File: rational_test.cpp

package info (click to toggle)
boost1.35 1.35.0-5
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 203,856 kB
  • ctags: 337,867
  • sloc: cpp: 938,683; xml: 56,847; ansic: 41,589; python: 18,999; sh: 11,566; makefile: 664; perl: 494; yacc: 456; asm: 353; csh: 6
file content (968 lines) | stat: -rw-r--r-- 34,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
/*
 *  A test program for boost/rational.hpp.
 *  Change the typedef at the beginning of run_tests() to try out different
 *  integer types.  (These tests are designed only for signed integer
 *  types.  They should work for short, int and long.)
 *
 *  (C) Copyright Stephen Silver, 2001. Permission to copy, use, modify, sell
 *  and distribute this software is granted provided this copyright notice
 *  appears in all copies. This software is provided "as is" without express or
 *  implied warranty, and with no claim as to its suitability for any purpose.
 *
 *  Incorporated into the boost rational number library, and modified and
 *  extended, by Paul Moore, with permission.
 */

// Revision History
// 05 Nov 06  Add testing of zero-valued denominators & divisors; casting with
//            types that are not implicitly convertible (Daryle Walker)
// 04 Nov 06  Resolve GCD issue with depreciation (Daryle Walker)
// 02 Nov 06  Add testing for operator<(int_type) w/ unsigneds (Daryle Walker)
// 31 Oct 06  Add testing for operator<(rational) overflow (Daryle Walker)
// 18 Oct 06  Various fixes for old compilers (Joaqun M Lpez Muoz)
// 27 Dec 05  Add testing for Boolean conversion operator (Daryle Walker)
// 24 Dec 05  Change code to use Boost.Test (Daryle Walker)
// 04 Mar 01  Patches for Intel C++ and GCC (David Abrahams)

#define BOOST_TEST_MAIN  "Boost::Rational unit tests"

#include <boost/mpl/list.hpp>
#include <boost/operators.hpp>
#include <boost/preprocessor/stringize.hpp>
#include <boost/math/common_factor_rt.hpp>

#include <boost/rational.hpp>

#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/test/test_case_template.hpp>

#include <climits>
#include <iostream>
#include <istream>
#include <limits>
#include <ostream>
#include <sstream>
#include <stdexcept>
#include <string>

// We can override this on the compile, as -DINT_TYPE=short or whatever.
// The default test is against rational<long>.
#ifndef INT_TYPE
#define INT_TYPE long
#endif

namespace {

class MyOverflowingUnsigned;

// This is a trivial user-defined wrapper around the built in int type.
// It can be used as a test type for rational<>
class MyInt : boost::operators<MyInt>
{
    friend class MyOverflowingUnsigned;
    int val;
public:
    MyInt(int n = 0) : val(n) {}
    friend MyInt operator+ (const MyInt&);
    friend MyInt operator- (const MyInt&);
    MyInt& operator+= (const MyInt& rhs) { val += rhs.val; return *this; }
    MyInt& operator-= (const MyInt& rhs) { val -= rhs.val; return *this; }
    MyInt& operator*= (const MyInt& rhs) { val *= rhs.val; return *this; }
    MyInt& operator/= (const MyInt& rhs) { val /= rhs.val; return *this; }
    MyInt& operator%= (const MyInt& rhs) { val %= rhs.val; return *this; }
    MyInt& operator|= (const MyInt& rhs) { val |= rhs.val; return *this; }
    MyInt& operator&= (const MyInt& rhs) { val &= rhs.val; return *this; }
    MyInt& operator^= (const MyInt& rhs) { val ^= rhs.val; return *this; }
    const MyInt& operator++() { ++val; return *this; }
    const MyInt& operator--() { --val; return *this; }
    bool operator< (const MyInt& rhs) const { return val < rhs.val; }
    bool operator== (const MyInt& rhs) const { return val == rhs.val; }
    bool operator! () const { return !val; }
    friend std::istream& operator>>(std::istream&, MyInt&);
    friend std::ostream& operator<<(std::ostream&, const MyInt&);
};

inline MyInt operator+(const MyInt& rhs) { return rhs; }
inline MyInt operator-(const MyInt& rhs) { return MyInt(-rhs.val); }
inline std::istream& operator>>(std::istream& is, MyInt& i) { is >> i.val; return is; }
inline std::ostream& operator<<(std::ostream& os, const MyInt& i) { os << i.val; return os; }
inline MyInt abs(MyInt rhs) { if (rhs < MyInt()) rhs = -rhs; return rhs; }

// This is an "unsigned" wrapper, that throws on overflow.  It can be used to
// test rational<> when an operation goes out of bounds.
class MyOverflowingUnsigned
    : private boost::unit_steppable<MyOverflowingUnsigned>
    , private boost::ordered_euclidian_ring_operators1<MyOverflowingUnsigned>
{
    // Helper type-aliases
    typedef MyOverflowingUnsigned  self_type;
    typedef unsigned self_type::*  bool_type;

    // Member data
    unsigned  v_;

public:
    // Exception base class
    class exception_base  { protected: virtual ~exception_base() throw() {} };

    // Divide-by-zero exception class
    class divide_by_0_error
        : public virtual exception_base
        , public         std::domain_error
    {
    public:
        explicit  divide_by_0_error( std::string const &w )
          : std::domain_error( w )  {}

        virtual  ~divide_by_0_error() throw()  {}
    };

    // Overflow exception class
    class overflowing_error
        : public virtual exception_base
        , public         std::overflow_error
    {
    public:
        explicit  overflowing_error( std::string const &w )
          : std::overflow_error( w )  {}

        virtual  ~overflowing_error() throw()  {}
    };

    // Lifetime management (use automatic dtr & copy-ctr)
              MyOverflowingUnsigned( unsigned v = 0 )  : v_( v )  {}
    explicit  MyOverflowingUnsigned( MyInt const &m )  : v_( m.val )  {}

    // Operators (use automatic copy-assignment); arithmetic & comparison only
    self_type &  operator ++()
    {
        if ( this->v_ == UINT_MAX )  throw overflowing_error( "increment" );
        else ++this->v_;
        return *this;
    }
    self_type &  operator --()
    {
        if ( !this->v_ )  throw overflowing_error( "decrement" );
        else --this->v_;
        return *this;
    }

    operator bool_type() const  { return this->v_ ? &self_type::v_ : 0; }

    bool       operator !() const  { return !this->v_; }
    self_type  operator +() const  { return self_type( +this->v_ ); }
    self_type  operator -() const  { return self_type( -this->v_ ); }

    bool  operator  <(self_type const &r) const  { return this->v_ <  r.v_; }
    bool  operator ==(self_type const &r) const  { return this->v_ == r.v_; }

    self_type &  operator *=( self_type const &r )
    {
        if ( r.v_ && this->v_ > UINT_MAX / r.v_ )
        {
            throw overflowing_error( "oversized factors" );
        }
        this->v_ *= r.v_;
        return *this;
    }
    self_type &  operator /=( self_type const &r )
    {
        if ( !r.v_ )  throw divide_by_0_error( "division" );
        this->v_ /= r.v_;
        return *this;
    }
    self_type &  operator %=( self_type const &r )
    {
        if ( !r.v_ )  throw divide_by_0_error( "modulus" );
        this->v_ %= r.v_;
        return *this;
    }
    self_type &  operator +=( self_type const &r )
    {
        if ( this->v_ > UINT_MAX - r.v_ )
        {
            throw overflowing_error( "oversized addends" );
        }
        this->v_ += r.v_;
        return *this;
    }
    self_type &  operator -=( self_type const &r )
    {
        if ( this->v_ < r.v_ )
        {
            throw overflowing_error( "oversized subtrahend" );
        }
        this->v_ -= r.v_;
        return *this;
    }

    // Input & output
    template < typename Ch, class Tr >
    friend  std::basic_istream<Ch, Tr> &
    operator >>( std::basic_istream<Ch, Tr> &i, self_type &x )
    { return i >> x.v_; }

    template < typename Ch, class Tr >
    friend  std::basic_ostream<Ch, Tr> &
    operator <<( std::basic_ostream<Ch, Tr> &o, self_type const &x )
    { return o << x.v_; }

};  // MyOverflowingUnsigned

inline MyOverflowingUnsigned abs( MyOverflowingUnsigned const &x ) { return x; }

} // namespace


// Specialize numeric_limits for the custom types
namespace std
{

template < >
class numeric_limits< MyInt >
{
    typedef numeric_limits<int>  limits_type;

public:
    static const bool is_specialized = limits_type::is_specialized;

    static MyInt min() throw()  { return limits_type::min(); }
    static MyInt max() throw()  { return limits_type::max(); }

    static const int digits      = limits_type::digits;
    static const int digits10    = limits_type::digits10;
    static const bool is_signed  = limits_type::is_signed;
    static const bool is_integer = limits_type::is_integer;
    static const bool is_exact   = limits_type::is_exact;
    static const int radix       = limits_type::radix;
    static MyInt epsilon() throw()      { return limits_type::epsilon(); }
    static MyInt round_error() throw()  { return limits_type::round_error(); }

    static const int min_exponent   = limits_type::min_exponent;
    static const int min_exponent10 = limits_type::min_exponent10;
    static const int max_exponent   = limits_type::max_exponent;
    static const int max_exponent10 = limits_type::max_exponent10;

    static const bool has_infinity             = limits_type::has_infinity;
    static const bool has_quiet_NaN            = limits_type::has_quiet_NaN;
    static const bool has_signaling_NaN        = limits_type::has_signaling_NaN;
    static const float_denorm_style has_denorm = limits_type::has_denorm;
    static const bool has_denorm_loss          = limits_type::has_denorm_loss;

    static MyInt infinity() throw()      { return limits_type::infinity(); }
    static MyInt quiet_NaN() throw()     { return limits_type::quiet_NaN(); }
    static MyInt signaling_NaN() throw() {return limits_type::signaling_NaN();}
    static MyInt denorm_min() throw()    { return limits_type::denorm_min(); }

    static const bool is_iec559  = limits_type::is_iec559;
    static const bool is_bounded = limits_type::is_bounded;
    static const bool is_modulo  = limits_type::is_modulo;

    static const bool traps                    = limits_type::traps;
    static const bool tinyness_before          = limits_type::tinyness_before;
    static const float_round_style round_style = limits_type::round_style;

};  // std::numeric_limits<MyInt>

template < >
class numeric_limits< MyOverflowingUnsigned >
{
    typedef numeric_limits<unsigned>  limits_type;

public:
    static const bool is_specialized = limits_type::is_specialized;

    static MyOverflowingUnsigned min() throw()  { return limits_type::min(); }
    static MyOverflowingUnsigned max() throw()  { return limits_type::max(); }

    static const int digits      = limits_type::digits;
    static const int digits10    = limits_type::digits10;
    static const bool is_signed  = limits_type::is_signed;
    static const bool is_integer = limits_type::is_integer;
    static const bool is_exact   = limits_type::is_exact;
    static const int radix       = limits_type::radix;
    static MyOverflowingUnsigned epsilon() throw()
        { return limits_type::epsilon(); }
    static MyOverflowingUnsigned round_error() throw()
        {return limits_type::round_error();}

    static const int min_exponent   = limits_type::min_exponent;
    static const int min_exponent10 = limits_type::min_exponent10;
    static const int max_exponent   = limits_type::max_exponent;
    static const int max_exponent10 = limits_type::max_exponent10;

    static const bool has_infinity             = limits_type::has_infinity;
    static const bool has_quiet_NaN            = limits_type::has_quiet_NaN;
    static const bool has_signaling_NaN        = limits_type::has_signaling_NaN;
    static const float_denorm_style has_denorm = limits_type::has_denorm;
    static const bool has_denorm_loss          = limits_type::has_denorm_loss;

    static MyOverflowingUnsigned infinity() throw()
        { return limits_type::infinity(); }
    static MyOverflowingUnsigned quiet_NaN() throw()
        { return limits_type::quiet_NaN(); }
    static MyOverflowingUnsigned signaling_NaN() throw()
        { return limits_type::signaling_NaN(); }
    static MyOverflowingUnsigned denorm_min() throw()
        { return limits_type::denorm_min(); }

    static const bool is_iec559  = limits_type::is_iec559;
    static const bool is_bounded = limits_type::is_bounded;
    static const bool is_modulo  = limits_type::is_modulo;

    static const bool traps                    = limits_type::traps;
    static const bool tinyness_before          = limits_type::tinyness_before;
    static const float_round_style round_style = limits_type::round_style;

};  // std::numeric_limits<MyOverflowingUnsigned>

}  // namespace std


namespace {

// This fixture replaces the check of rational's packing at the start of main.
class rational_size_check
{
    typedef INT_TYPE                          int_type;
    typedef ::boost::rational<int_type>  rational_type;

public:
    rational_size_check()
    {
        using ::std::cout;

        char const * const  int_name = BOOST_PP_STRINGIZE( INT_TYPE );

        cout << "Running tests for boost::rational<" << int_name << ">\n\n";

        cout << "Implementation issue: the minimal size for a rational\n"
             << "is twice the size of the underlying integer type.\n\n";

        cout << "Checking to see if space is being wasted.\n"
             << "\tsizeof(" << int_name << ") == " << sizeof( int_type )
             << "\n";
        cout <<  "\tsizeof(boost::rational<" << int_name << ">) == "
             << sizeof( rational_type ) << "\n\n";

        cout << "Implementation has "
             << ( 
                  (sizeof( rational_type ) > 2u * sizeof( int_type ))
                  ? "included padding bytes"
                  : "minimal size"
                )
             << "\n\n";
    }
};

// This fixture groups all the common settings.
class my_configuration
{
public:
    template < typename T >
    class hook
    {
    public:
        typedef ::boost::rational<T>  rational_type;

    private:
        struct parts { rational_type parts_[ 9 ]; };

        static  parts  generate_rationals()
        {
            rational_type  r1, r2( 0 ), r3( 1 ), r4( -3 ), r5( 7, 2 ),
                           r6( 5, 15 ), r7( 14, -21 ), r8( -4, 6 ),
                           r9( -14, -70 );
            parts result;
            result.parts_[0] = r1;
            result.parts_[1] = r2;
            result.parts_[2] = r3;
            result.parts_[3] = r4;
            result.parts_[4] = r5;
            result.parts_[5] = r6;
            result.parts_[6] = r7;
            result.parts_[7] = r8;
            result.parts_[8] = r9;

            return result;
        }

        parts  p_;  // Order Dependency

    public:
        rational_type  ( &r_ )[ 9 ];  // Order Dependency

        hook() : p_( generate_rationals() ), r_( p_.parts_ ) {}
    };
};

// Instead of controlling the integer type needed with a #define, use a list of
// all available types.  Since the headers #included don't change because of the
// integer #define, only the built-in types and MyInt are available.  (Any other
// arbitrary integer type introduced by the #define would get compiler errors
// because its header can't be #included.)
typedef ::boost::mpl::list<short, int, long>     builtin_signed_test_types;
typedef ::boost::mpl::list<short, int, long, MyInt>  all_signed_test_types;

// Without these explicit instantiations, MSVC++ 6.5/7.0 does not find
// some friend operators in certain contexts.
::boost::rational<short>                 dummy1;
::boost::rational<int>                   dummy2;
::boost::rational<long>                  dummy3;
::boost::rational<MyInt>                 dummy4;
::boost::rational<MyOverflowingUnsigned> dummy5;

// Should there be regular tests with unsigned integer types?

} // namespace


// Check if rational is the smallest size possible
BOOST_GLOBAL_FIXTURE( rational_size_check )


#if BOOST_CONTROL_RATIONAL_HAS_GCD
// The factoring function template suite
BOOST_AUTO_TEST_SUITE( factoring_suite )

// GCD tests
BOOST_AUTO_TEST_CASE_TEMPLATE( gcd_test, T, all_signed_test_types )
{
    BOOST_CHECK_EQUAL( boost::gcd<T>(  1,  -1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::gcd<T>( -1,   1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(  1,   1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::gcd<T>( -1,  -1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(  0,   0), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(  7,   0), static_cast<T>( 7) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(  0,   9), static_cast<T>( 9) );
    BOOST_CHECK_EQUAL( boost::gcd<T>( -7,   0), static_cast<T>( 7) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(  0,  -9), static_cast<T>( 9) );
    BOOST_CHECK_EQUAL( boost::gcd<T>( 42,  30), static_cast<T>( 6) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(  6,  -9), static_cast<T>( 3) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(-10, -10), static_cast<T>(10) );
    BOOST_CHECK_EQUAL( boost::gcd<T>(-25, -10), static_cast<T>( 5) );
}

// LCM tests
BOOST_AUTO_TEST_CASE_TEMPLATE( lcm_test, T, all_signed_test_types )
{
    BOOST_CHECK_EQUAL( boost::lcm<T>(  1,  -1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::lcm<T>( -1,   1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::lcm<T>(  1,   1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::lcm<T>( -1,  -1), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( boost::lcm<T>(  0,   0), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( boost::lcm<T>(  6,   0), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( boost::lcm<T>(  0,   7), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( boost::lcm<T>( -5,   0), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( boost::lcm<T>(  0,  -4), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( boost::lcm<T>( 18,  30), static_cast<T>(90) );
    BOOST_CHECK_EQUAL( boost::lcm<T>( -6,   9), static_cast<T>(18) );
    BOOST_CHECK_EQUAL( boost::lcm<T>(-10, -10), static_cast<T>(10) );
    BOOST_CHECK_EQUAL( boost::lcm<T>( 25, -10), static_cast<T>(50) );
}

BOOST_AUTO_TEST_SUITE_END()
#endif  // BOOST_CONTROL_RATIONAL_HAS_GCD


// The basic test suite
BOOST_FIXTURE_TEST_SUITE( basic_rational_suite, my_configuration )

// Initialization tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_initialization_test, T,
 all_signed_test_types )
{
    my_configuration::hook<T>  h;
    boost::rational<T>  &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
                        &r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ], &r6 = h.r_[ 5 ],
                        &r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ], &r9 = h.r_[ 8 ];

    BOOST_CHECK_EQUAL( r1.numerator(), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( r2.numerator(), static_cast<T>( 0) );
    BOOST_CHECK_EQUAL( r3.numerator(), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( r4.numerator(), static_cast<T>(-3) );
    BOOST_CHECK_EQUAL( r5.numerator(), static_cast<T>( 7) );
    BOOST_CHECK_EQUAL( r6.numerator(), static_cast<T>( 1) );
    BOOST_CHECK_EQUAL( r7.numerator(), static_cast<T>(-2) );
    BOOST_CHECK_EQUAL( r8.numerator(), static_cast<T>(-2) );
    BOOST_CHECK_EQUAL( r9.numerator(), static_cast<T>( 1) );

    BOOST_CHECK_EQUAL( r1.denominator(), static_cast<T>(1) );
    BOOST_CHECK_EQUAL( r2.denominator(), static_cast<T>(1) );
    BOOST_CHECK_EQUAL( r3.denominator(), static_cast<T>(1) );
    BOOST_CHECK_EQUAL( r4.denominator(), static_cast<T>(1) );
    BOOST_CHECK_EQUAL( r5.denominator(), static_cast<T>(2) );
    BOOST_CHECK_EQUAL( r6.denominator(), static_cast<T>(3) );
    BOOST_CHECK_EQUAL( r7.denominator(), static_cast<T>(3) );
    BOOST_CHECK_EQUAL( r8.denominator(), static_cast<T>(3) );
    BOOST_CHECK_EQUAL( r9.denominator(), static_cast<T>(5) );

    BOOST_CHECK_THROW( boost::rational<T>( 3, 0), boost::bad_rational );
    BOOST_CHECK_THROW( boost::rational<T>(-2, 0), boost::bad_rational );
    BOOST_CHECK_THROW( boost::rational<T>( 0, 0), boost::bad_rational );
}

// Assignment (non-operator) tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_assign_test, T, all_signed_test_types )
{
    my_configuration::hook<T>  h;
    boost::rational<T> &       r = h.r_[ 0 ];

    r.assign( 6, 8 );
    BOOST_CHECK_EQUAL( r.numerator(),   static_cast<T>(3) );
    BOOST_CHECK_EQUAL( r.denominator(), static_cast<T>(4) );

    r.assign( 0, -7 );
    BOOST_CHECK_EQUAL( r.numerator(),   static_cast<T>(0) );
    BOOST_CHECK_EQUAL( r.denominator(), static_cast<T>(1) );

    BOOST_CHECK_THROW( r.assign( 4, 0), boost::bad_rational );
    BOOST_CHECK_THROW( r.assign( 0, 0), boost::bad_rational );
    BOOST_CHECK_THROW( r.assign(-7, 0), boost::bad_rational );
}

// Comparison tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_comparison_test, T,
 all_signed_test_types )
{
    my_configuration::hook<T>  h;
    boost::rational<T>  &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
                        &r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ], &r6 = h.r_[ 5 ],
                        &r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ], &r9 = h.r_[ 8 ];

    BOOST_CHECK( r1 == r2 );
    BOOST_CHECK( r2 != r3 );
    BOOST_CHECK( r4 <  r3 );
    BOOST_CHECK( r4 <= r5 );
    BOOST_CHECK( r1 <= r2 );
    BOOST_CHECK( r5 >  r6 );
    BOOST_CHECK( r5 >= r6 );
    BOOST_CHECK( r7 >= r8 );

    BOOST_CHECK( !(r3 == r2) );
    BOOST_CHECK( !(r1 != r2) );
    BOOST_CHECK( !(r1 <  r2) );
    BOOST_CHECK( !(r5 <  r6) );
    BOOST_CHECK( !(r9 <= r2) );
    BOOST_CHECK( !(r8 >  r7) );
    BOOST_CHECK( !(r8 >  r2) );
    BOOST_CHECK( !(r4 >= r6) );

    BOOST_CHECK( r1 == static_cast<T>( 0) );
    BOOST_CHECK( r2 != static_cast<T>(-1) );
    BOOST_CHECK( r3 <  static_cast<T>( 2) );
    BOOST_CHECK( r4 <= static_cast<T>(-3) );
    BOOST_CHECK( r5 >  static_cast<T>( 3) );
    BOOST_CHECK( r6 >= static_cast<T>( 0) );

    BOOST_CHECK( static_cast<T>( 0) == r2 );
    BOOST_CHECK( static_cast<T>( 0) != r7 );
    BOOST_CHECK( static_cast<T>(-1) <  r8 );
    BOOST_CHECK( static_cast<T>(-2) <= r9 );
    BOOST_CHECK( static_cast<T>( 1) >  r1 );
    BOOST_CHECK( static_cast<T>( 1) >= r3 );

    // Extra tests with values close in continued-fraction notation
    boost::rational<T> const  x1( static_cast<T>(9), static_cast<T>(4) );
    boost::rational<T> const  x2( static_cast<T>(61), static_cast<T>(27) );
    boost::rational<T> const  x3( static_cast<T>(52), static_cast<T>(23) );
    boost::rational<T> const  x4( static_cast<T>(70), static_cast<T>(31) );

    BOOST_CHECK( x1 < x2 );
    BOOST_CHECK( !(x1 < x1) );
    BOOST_CHECK( !(x2 < x2) );
    BOOST_CHECK( !(x2 < x1) );
    BOOST_CHECK( x2 < x3 );
    BOOST_CHECK( x4 < x2 );
    BOOST_CHECK( !(x3 < x4) );
    BOOST_CHECK( r7 < x1 );     // not actually close; wanted -ve v. +ve instead
    BOOST_CHECK( !(x2 < r7) );
}

// Increment & decrement tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_1step_test, T, all_signed_test_types )
{
    my_configuration::hook<T>  h;
    boost::rational<T>  &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
                        &r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ];

    BOOST_CHECK(   r1++ == r2 );
    BOOST_CHECK(   r1   != r2 );
    BOOST_CHECK(   r1   == r3 );
    BOOST_CHECK( --r1   == r2 );
    BOOST_CHECK(   r8-- == r7 );
    BOOST_CHECK(   r8   != r7 );
    BOOST_CHECK( ++r8   == r7 );
}

// Absolute value tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_abs_test, T, all_signed_test_types )
{
    typedef my_configuration::hook<T>           hook_type;
    typedef typename hook_type::rational_type   rational_type;

    hook_type      h;
    rational_type  &r2 = h.r_[ 1 ], &r5 = h.r_[ 4 ], &r8 = h.r_[ 7 ];

#ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
    // This is a nasty hack, required because some compilers do not implement
    // "Koenig Lookup."  Basically, if I call abs(r), the C++ standard says that
    // the compiler should look for a definition of abs in the namespace which
    // contains r's class (in this case boost)--among other places.

    using boost::abs;
#endif

    BOOST_CHECK_EQUAL( abs(r2), r2 );
    BOOST_CHECK_EQUAL( abs(r5), r5 );
    BOOST_CHECK_EQUAL( abs(r8), rational_type(2, 3) );
}

// Unary operator tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_unary_test, T, all_signed_test_types )
{
    my_configuration::hook<T>  h;
    boost::rational<T>         &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
                               &r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ];

    BOOST_CHECK_EQUAL( +r5, r5 );

    BOOST_CHECK( -r3 != r3 );
    BOOST_CHECK_EQUAL( -(-r3), r3 );
    BOOST_CHECK_EQUAL( -r4, static_cast<T>(3) );

    BOOST_CHECK( !r2 );
    BOOST_CHECK( !!r3 );

    BOOST_CHECK( ! static_cast<bool>(r2) );
    BOOST_CHECK( r3 );
}

BOOST_AUTO_TEST_SUITE_END()


// The rational arithmetic operations suite
BOOST_AUTO_TEST_SUITE( rational_arithmetic_suite )

// Addition & subtraction tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_additive_test, T,
 all_signed_test_types )
{
    typedef boost::rational<T>  rational_type;

    BOOST_CHECK_EQUAL( rational_type( 1, 2) + rational_type(1, 2),
     static_cast<T>(1) );
    BOOST_CHECK_EQUAL( rational_type(11, 3) + rational_type(1, 2),
     rational_type( 25,  6) );
    BOOST_CHECK_EQUAL( rational_type(-8, 3) + rational_type(1, 5),
     rational_type(-37, 15) );
    BOOST_CHECK_EQUAL( rational_type(-7, 6) + rational_type(1, 7),
     rational_type(  1,  7) - rational_type(7, 6) );
    BOOST_CHECK_EQUAL( rational_type(13, 5) - rational_type(1, 2),
     rational_type( 21, 10) );
    BOOST_CHECK_EQUAL( rational_type(22, 3) + static_cast<T>(1),
     rational_type( 25,  3) );
    BOOST_CHECK_EQUAL( rational_type(12, 7) - static_cast<T>(2),
     rational_type( -2,  7) );
    BOOST_CHECK_EQUAL(    static_cast<T>(3) + rational_type(4, 5),
     rational_type( 19,  5) );
    BOOST_CHECK_EQUAL(    static_cast<T>(4) - rational_type(9, 2),
     rational_type( -1,  2) );

    rational_type  r( 11 );

    r -= rational_type( 20, 3 );
    BOOST_CHECK_EQUAL( r, rational_type(13,  3) );

    r += rational_type( 1, 2 );
    BOOST_CHECK_EQUAL( r, rational_type(29,  6) );

    r -= static_cast<T>( 5 );
    BOOST_CHECK_EQUAL( r, rational_type( 1, -6) );

    r += rational_type( 1, 5 );
    BOOST_CHECK_EQUAL( r, rational_type( 1, 30) );

    r += static_cast<T>( 2 );
    BOOST_CHECK_EQUAL( r, rational_type(61, 30) );
}

// Assignment tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_assignment_test, T,
 all_signed_test_types )
{
    typedef boost::rational<T>  rational_type;

    rational_type  r;

    r = rational_type( 1, 10 );
    BOOST_CHECK_EQUAL( r, rational_type( 1, 10) );

    r = static_cast<T>( -9 );
    BOOST_CHECK_EQUAL( r, rational_type(-9,  1) );
}

// Multiplication tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_multiplication_test, T,
 all_signed_test_types )
{
    typedef boost::rational<T>  rational_type;

    BOOST_CHECK_EQUAL( rational_type(1, 3) * rational_type(-3, 4),
     rational_type(-1, 4) );
    BOOST_CHECK_EQUAL( rational_type(2, 5) * static_cast<T>(7),
     rational_type(14, 5) );
    BOOST_CHECK_EQUAL(  static_cast<T>(-2) * rational_type(1, 6),
     rational_type(-1, 3) );

    rational_type  r = rational_type( 3, 7 );

    r *= static_cast<T>( 14 );
    BOOST_CHECK_EQUAL( r, static_cast<T>(6) );

    r *= rational_type( 3, 8 );
    BOOST_CHECK_EQUAL( r, rational_type(9, 4) );
}

// Division tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_division_test, T,
 all_signed_test_types )
{
    typedef boost::rational<T>  rational_type;

    BOOST_CHECK_EQUAL( rational_type(-1, 20) / rational_type(4, 5),
     rational_type(-1, 16) );
    BOOST_CHECK_EQUAL( rational_type( 5,  6) / static_cast<T>(7),
     rational_type( 5, 42) );
    BOOST_CHECK_EQUAL(     static_cast<T>(8) / rational_type(2, 7),
     static_cast<T>(28) );

    BOOST_CHECK_THROW( rational_type(23, 17) / rational_type(),
     boost::bad_rational );
    BOOST_CHECK_THROW( rational_type( 4, 15) / static_cast<T>(0),
     boost::bad_rational );

    rational_type  r = rational_type( 4, 3 );

    r /= rational_type( 5, 4 );
    BOOST_CHECK_EQUAL( r, rational_type(16, 15) );

    r /= static_cast<T>( 4 );
    BOOST_CHECK_EQUAL( r, rational_type( 4, 15) );

    BOOST_CHECK_THROW( r /= rational_type(), boost::bad_rational );
    BOOST_CHECK_THROW( r /= static_cast<T>(0), boost::bad_rational );

    BOOST_CHECK_EQUAL( rational_type(-1) / rational_type(-3),
     rational_type(1, 3) );
}

// Tests for operations on self
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_self_operations_test, T,
 all_signed_test_types )
{
    typedef boost::rational<T>  rational_type;

    rational_type  r = rational_type( 4, 3 );

    r += r;
    BOOST_CHECK_EQUAL( r, rational_type( 8, 3) );

    r *= r;
    BOOST_CHECK_EQUAL( r, rational_type(64, 9) );

    r /= r;
    BOOST_CHECK_EQUAL( r, rational_type( 1, 1) );

    r -= r;
    BOOST_CHECK_EQUAL( r, rational_type( 0, 1) );

    BOOST_CHECK_THROW( r /= r, boost::bad_rational );
}

BOOST_AUTO_TEST_SUITE_END()


// The non-basic rational operations suite
BOOST_AUTO_TEST_SUITE( rational_extras_suite )

// Output test
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_output_test, T, all_signed_test_types )
{
    std::ostringstream  oss;
    
    oss << boost::rational<T>( 44, 14 );
    BOOST_CHECK_EQUAL( oss.str(), "22/7" );
}

// Input test, failing
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_input_failing_test, T,
 all_signed_test_types )
{
    std::istringstream  iss( "" );
    boost::rational<T>  r;

    iss >> r;
    BOOST_CHECK( !iss );

    iss.clear();
    iss.str( "42" );
    iss >> r;
    BOOST_CHECK( !iss );

    iss.clear();
    iss.str( "57A" );
    iss >> r;
    BOOST_CHECK( !iss );

    iss.clear();
    iss.str( "20-20" );
    iss >> r;
    BOOST_CHECK( !iss );

    iss.clear();
    iss.str( "1/" );
    iss >> r;
    BOOST_CHECK( !iss );

    iss.clear();
    iss.str( "1/ 2" );
    iss >> r;
    BOOST_CHECK( !iss );

    iss.clear();
    iss.str( "1 /2" );
    iss >> r;
    BOOST_CHECK( !iss );
}

// Input test, passing
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_input_passing_test, T,
 all_signed_test_types )
{
    typedef boost::rational<T>  rational_type;

    std::istringstream  iss( "1/2 12" );
    rational_type       r;
    int                 n = 0;

    BOOST_CHECK( iss >> r >> n );
    BOOST_CHECK_EQUAL( r, rational_type(1, 2) );
    BOOST_CHECK_EQUAL( n, 12 );

    iss.clear();
    iss.str( "34/67" );
    BOOST_CHECK( iss >> r );
    BOOST_CHECK_EQUAL( r, rational_type(34, 67) );

    iss.clear();
    iss.str( "-3/-6" );
    BOOST_CHECK( iss >> r );
    BOOST_CHECK_EQUAL( r, rational_type(1, 2) );
}

// Conversion test
BOOST_AUTO_TEST_CASE( rational_cast_test )
{
    // Note that these are not generic.  The problem is that rational_cast<T>
    // requires a conversion from IntType to T.  However, for a user-defined
    // IntType, it is not possible to define such a conversion except as an
    // "operator T()".  This causes problems with overloading resolution.
    boost::rational<int> const  half( 1, 2 );

    BOOST_CHECK_CLOSE( boost::rational_cast<double>(half), 0.5, 0.01 );
    BOOST_CHECK_EQUAL( boost::rational_cast<int>(half), 0 );
    BOOST_CHECK_EQUAL( boost::rational_cast<MyInt>(half), MyInt() );
    BOOST_CHECK_EQUAL( boost::rational_cast<boost::rational<MyInt> >(half),
     boost::rational<MyInt>(1, 2) );

    // Conversions via explicit-marked constructors
    // (Note that the "explicit" mark prevents conversion to
    // boost::rational<MyOverflowingUnsigned>.)
    boost::rational<MyInt> const  threehalves( 3, 2 );

    BOOST_CHECK_EQUAL( boost::rational_cast<MyOverflowingUnsigned>(threehalves),
     MyOverflowingUnsigned(1u) );
}

// Dice tests (a non-main test)
BOOST_AUTO_TEST_CASE_TEMPLATE( dice_roll_test, T, all_signed_test_types )
{
    typedef boost::rational<T>  rational_type;

    // Determine the mean number of times a fair six-sided die
    // must be thrown until each side has appeared at least once.
    rational_type  r = T( 0 );

    for ( int  i = 1 ; i <= 6 ; ++i )
    {
        r += rational_type( 1, i );
    }
    r *= static_cast<T>( 6 );

    BOOST_CHECK_EQUAL( r, rational_type(147, 10) );
}

BOOST_AUTO_TEST_SUITE_END()


// The bugs, patches, and requests checking suite
BOOST_AUTO_TEST_SUITE( bug_patch_request_suite )

// "rational operator< can overflow"
BOOST_AUTO_TEST_CASE( bug_798357_test )
{
    // Choose values such that rational-number comparisons will overflow if
    // the multiplication method (n1/d1 ? n2/d2 == n1*d2 ? n2*d1) is used.
    // (And make sure that the large components are relatively prime, so they
    // won't partially cancel to make smaller, more reasonable, values.)
    unsigned const  n1 = UINT_MAX - 2u, d1 = UINT_MAX - 1u;
    unsigned const  n2 = d1, d2 = UINT_MAX;
    boost::rational<MyOverflowingUnsigned> const  r1( n1, d1 ), r2( n2, d2 );

    BOOST_REQUIRE_EQUAL( boost::math::gcd(n1, d1), 1u );
    BOOST_REQUIRE_EQUAL( boost::math::gcd(n2, d2), 1u );
    BOOST_REQUIRE( n1 > UINT_MAX / d2 );
    BOOST_REQUIRE( n2 > UINT_MAX / d1 );
    BOOST_CHECK( r1 < r2 );
    BOOST_CHECK( !(r1 < r1) );
    BOOST_CHECK( !(r2 < r1) );
}

// "rational::operator< fails for unsigned value types"
BOOST_AUTO_TEST_CASE( patch_1434821_test )
{
    // If a zero-rational v. positive-integer comparison involves negation, then
    // it may fail with unsigned types, which wrap around (for built-ins) or
    // throw/be-undefined (for user-defined types).
    boost::rational<unsigned> const  r( 0u );

    BOOST_CHECK( r < 1u );
}

// "rational.hpp::gcd returns a negative value sometimes"
BOOST_AUTO_TEST_CASE( patch_1438626_test )
{
    // The issue only manifests with 2's-complement integers that use their
    // entire range of bits.  [This means that ln(-INT_MIN)/ln(2) is an integer
    // and INT_MAX + INT_MIN == -1.]  The common computer platforms match this.
#if (INT_MAX + INT_MIN == -1) && ((INT_MAX ^ INT_MIN) == -1)
    // If a GCD routine takes the absolute value of an argument only before
    // processing, it won't realize that -INT_MIN -> INT_MIN (i.e. no change
    // from negation) and will propagate a negative sign to its result.
    BOOST_REQUIRE_EQUAL( boost::math::gcd(INT_MIN, 6), 2 );

    // That is bad if the rational number type does not check for that
    // possibility during normalization.
    boost::rational<int> const  r1( INT_MIN / 2 + 3, 6 ),
                                r2( INT_MIN / 2 - 3, 6 ), r3 = r1 + r2;

    // If the error happens, the signs of the components will be switched.
    // (The numerators' sum is INT_MIN, and its GCD with 6 would be negated.)
    BOOST_CHECK_EQUAL( r3.numerator(), INT_MIN / 2 );
    BOOST_CHECK_EQUAL( r3.denominator(), 3 );
#endif
}

BOOST_AUTO_TEST_SUITE_END()