14 );
BOOST_CHECK_EQUAL( oss.str(), "22/7" );
}
// Input test, failing
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_input_failing_test, T,
all_signed_test_types )
{
std::istringstream iss( "" );
boost::rational<T> r;
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "42" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "57A" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "20-20" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "1/" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "1/ 2" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "1 /2" );
iss >> r;
BOOST_CHECK( !iss );
}
// Input test, passing
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_input_passing_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
std::istringstream iss( "1/2 12" );
rational_type r;
int n = 0;
BOOST_CHECK( iss >> r >> n );
BOOST_CHECK_EQUAL( r, rational_type(1, 2) );
BOOST_CHECK_EQUAL( n, 12 );
iss.clear();
iss.str( "34/67" );
BOOST_CHECK( iss >> r );
BOOST_CHECK_EQUAL( r, rational_type(34, 67) );
iss.clear();
iss.str( "-3/-6" );
BOOST_CHECK( iss >> r );
BOOST_CHECK_EQUAL( r, rational_type(1, 2) );
}
// Conversion test
BOOST_AUTO_TEST_CASE( rational_cast_test )
{
// Note that these are not generic. The problem is that rational_cast<T>
// requires a conversion from IntType to T. However, for a user-defined
// IntType, it is not possible to define such a conversion except as an
// "operator T()". This causes problems with overloading resolution.
boost::rational<int> const half( 1, 2 );
BOOST_CHECK_CLOSE( boost::rational_cast<double>(half), 0.5, 0.01 );
BOOST_CHECK_EQUAL( boost::rational_cast<int>(half), 0 );
BOOST_CHECK_EQUAL( boost::rational_cast<MyInt>(half), MyInt() );
BOOST_CHECK_EQUAL( boost::rational_cast<boost::rational<MyInt> >(half),
boost::rational<MyInt>(1, 2) );
// Conversions via explicit-marked constructors
// (Note that the "explicit" mark prevents conversion to
// boost::rational<MyOverflowingUnsigned>.)
boost::rational<MyInt> const threehalves( 3, 2 );
BOOST_CHECK_EQUAL( boost::rational_cast<MyOverflowingUnsigned>(threehalves),
MyOverflowingUnsigned(1u) );
}
// Dice tests (a non-main test)
BOOST_AUTO_TEST_CASE_TEMPLATE( dice_roll_test, T, all_signed_test_types )
{
typedef boost::rational<T> rational_type;
// Determine the mean number of times a fair six-sided die
// must be thrown until each side has appeared at least once.
rational_type r = T( 0 );
for ( int i = 1 ; i <= 6 ; ++i )
{
r += rational_type( 1, i );
}
r *= static_cast<T>( 6 );
BOOST_CHECK_EQUAL( r, rational_type(147, 10) );
}
BOOST_AUTO_TEST_SUITE_END()
// The bugs, patches, and requests checking suite
BOOST_AUTO_TEST_SUITE( bug_patch_request_suite )
// "rational operator< can overflow"
BOOST_AUTO_TEST_CASE( bug_798357_test )
{
// Choose values such that rational-number comparisons will overflow if
// the multiplication method (n1/d1 ? n2/d2 == n1*d2 ? n2*d1) is used.
// (And make sure that the large components are relatively prime, so they
// won't partially cancel to make smaller, more reasonable, values.)
unsigned const n1 = UINT_MAX - 2u, d1 = UINT_MAX - 1u;
unsigned const n2 = d1, d2 = UINT_MAX;
boost::rational<MyOverflowingUnsigned> const r1( n1, d1 ), r2( n2, d2 );
BOOST_REQUIRE_EQUAL( boost::math::gcd(n1, d1), 1u );
BOOST_REQUIRE_EQUAL( boost::math::gcd(n2, d2), 1u );
BOOST_REQUIRE( n1 > UINT_MAX / d2 );
BOOST_REQUIRE( n2 > UINT_MAX / d1 );
BOOST_CHECK( r1 < r2 );
BOOST_CHECK( !(r1 < r1) );
BOOST_CHECK( !(r2 < r1) );
}
// "rational::operator< fails for unsigned value types"
BOOST_AUTO_TEST_CASE( patch_1434821_test )
{
// If a zero-rational v. positive-integer comparison involves negation, then
// it may fail with unsigned types, which wrap around (for built-ins) or
// throw/be-undefined (for user-defined types).
boost::rational<unsigned> const r( 0u );
BOOST_CHECK( r < 1u );
}
// "rational.hpp::gcd returns a negative value sometimes"
BOOST_AUTO_TEST_CASE( patch_1438626_test )
{
// The issue only manifests with 2's-complement integers that use their
// entire range of bits. [This means that ln(-INT_MIN)/ln(2) is an integer
// and INT_MAX + INT_MIN == -1.] The common computer platforms match this.
#if (INT_MAX + INT_MIN == -1) && ((INT_MAX ^ INT_MIN) == -1)
// If a GCD routine takes the absolute value of an argument only before
// processing, it won't realize that -INT_MIN -> INT_MIN (i.e. no change
// from negation) and will propagate a negative sign to its result.
BOOST_REQUIRE_EQUAL( boost::math::gcd(INT_MIN, 6), 2 );
// That is bad if the rational number type does not check for that
// possibility during normalization.
boost::rational<int> const r1( INT_MIN / 2 + 3, 6 ),
r2( INT_MIN / 2 - 3, 6 ), r3 = r1 + r2;
// If the error happens, the signs of the components will be switched.
// (The numerators' sum is INT_MIN, and its GCD with 6 would be negated.)
BOOST_CHECK_EQUAL( r3.numerator(), INT_MIN / 2 );
BOOST_CHECK_EQUAL( r3.denominator(), 3 );
#endif
}
BOOST_AUTO_TEST_SUITE_END()
|