1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Windows (vers 1st August 2002), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Header <boost/operators.hpp> Documentation</title>
</head>
<body text="black" bgcolor="white" link="blue" vlink="purple" alink="red">
<h1><img src="../../boost.png" alt="boost.png (6897 bytes)" align=
"middle" width="277" height="86">Header <cite><<a href=
"../../boost/operators.hpp">boost/operators.hpp</a>></cite></h1>
<p>The header <cite><<a href=
"../../boost/operators.hpp">boost/operators.hpp</a>></cite> supplies
several sets of class templates (in namespace <code>boost</code>). These
templates define operators at namespace scope in terms of a minimal
number of fundamental operators provided by the class.</p>
<h2><a name="contents">Contents</a></h2>
<ul>
<li><a href="#contents">Contents</a></li>
<li>
<a href="#rationale">Rationale</a>
<ul>
<li><a href="#semantics">Summary of Template Semantics</a></li>
<li><a href="#concepts_note">Use of <i>concepts</i></a></li>
</ul>
</li>
<li>
<a href="#usage">Usage</a>
<ul>
<li>
<a href="#two_arg">Two-Argument Template Forms</a>
<ul>
<li><a href="#two_arg_gen">General Considerations</a></li>
<li><a href="#mixed_arithmetics">Mixed arithmetics</a></li>
</ul>
</li>
<li><a href="#chaining">Base Class Chaining and Object
Size</a></li>
<li><a href="#explicit_instantiation">Separate, Explicit
Instantiation</a></li>
<li><a href="#portability">Requirement Portability</a></li>
</ul>
</li>
<li><a href="#example">Example</a></li>
<li>
<a href="#arithmetic">Arithmetic operators</a>
<ul>
<li>
<a href="#smpl_oprs">Simple Arithmetic Operators</a>
<ul>
<li><a href="#ordering">Ordering Note</a></li>
<li><a href="#symmetry">Symmetry Note</a></li>
</ul>
</li>
<li><a href="#grpd_oprs">Grouped Arithmetic Operators</a></li>
<li><a href="#ex_oprs">Example Templates</a></li>
<li><a href="#a_demo">Arithmetic Operators Demonstration and Test
Program</a></li>
</ul>
</li>
<li>
<a href="#deref">Dereference Operators and Iterator Helpers</a>
<ul>
<li><a href="#dereference">Dereference operators</a></li>
<li><a href="#grpd_iter_oprs">Grouped Iterator Operators</a></li>
<li>
<a href="#iterator">Iterator Helpers</a>
<ul>
<li><a href="#iterator_helpers_notes">Iterator Helper
Notes</a></li>
</ul>
</li>
<li><a href="#i_demo">Iterator Demonstration and Test
Program</a></li>
</ul>
</li>
<li><a href="#contributors">Contributors</a></li>
<li><a href="#old_lib_note">Note for Users of Older Versions</a></li>
</ul>
<h2><a name="rationale">Rationale</a></h2>
<p>Overloaded operators for class types typically occur in groups. If you
can write <code>x + y</code>, you probably also want to be able
to write <code>x += y</code>. If you can write <code>x < y,</code> you
also want <code>x > y, x >= y,</code> and <code>x <= y</code>.
Moreover, unless your class has really surprising behavior, some of these
related operators can be defined in terms of others (e.g. <code>x >= y
<=> !(x < y)</code>). Replicating this boilerplate for multiple
classes is both tedious and error-prone. The <cite><a href=
"../../boost/operators.hpp">boost/operators.hpp</a></cite> templates help
by generating operators for you at namespace scope based on other
operators you've defined in your class.</p>
<p>If, for example, you declare a class like this:</p>
<blockquote>
<pre>
class MyInt
: boost::operators<MyInt>
{
bool operator<(const MyInt& x) const;
bool operator==(const MyInt& x) const;
MyInt& operator+=(const MyInt& x);
MyInt& operator-=(const MyInt& x);
MyInt& operator*=(const MyInt& x);
MyInt& operator/=(const MyInt& x);
MyInt& operator%=(const MyInt& x);
MyInt& operator|=(const MyInt& x);
MyInt& operator&=(const MyInt& x);
MyInt& operator^=(const MyInt& x);
MyInt& operator++();
MyInt& operator--();
};
</pre>
</blockquote>
<p>then the <code><a href="#operators1">operators<></a></code>
template adds more than a dozen additional operators, such as
<code>operator></code>, <code><=</code>, <code>>=</code>, and
(binary) <code>+</code>. <a href="#two_arg">Two-argument forms</a> of the
templates are also provided to allow interaction with other types.</p>
<h3>Summary of Template <a name="semantics">Semantics</a></h3>
<ol>
<li>Each operator template completes the concept(s) it describes by
defining overloaded operators for its target class.</li>
<li>The name of an operator class template indicates the <a href=
"#concepts_note">concept</a> that its target class will model.</li>
<li>Usually, the target class uses an instantation of the operator
class template as a base class. Some operator templates support an <a
href="#explicit_instantiation">alternate method</a>.</li>
<li>The concept can be compound, <i>i.e.</i> it may represent a common
combination of other, simpler concepts.</li>
<li>Most operator templates require their target class to support
operations related to the operators supplied by the template. In
accordance with widely accepted <a href=
"http://www.gotw.ca/gotw/004.htm">coding style recommendations</a>, the
target class is often required to supply the assignment counterpart
operator of the concept's "main operator." For example, the
<code>addable</code> template requires <code>operator+=(T
const&)</code> and in turn supplies <code>operator+(T const&, T
const&)</code>.</li>
</ol>
<h3>Use of <i><a name="concepts_note">concepts</a></i></h3>
<p>The discussed concepts are not necessarily the standard library's
concepts (CopyConstructible, <i>etc.</i>), although some of them could
be; they are what we call <i>concepts with a small 'c'</i>. In
particular, they are different from the former ones in that they <em>do
not</em> describe precise semantics of the operators they require to be
defined, except the requirements that (a) the semantics of the operators
grouped in one concept should be consistent (<i>e.g.</i> effects of
evaluating of <code>a += b</code> and
<code>a = a + b</code> expressions should be the
same), and (b) that the return types of the operators should follow
semantics of return types of corresponding operators for built-in types
(<i>e.g.</i> <code>operator<</code> should return a type convertible
to <code>bool</code>, and <code>T::operator-=</code> should return type
convertible to <code>T</code>). Such "loose" requirements make operators
library applicable to broader set of target classes from different
domains, <i>i.e.</i> eventually more useful.</p>
<h2><a name="usage">Usage</a></h2>
<h3><a name="two_arg">Two-Argument</a> Template Forms</h3>
<h4><a name="two_arg_gen">General Considerations</a></h4>
<p>The arguments to a binary operator commonly have identical types, but
it is not unusual to want to define operators which combine different
types. For <a href="#example">example</a>, one might want to multiply a
mathematical vector by a scalar. The two-argument template forms of the
arithmetic operator templates are supplied for this purpose. When
applying the two-argument form of a template, the desired return type of
the operators typically determines which of the two types in question
should be derived from the operator template. For example, if the result
of <code>T + U</code> is of type <code>T</code>, then
<code>T</code> (not <code>U</code>) should be derived from <code><a href=
"#addable2">addable<T, U></a></code>. The comparison templates
(<code><a href="#less_than_comparable2">less_than_comparable<T,
U></a></code>, <code><a href=
"#equality_comparable2">equality_comparable<T, U></a></code>,
<code><a href="#equivalent2">equivalent<T, U></a></code>, and
<code><a href="#partially_ordered2">partially_ordered<T,
U></a></code>) are exceptions to this guideline, since the return type
of the operators they define is <code>bool</code>.</p>
<p>On compilers which do not support partial specialization, the
two-argument forms must be specified by using the names shown below with
the trailing <code>'2'</code>. The single-argument forms with the
trailing <code>'1'</code> are provided for symmetry and to enable certain
applications of the <a href="#chaining">base class chaining</a>
technique.</p>
<h4><a name="mixed_arithmetics">Mixed Arithmetics</a></h4>
<p>Another application of the two-argument template forms is for mixed
arithmetics between a type <code>T</code> and a type <code>U</code> that
is convertible to <code>T</code>. In this case there are two ways where
the two-argument template forms are helpful: one is to provide the
respective signatures for operator overloading, the second is
performance.</p>
<p>With respect to the operator overloading assume <i>e.g.</i> that
<code>U</code> is <code>int</code>, that <code>T</code> is an
user-defined unlimited integer type, and that <code>double
operator-(double, const T&)</code> exists. If one wants to compute
<code>int - T</code> and does not provide <code>T operator-(int, const
T&)</code>, the compiler will consider <code>double operator-(double,
const T&)</code> to be a better match than <code>T operator-(const
T&, const T&)</code>, which will probably be different from the
user's intention. To define a complete set of operator signatures,
additional 'left' forms of the two-argument template forms are provided
(<code><a href="#subtractable2_left">subtractable2_left<T,
U></a></code>, <code><a href="#dividable2_left">dividable2_left<T,
U></a></code>, <code><a href="#modable2_left">modable2_left<T,
U></a></code>) that define the signatures for non-commutative
operators where <code>U</code> appears on the left hand side
(<code>operator-(const U&, const T&)</code>,
<code>operator/(const U&, const T&)</code>, <code>operator%(const
U&, const T&)</code>).</p>
<p>With respect to the performance observe that when one uses the single
type binary operator for mixed type arithmetics, the type <code>U</code>
argument has to be converted to type <code>T</code>. In practice,
however, there are often more efficient implementations of, say
<code>T::operator-=(const U&)</code> that avoid unnecessary
conversions from <code>U</code> to <code>T</code>. The two-argument
template forms of the arithmetic operator create additional operator
interfaces that use these more efficient implementations. There is,
however, no performance gain in the 'left' forms: they still need a
conversion from <code>U</code> to <code>T</code> and have an
implementation equivalent to the code that would be automatically created
by the compiler if it considered the single type binary operator to be
the best match.</p>
<h3>Base Class <a name="chaining">Chaining</a> and Object Size</h3>
<p>Every operator class template, except the <a href=
"#ex_oprs">arithmetic examples</a> and the <a href="#iterator">iterator
helpers</a>, has an additional, but optional, template type parameter
<code>B</code>. This parameter will be a publicly-derived base class of
the instantiated template. This means it must be a class type. It can be
used to avoid the bloating of object sizes that is commonly associated
with multiple-inheritance from several empty base classes (see the <a
href="#old_lib_note">note for users of older versions</a> for more
details). To provide support for a group of operators, use the
<code>B</code> parameter to chain operator templates into a single-base
class hierarchy, demostrated in the <a href="#example">usage example</a>.
The technique is also used by the composite operator templates to group
operator definitions. If a chain becomes too long for the compiler to
support, try replacing some of the operator templates with a single
grouped operator template that chains the old templates together; the
length limit only applies to the number of templates directly in the
chain, not those hidden in group templates.</p>
<p><strong>Caveat:</strong> to chain to a base class which is
<em>not</em> a Boost operator template when using the <a href=
"#two_arg">single-argument form</a> of a Boost operator template, you
must specify the operator template with the trailing <code>'1'</code> in
its name. Otherwise the library will assume you mean to define a binary
operation combining the class you intend to use as a base class and the
class you're deriving.</p>
<h3>Separate, <a name="explicit_instantiation">Explicit
Instantiation</a></h3>
<p>On some compilers (<i>e.g.</i> Borland, GCC) even single-inheritance
seems to cause an increase in object size in some cases. If you are not
defining a class template, you may get better object-size performance by
avoiding derivation altogether, and instead explicitly instantiating the
operator template as follows:</p>
<blockquote>
<pre>
class myclass // lose the inheritance...
{
//...
};
// explicitly instantiate the operators I need.
template struct less_than_comparable<myclass>;
template struct equality_comparable<myclass>;
template struct incrementable<myclass>;
template struct decrementable<myclass>;
template struct addable<myclass,long>;
template struct subtractable<myclass,long>;
</pre>
</blockquote>
<p>Note that some operator templates cannot use this workaround and must
be a base class of their primary operand type. Those templates define
operators which must be member functions, and the workaround needs the
operators to be independent friend functions. The relevant templates
are:</p>
<ul>
<li><code><a href=
"#dereferenceable">dereferenceable<></a></code></li>
<li><code><a href="#indexable">indexable<></a></code></li>
<li>Any composite operator template that includes at least one of the
above</li>
</ul>
<p>As Daniel Krügler pointed out, this technique violates 14.6.5/2
and is thus non-portable. The reasoning is, that the operators injected
by the instantiation of e.g.
<code>less_than_comparable<myclass></code> can not be found
by ADL according to the rules given by 3.4.2/2, since myclass is
not an associated class of
<code>less_than_comparable<myclass></code>.
Thus only use this technique if all else fails.</p>
<h3>Requirement <a name="portability">Portability</a></h3>
<p>Many compilers (<i>e.g.</i> MSVC 6.3, GCC 2.95.2) will not enforce the
requirements in the operator template tables unless the operations which
depend on them are actually used. This is not standard-conforming
behavior. In particular, although it would be convenient to derive all
your classes which need binary operators from the <code><a href=
"#operators1">operators<></a></code> and <code><a href=
"#operators2">operators2<></a></code> templates, regardless of
whether they implement all the requirements of those templates, this
shortcut is not portable. Even if this currently works with your
compiler, it may not work later.</p>
<h2><a name="example">Example</a></h2>
<p>This example shows how some of the <a href="#arithmetic">arithmetic
operator templates</a> can be used with a geometric point class
(template).</p>
<pre>
template <class T>
class point // note: private inheritance is OK here!
: boost::addable< point<T> // point + point
, boost::subtractable< point<T> // point - point
, boost::dividable2< point<T>, T // point / T
, boost::multipliable2< point<T>, T // point * T, T * point
> > > >
{
public:
point(T, T);
T x() const;
T y() const;
point operator+=(const point&);
// point operator+(point, const point&) automatically
// generated by addable.
point operator-=(const point&);
// point operator-(point, const point&) automatically
// generated by subtractable.
point operator*=(T);
// point operator*(point, const T&) and
// point operator*(const T&, point) auto-generated
// by multipliable.
point operator/=(T);
// point operator/(point, const T&) auto-generated
// by dividable.
private:
T x_;
T y_;
};
// now use the point<> class:
template <class T>
T length(const point<T> p)
{
return sqrt(p.x()*p.x() + p.y()*p.y());
}
const point<float> right(0, 1);
const point<float> up(1, 0);
const point<float> pi_over_4 = up + right;
const point<float> pi_over_4_normalized = pi_over_4 / length(pi_over_4);
</pre>
<h2><a name="arithmetic">Arithmetic</a> Operators</h2>
<p>The arithmetic operator templates ease the task of creating a custom
numeric type. Given a core set of operators, the templates add related
operators to the numeric class. These operations are like the ones the
standard arithmetic types have, and may include comparisons, adding,
incrementing, logical and bitwise manipulations, <i>etc</i>. Further,
since most numeric types need more than one of these operators, some
templates are provided to combine several of the basic operator templates
in one declaration.</p>
<p>The requirements for the types used to instantiate the simple operator
templates are specified in terms of expressions which must be valid and
the expression's return type. The composite operator templates only list
what other templates they use. The supplied operations and requirements
of the composite operator templates can be inferred from the operations
and requirements of the listed components.</p>
<h3><a name="smpl_oprs">Simple Arithmetic Operators</a></h3>
<p>These templates are "simple" since they provide operators based on a
single operation the base type has to provide. They have an additional
optional template parameter <code>B</code>, which is not shown, for the
<a href="#chaining">base class chaining</a> technique.</p>
<table cellpadding="5" border="1" align="center">
<caption>
Simple Arithmetic Operator Template Classes
</caption>
<tr>
<td colspan="3">
<table align="center" border="1">
<caption>
<em>Key</em>
</caption>
<tr>
<td><code>T</code>: primary operand type</td>
<td><code>U</code>: alternate operand type</td>
</tr>
<tr>
<td><code>t</code>, <code>t1</code>: values of type
<code>T</code></td>
<td><code>u</code>: value of type <code>U</code></td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Template</th>
<th>Supplied Operations</th>
<th>Requirements</th>
</tr>
<tr>
<td><code><a name=
"less_than_comparable1">less_than_comparable<T></a></code><br>
<code>less_than_comparable1<T></code></td>
<td><code>bool operator>(const T&, const T&)</code><br>
<code>bool operator<=(const T&, const T&)</code><br>
<code>bool operator>=(const T&, const T&)</code></td>
<td><code>t < t1</code>.<br>
Return convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="less_than_comparable2">less_than_comparable<T,
U></a></code><br>
<code>less_than_comparable2<T, U></code></td>
<td><code>bool operator<=(const T&, const U&)</code><br>
<code>bool operator>=(const T&, const U&)</code><br>
<code>bool operator>(const U&, const T&)</code><br>
<code>bool operator<(const U&, const T&)</code><br>
<code>bool operator<=(const U&, const T&)</code><br>
<code>bool operator>=(const U&, const T&)</code></td>
<td><code>t < u</code>. <code>t > u</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"equality_comparable1">equality_comparable<T></a></code><br>
<code>equality_comparable1<T></code></td>
<td><code>bool operator!=(const T&, const T&)</code></td>
<td><code>t == t1</code>.<br>
Return convertible to <code>bool</code>.</td>
</tr>
<tr>
<td><code><a name="equality_comparable2">equality_comparable<T,
U></a></code><br>
<code>equality_comparable2<T, U></code></td>
<td><code>bool operator==(const U&, const T&)</code><br>
<code>bool operator!=(const U&, const T&)</code><br>
<code>bool operator!=(const T&, const U&)</code></td>
<td><code>t == u</code>.<br>
Return convertible to <code>bool</code>.</td>
</tr>
<tr>
<td><code><a name="addable1">addable<T></a></code><br>
<code>addable1<T></code></td>
<td><code>T operator+(const T&, const T&)</code></td>
<td><code>T temp(t); temp += t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="addable2">addable<T, U></a></code><br>
<code>addable2<T, U></code></td>
<td><code>T operator+(const T&, const U&)</code><br>
<code>T operator+(const U&, const T& )</code></td>
<td><code>T temp(t); temp += u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"subtractable1">subtractable<T></a></code><br>
<code>subtractable1<T></code></td>
<td><code>T operator-(const T&, const T&)</code></td>
<td><code>T temp(t); temp -= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="subtractable2">subtractable<T,
U></a></code><br>
<code>subtractable2<T, U></code></td>
<td><code>T operator-(const T&, const U&)</code></td>
<td><code>T temp(t); temp -= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="subtractable2_left">subtractable2_left<T,
U></a></code></td>
<td><code>T operator-(const U&, const T&)</code></td>
<td><code>T temp(u); temp -= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name=
"multipliable1">multipliable<T></a></code><br>
<code>multipliable1<T></code></td>
<td><code>T operator*(const T&, const T&)</code></td>
<td><code>T temp(t); temp *= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="multipliable2">multipliable<T,
U></a></code><br>
<code>multipliable2<T, U></code></td>
<td><code>T operator*(const T&, const U&)</code><br>
<code>T operator*(const U&, const T&)</code></td>
<td><code>T temp(t); temp *= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="dividable1">dividable<T></a></code><br>
<code>dividable1<T></code></td>
<td><code>T operator/(const T&, const T&)</code></td>
<td><code>T temp(t); temp /= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="dividable2">dividable<T, U></a></code><br>
<code>dividable2<T, U></code></td>
<td><code>T operator/(const T&, const U&)</code></td>
<td><code>T temp(t); temp /= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="dividable2_left">dividable2_left<T,
U></a></code></td>
<td><code>T operator/(const U&, const T&)</code></td>
<td><code>T temp(u); temp /= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="modable1">modable<T></a></code><br>
<code>modable1<T></code></td>
<td><code>T operator%(const T&, const T&)</code></td>
<td><code>T temp(t); temp %= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="modable2">modable<T, U></a></code><br>
<code>modable2<T, U></code></td>
<td><code>T operator%(const T&, const U&)</code></td>
<td><code>T temp(t); temp %= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="modable2_left">modable2_left<T,
U></a></code></td>
<td><code>T operator%(const U&, const T&)</code></td>
<td><code>T temp(u); temp %= t</code>.<br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name="orable1">orable<T></a></code><br>
<code>orable1<T></code></td>
<td><code>T operator|(const T&, const T&)</code></td>
<td><code>T temp(t); temp |= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="orable2">orable<T, U></a></code><br>
<code>orable2<T, U></code></td>
<td><code>T operator|(const T&, const U&)</code><br>
<code>T operator|(const U&, const T&)</code></td>
<td><code>T temp(t); temp |= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="andable1">andable<T></a></code><br>
<code>andable1<T></code></td>
<td><code>T operator&(const T&, const T&)</code></td>
<td><code>T temp(t); temp &= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="andable2">andable<T, U></a></code><br>
<code>andable2<T, U></code></td>
<td><code>T operator&(const T&, const U&)</code><br>
<code>T operator&(const U&, const T&)</code></td>
<td><code>T temp(t); temp &= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="xorable1">xorable<T></a></code><br>
<code>xorable1<T></code></td>
<td><code>T operator^(const T&, const T&)</code></td>
<td><code>T temp(t); temp ^= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="xorable2">xorable<T, U></a></code><br>
<code>xorable2<T, U></code></td>
<td><code>T operator^(const T&, const U&)</code><br>
<code>T operator^(const U&, const T&)</code></td>
<td><code>T temp(t); temp ^= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"incrementable">incrementable<T></a></code></td>
<td><code>T operator++(T&, int)</code></td>
<td><code>T temp(t); ++t</code><br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name=
"decrementable">decrementable<T></a></code></td>
<td><code>T operator--(T&, int)</code></td>
<td><code>T temp(t); --t;</code><br>
Return convertible to <code>T</code>.</td>
</tr>
<tr>
<td><code><a name=
"left_shiftable1">left_shiftable<T></a></code><br>
<code>left_shiftable1<T></code></td>
<td><code>T operator<<(const T&, const T&)</code></td>
<td><code>T temp(t); temp <<= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="left_shiftable2">left_shiftable<T,
U></a></code><br>
<code>left_shiftable2<T, U></code></td>
<td><code>T operator<<(const T&, const U&)</code></td>
<td><code>T temp(t); temp <<= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"right_shiftable1">right_shiftable<T></a></code><br>
<code>right_shiftable1<T></code></td>
<td><code>T operator>>(const T&, const T&)</code></td>
<td><code>T temp(t); temp >>= t1</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="right_shiftable2">right_shiftable<T,
U></a></code><br>
<code>right_shiftable2<T, U></code></td>
<td><code>T operator>>(const T&, const U&)</code></td>
<td><code>T temp(t); temp >>= u</code>.<br>
Return convertible to <code>T</code>. See the <a href=
"#symmetry">Symmetry Note</a>.</td>
</tr>
<tr>
<td><code><a name="equivalent1">equivalent<T></a></code><br>
<code>equivalent1<T></code></td>
<td><code>bool operator==(const T&, const T&)</code></td>
<td><code>t < t1</code>.<br>
Return convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="equivalent2">equivalent<T, U></a></code><br>
<code>equivalent2<T, U></code></td>
<td><code>bool operator==(const T&, const U&)</code></td>
<td><code>t < u</code>. <code>t > u</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name=
"partially_ordered1">partially_ordered<T></a></code><br>
<code>partially_ordered1<T></code></td>
<td><code>bool operator>(const T&, const T&)</code><br>
<code>bool operator<=(const T&, const T&)</code><br>
<code>bool operator>=(const T&, const T&)</code></td>
<td><code>t < t1</code>. <code>t == t1</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
<tr>
<td><code><a name="partially_ordered2">partially_ordered<T,
U></a></code><br>
<code>partially_ordered2<T, U></code></td>
<td><code>bool operator<=(const T&, const U&)</code><br>
<code>bool operator>=(const T&, const U&)</code><br>
<code>bool operator>(const U&, const T&)</code><br>
<code>bool operator<(const U&, const T&)</code><br>
<code>bool operator<=(const U&, const T&)</code><br>
<code>bool operator>=(const U&, const T&)</code></td>
<td><code>t < u</code>. <code>t > u</code>. <code>t ==
u</code>.<br>
Returns convertible to <code>bool</code>. See the <a href=
"#ordering">Ordering Note</a>.</td>
</tr>
</table>
<h4><a name="ordering">Ordering</a> Note</h4>
<p>The <code><a href=
"#less_than_comparable1">less_than_comparable<T></a></code> and
<code><a href="#partially_ordered1">partially_ordered<T></a></code>
templates provide the same set of operations. However, the workings of
<code><a href=
"#less_than_comparable1">less_than_comparable<T></a></code> assume
that all values of type <code>T</code> can be placed in a total order. If
that is not true (<i>e.g.</i> Not-a-Number values in IEEE floating point
arithmetic), then <code><a href=
"#partially_ordered1">partially_ordered<T></a></code> should be
used. The <code><a href=
"#partially_ordered1">partially_ordered<T></a></code> template can
be used for a totally-ordered type, but it is not as efficient as
<code><a href=
"#less_than_comparable1">less_than_comparable<T></a></code>. This
rule also applies for <code><a href=
"#less_than_comparable2">less_than_comparable<T, U></a></code> and
<code><a href="#partially_ordered2">partially_ordered<T,
U></a></code> with respect to the ordering of all <code>T</code> and
<code>U</code> values, and for both versions of <code><a href=
"#equivalent1">equivalent<></a></code>. The solution for <code><a
href="#equivalent1">equivalent<></a></code> is to write a custom
<code>operator==</code> for the target class.</p>
<h4><a name="symmetry">Symmetry</a> Note</h4>
<p>Before talking about symmetry, we need to talk about optimizations to
understand the reasons for the different implementation styles of
operators. Let's have a look at <code>operator+</code> for a class
<code>T</code> as an example:</p>
<pre>
T operator+( const T& lhs, const T& rhs )
{
return T( lhs ) += rhs;
}
</pre>
This would be a normal implementation of <code>operator+</code>, but it
is not an efficient one. An unnamed local copy of <code>lhs</code> is
created, <code>operator+=</code> is called on it and it is copied to the
function return value (which is another unnamed object of type
<code>T</code>). The standard doesn't generally allow the intermediate
object to be optimized away:
<blockquote>
3.7.2/2: Automatic storage duration<br>
<br>
If a named automatic object has initialization or a destructor with
side effects, it shall not be destroyed before the end of its block,
nor shall it be eliminated as an optimization even if it appears to be
unused, except that a class object or its copy may be eliminated as
specified in 12.8.
</blockquote>
The reference to 12.8 is important for us:
<blockquote>
12.8/15: Copying class objects<br>
...<br>
For a function with a class return type, if the expression in the
return statement is the name of a local object, and the cv-unqualified
type of the local object is the same as the function return type, an
implementation is permitted to omit creating the temporary object to
hold the function return value, even if the class copy constructor or
destructor has side effects.
</blockquote>
This optimization is known as the named return value optimization (NRVO),
which leads us to the following implementation for
<code>operator+</code>:
<pre>
T operator+( const T& lhs, const T& rhs )
{
T nrv( lhs );
nrv += rhs;
return nrv;
}
</pre>
Given this implementation, the compiler is allowed to remove the
intermediate object. Sadly, not all compiler implement the NRVO, some
even implement it in an incorrect way which makes it useless here.
Without the NRVO, the NRVO-friendly code is no worse than the original
code showed above, but there is another possible implementation, which
has some very special properties:
<pre>
T operator+( T lhs, const T& rhs )
{
return lhs += rhs;
}
</pre>
The difference to the first implementation is that <code>lhs</code> is
not taken as a constant reference used to create a copy; instead,
<code>lhs</code> is a by-value parameter, thus it is already the copy
needed. This allows another optimization (12.2/2) for some cases.
Consider <code>a + b + c</code> where the result of
<code>a + b</code> is not copied when used as <code>lhs</code>
when adding <code>c</code>. This is more efficient than the original
code, but not as efficient as a compiler using the NRVO. For most people,
it is still preferable for compilers that don't implement the NRVO, but
the <code>operator+</code> now has a different function signature. Also,
the number of objects created differs for
<code>(a + b ) + c</code> and
<code>a + ( b + c )</code>. Most probably,
this won't be a problem for you, but if your code relies on the function
signature or a strict symmetric behaviour, you should set
<code>BOOST_FORCE_SYMMETRIC_OPERATORS</code> in your user-config. This
will force the NRVO-friendly implementation to be used even for compilers
that don't implement the NRVO. <br>
<br>
<h3><a name="grpd_oprs">Grouped Arithmetic Operators</a></h3>
<p>The following templates provide common groups of related operations.
For example, since a type which is addable is usually also subractable,
the <code><a href="#additive1">additive</a></code> template provides the
combined operators of both. The grouped operator templates have an
additional optional template parameter <code>B</code>, which is not
shown, for the <a href="#chaining">base class chaining</a> technique.</p>
<table cellpadding="5" border="1" align="center">
<caption>
Grouped Arithmetic Operator Template Classes
</caption>
<tr>
<td colspan="2">
<table align="center" border="1">
<caption>
<em>Key</em>
</caption>
<tr>
<td><code>T</code>: primary operand type</td>
<td><code>U</code>: alternate operand type</td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Template</th>
<th>Component Operator Templates</th>
</tr>
<tr>
<td><code><a name=
"totally_ordered1">totally_ordered<T></a></code><br>
<code>totally_ordered1<T></code></td>
<td>
<ul>
<li><code><a href=
"#less_than_comparable1">less_than_comparable<T></a></code></li>
<li><code><a href=
"#equality_comparable1">equality_comparable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="totally_ordered2">totally_ordered<T,
U></a></code><br>
<code>totally_ordered2<T, U></code></td>
<td>
<ul>
<li><code><a href=
"#less_than_comparable2">less_than_comparable<T,
U></a></code></li>
<li><code><a href=
"#equality_comparable2">equality_comparable<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="additive1">additive<T></a></code><br>
<code>additive1<T></code></td>
<td>
<ul>
<li><code><a href="#addable1">addable<T></a></code></li>
<li><code><a href=
"#subtractable1">subtractable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="additive2">additive<T, U></a></code><br>
<code>additive2<T, U></code></td>
<td>
<ul>
<li><code><a href="#addable2">addable<T, U></a></code></li>
<li><code><a href="#subtractable2">subtractable<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"multiplicative1">multiplicative<T></a></code><br>
<code>multiplicative1<T></code></td>
<td>
<ul>
<li><code><a href=
"#multipliable1">multipliable<T></a></code></li>
<li><code><a href=
"#dividable1">dividable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="multiplicative2">multiplicative<T,
U></a></code><br>
<code>multiplicative2<T, U></code></td>
<td>
<ul>
<li><code><a href="#multipliable2">multipliable<T,
U></a></code></li>
<li><code><a href="#dividable2">dividable<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"integer_multiplicative1">integer_multiplicative<T></a></code><br>
<code>integer_multiplicative1<T></code></td>
<td>
<ul>
<li><code><a href=
"#multiplicative1">multiplicative<T></a></code></li>
<li><code><a href="#modable1">modable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"integer_multiplicative2">integer_multiplicative<T,
U></a></code><br>
<code>integer_multiplicative2<T, U></code></td>
<td>
<ul>
<li><code><a href="#multiplicative2">multiplicative<T,
U></a></code></li>
<li><code><a href="#modable2">modable<T, U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="arithmetic1">arithmetic<T></a></code><br>
<code>arithmetic1<T></code></td>
<td>
<ul>
<li><code><a href="#additive1">additive<T></a></code></li>
<li><code><a href=
"#multiplicative1">multiplicative<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="arithmetic2">arithmetic<T, U></a></code><br>
<code>arithmetic2<T, U></code></td>
<td>
<ul>
<li><code><a href="#additive2">additive<T,
U></a></code></li>
<li><code><a href="#multiplicative2">multiplicative<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"integer_arithmetic1">integer_arithmetic<T></a></code><br>
<code>integer_arithmetic1<T></code></td>
<td>
<ul>
<li><code><a href="#additive1">additive<T></a></code></li>
<li><code><a href=
"#integer_multiplicative1">integer_multiplicative<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="integer_arithmetic2">integer_arithmetic<T,
U></a></code><br>
<code>integer_arithmetic2<T, U></code></td>
<td>
<ul>
<li><code><a href="#additive2">additive<T,
U></a></code></li>
<li><code><a href=
"#integer_multiplicative2">integer_multiplicative<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="bitwise1">bitwise<T></a></code><br>
<code>bitwise1<T></code></td>
<td>
<ul>
<li><code><a href="#xorable1">xorable<T></a></code></li>
<li><code><a href="#andable1">andable<T></a></code></li>
<li><code><a href="#orable1">orable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="bitwise2">bitwise<T, U></a></code><br>
<code>bitwise2<T, U></code></td>
<td>
<ul>
<li><code><a href="#xorable2">xorable<T, U></a></code></li>
<li><code><a href="#andable2">andable<T, U></a></code></li>
<li><code><a href="#orable2">orable<T, U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"unit_steppable">unit_steppable<T></a></code></td>
<td>
<ul>
<li><code><a href=
"#incrementable">incrementable<T></a></code></li>
<li><code><a href=
"#decrementable">decrementable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="shiftable1">shiftable<T></a></code><br>
<code>shiftable1<T></code></td>
<td>
<ul>
<li><code><a href=
"#left_shiftable1">left_shiftable<T></a></code></li>
<li><code><a href=
"#right_shiftable1">right_shiftable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="shiftable2">shiftable<T, U></a></code><br>
<code>shiftable2<T, U></code></td>
<td>
<ul>
<li><code><a href="#left_shiftable2">left_shiftable<T,
U></a></code></li>
<li><code><a href="#right_shiftable2">right_shiftable<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"ring_operators1">ring_operators<T></a></code><br>
<code>ring_operators1<T></code></td>
<td>
<ul>
<li><code><a href="#additive1">additive<T></a></code></li>
<li><code><a href=
"#multipliable1">multipliable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="ring_operators2">ring_operators<T,
U></a></code><br>
<code>ring_operators2<T, U></code></td>
<td>
<ul>
<li><code><a href="#additive2">additive<T,
U></a></code></li>
<li><code><a href="#subtractable2_left">subtractable2_left<T,
U></a></code></li>
<li><code><a href="#multipliable2">multipliable<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"ordered_ring_operators1">ordered_ring_operators<T></a></code><br>
<code>ordered_ring_operators1<T></code></td>
<td>
<ul>
<li><code><a href=
"#ring_operators1">ring_operators<T></a></code></li>
<li><code><a href=
"#totally_ordered1">totally_ordered<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"ordered_ring_operators2">ordered_ring_operators<T,
U></a></code><br>
<code>ordered_ring_operators2<T, U></code></td>
<td>
<ul>
<li><code><a href="#ring_operators2">ring_operators<T,
U></a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"field_operators1">field_operators<T></a></code><br>
<code>field_operators1<T></code></td>
<td>
<ul>
<li><code><a href=
"#ring_operators1">ring_operators<T></a></code></li>
<li><code><a href=
"#dividable1">dividable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="field_operators2">field_operators<T,
U></a></code><br>
<code>field_operators2<T, U></code></td>
<td>
<ul>
<li><code><a href="#ring_operators2">ring_operators<T,
U></a></code></li>
<li><code><a href="#dividable2">dividable<T,
U></a></code></li>
<li><code><a href="#dividable2_left">dividable2_left<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"ordered_field_operators1">ordered_field_operators<T></a></code><br>
<code>ordered_field_operators1<T></code></td>
<td>
<ul>
<li><code><a href=
"#field_operators1">field_operators<T></a></code></li>
<li><code><a href=
"#totally_ordered1">totally_ordered<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"ordered_field_operators2">ordered_field_operators<T,
U></a></code><br>
<code>ordered_field_operators2<T, U></code></td>
<td>
<ul>
<li><code><a href="#field_operators2">field_operators<T,
U></a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"euclidian_ring_operators1">euclidian_ring_operators<T></a></code><br>
<code>euclidian_ring_operators1<T></code></td>
<td>
<ul>
<li><code><a href=
"#ring_operators1">ring_operators<T></a></code></li>
<li><code><a href=
"#dividable1">dividable<T></a></code></li>
<li><code><a href="#modable1">modable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"euclidian_ring_operators2">euclidian_ring_operators<T,
U></a></code><br>
<code>euclidian_ring_operators2<T, U></code></td>
<td>
<ul>
<li><code><a href="#ring_operators2">ring_operators<T,
U></a></code></li>
<li><code><a href="#dividable2">dividable<T,
U></a></code></li>
<li><code><a href="#dividable2_left">dividable2_left<T,
U></a></code></li>
<li><code><a href="#modable2">modable<T, U></a></code></li>
<li><code><a href="#modable2_left">modable2_left<T,
U></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"ordered_euclidian_ring_operators1">ordered_euclidian_ring_operators<T></a></code><br>
<code>ordered_euclidian_ring_operators1<T></code></td>
<td>
<ul>
<li><code><a href=
"#euclidian_ring_operators1">euclidian_ring_operators<T></a></code></li>
<li><code><a href=
"#totally_ordered1">totally_ordered<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"ordered_euclidian_ring_operators2">ordered_euclidian_ring_operators<T,
U></a></code><br>
<code>ordered_euclidian_ring_operators2<T, U></code></td>
<td>
<ul>
<li><code><a href=
"#euclidian_ring_operators2">euclidian_ring_operators<T,
U></a></code></li>
<li><code><a href="#totally_ordered2">totally_ordered<T,
U></a></code></li>
</ul>
</td>
</tr>
</table>
<h3><a name="ex_oprs">Example</a> Templates</h3>
<p>The arithmetic operator class templates <code><a href=
"#operators1">operators<></a></code> and <code><a href=
"#operators2">operators2<></a></code> are examples of
non-extensible operator grouping classes. These legacy class templates,
from previous versions of the header, cannot be used for <a href=
"#chaining">base class chaining</a>.</p>
<table cellpadding="5" border="1" align="center">
<caption>
Final Arithmetic Operator Template Classes
</caption>
<tr>
<td colspan="2">
<table align="center" border="1">
<caption>
<em>Key</em>
</caption>
<tr>
<td><code>T</code>: primary operand type</td>
<td><code>U</code>: alternate operand type</td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Template</th>
<th>Component Operator Templates</th>
</tr>
<tr>
<td><code><a name="operators1">operators<T></a></code></td>
<td>
<ul>
<li><code><a href=
"#totally_ordered1">totally_ordered<T></a></code></li>
<li><code><a href=
"#integer_arithmetic1">integer_arithmetic<T></a></code></li>
<li><code><a href="#bitwise1">bitwise<T></a></code></li>
<li><code><a href=
"#unit_steppable">unit_steppable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="operators2">operators<T, U></a></code><br>
<code>operators2<T, U></code></td>
<td>
<ul>
<li><code><a href="#totally_ordered2">totally_ordered<T,
U></a></code></li>
<li><code><a href="#integer_arithmetic2">integer_arithmetic<T,
U></a></code></li>
<li><code><a href="#bitwise2">bitwise<T, U></a></code></li>
</ul>
</td>
</tr>
</table>
<h3><a name="a_demo">Arithmetic Operators Demonstration</a> and Test
Program</h3>
<p>The <cite><a href="operators_test.cpp">operators_test.cpp</a></cite>
program demonstrates the use of the arithmetic operator templates, and
can also be used to verify correct operation. Check the <a href=
"../../status/compiler_status.html">compiler status report</a> for the
test results with selected platforms.</p>
<h2><a name="deref">Dereference</a> Operators and Iterator Helpers</h2>
<p>The <a href="#iterator">iterator helper</a> templates ease the task of
creating a custom iterator. Similar to arithmetic types, a complete
iterator has many operators that are "redundant" and can be implemented
in terms of the core set of operators.</p>
<p>The <a href="#dereference">dereference operators</a> were motivated by
the <a href="#iterator">iterator helpers</a>, but are often useful in
non-iterator contexts as well. Many of the redundant iterator operators
are also arithmetic operators, so the iterator helper classes borrow many
of the operators defined above. In fact, only two new operators need to
be defined (the pointer-to-member <code>operator-></code> and the
subscript <code>operator[]</code>)!</p>
<p>The requirements for the types used to instantiate the dereference
operators are specified in terms of expressions which must be valid and
their return type. The composite operator templates list their component
templates, which the instantiating type must support, and possibly other
requirements.</p>
<h3><a name="dereference">Dereference</a> Operators</h3>
<p>All the dereference operator templates in this table accept an
optional template parameter (not shown) to be used for <a href=
"#chaining">base class chaining</a>.</p>
<table cellpadding="5" border="1" align="center">
<caption>
Dereference Operator Template Classes
</caption>
<tr>
<td colspan="3">
<table align="center" border="1">
<caption>
<em>Key</em>
</caption>
<tr>
<td><code>T</code>: operand type</td>
<td><code>P</code>: <code>pointer</code> type</td>
</tr>
<tr>
<td><code>D</code>: <code>difference_type</code></td>
<td><code>R</code>: <code>reference</code> type</td>
</tr>
<tr>
<td><code>i</code>: object of type <code>T</code> (an
iterator)</td>
<td><code>n</code>: object of type <code>D</code> (an
index)</td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Template</th>
<th>Supplied Operations</th>
<th>Requirements</th>
</tr>
<tr>
<td><code><a name="dereferenceable">dereferenceable<T,
P></a></code></td>
<td><code>P operator->() const</code></td>
<td><code>(&*i)</code>. Return convertible to
<code>P</code>.</td>
</tr>
<tr>
<td><code><a name="indexable">indexable<T, D,
R></a></code></td>
<td><code>R operator[](D n) const</code></td>
<td><code>*(i + n)</code>. Return of type
<code>R</code>.</td>
</tr>
</table>
<h3><a name="grpd_iter_oprs">Grouped Iterator Operators</a></h3>
<p>There are five iterator operator class templates, each for a different
category of iterator. The following table shows the operator groups for
any category that a custom iterator could define. These class templates
have an additional optional template parameter <code>B</code>, which is
not shown, to support <a href="#chaining">base class chaining</a>.</p>
<table cellpadding="5" border="1" align="center">
<caption>
Iterator Operator Class Templates
</caption>
<tr>
<td colspan="2">
<table align="center" border="1">
<caption>
<em>Key</em>
</caption>
<tr>
<td><code>T</code>: operand type</td>
<td><code>P</code>: <code>pointer</code> type</td>
</tr>
<tr>
<td><code>D</code>: <code>difference_type</code></td>
<td><code>R</code>: <code>reference</code> type</td>
</tr>
<tr>
<td><code>V</code>: <code>value_type</code></td>
<td>
</td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Template</th>
<th>Component Operator Templates</th>
</tr>
<tr>
<td><code><a name="input_iteratable">input_iteratable<T,
P></a></code></td>
<td>
<ul>
<li><code><a href=
"#equality_comparable1">equality_comparable<T></a></code></li>
<li><code><a href=
"#incrementable">incrementable<T></a></code></li>
<li><code><a href="#dereferenceable">dereferenceable<T,
P></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"output_iteratable">output_iteratable<T></a></code></td>
<td>
<ul>
<li><code><a href=
"#incrementable">incrementable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name="forward_iteratable">forward_iteratable<T,
P></a></code></td>
<td>
<ul>
<li><code><a href="#input_iteratable">input_iteratable<T,
P></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"bidirectional_iteratable">bidirectional_iteratable<T,
P></a></code></td>
<td>
<ul>
<li><code><a href="#forward_iteratable">forward_iteratable<T,
P></a></code></li>
<li><code><a href=
"#decrementable">decrementable<T></a></code></li>
</ul>
</td>
</tr>
<tr>
<td><code><a name=
"random_access_iteratable">random_access_iteratable<T, P, D,
R></a></code></td>
<td>
<ul>
<li><code><a href=
"#bidirectional_iteratable">bidirectional_iteratable<T,
P></a></code></li>
<li><code><a href=
"#totally_ordered1">totally_ordered<T></a></code></li>
<li><code><a href="#additive2">additive<T,
D></a></code></li>
<li><code><a href="#indexable">indexable<T, D,
R></a></code></li>
</ul>
</td>
</tr>
</table>
<h3><a name="iterator">Iterator</a> Helpers</h3>
<p>There are also five iterator helper class templates, each
corresponding to a different iterator category. These classes cannot be
used for <a href="#chaining">base class chaining</a>. The following
summaries show that these class templates supply both the iterator
operators from the <a href="#grpd_iter_oprs">iterator operator class
templates</a> and the iterator typedef's required by the C++ standard
(<code>iterator_category</code>, <code>value_type</code>,
<i>etc.</i>).</p>
<table cellpadding="5" border="1" align="center">
<caption>
Iterator Helper Class Templates
</caption>
<tr>
<td colspan="2">
<table align="center" border="1">
<caption>
<em>Key</em>
</caption>
<tr>
<td><code>T</code>: operand type</td>
<td><code>P</code>: <code>pointer</code> type</td>
</tr>
<tr>
<td><code>D</code>: <code>difference_type</code></td>
<td><code>R</code>: <code>reference</code> type</td>
</tr>
<tr>
<td><code>V</code>: <code>value_type</code></td>
<td><code>x1, x2</code>: objects of type <code>T</code></td>
</tr>
</table>
</td>
</tr>
<tr>
<th>Template</th>
<th>Operations & Requirements</th>
</tr>
<tr valign="baseline">
<td><code><a name="input_iterator_helper">input_iterator_helper<T,
V, D, P, R></a></code></td>
<td>
Supports the operations and has the requirements of
<ul>
<li><code><a href="#input_iteratable">input_iteratable<T,
P></a></code></li>
</ul>
</td>
</tr>
<tr valign="baseline">
<td><code><a name=
"output_iterator_helper">output_iterator_helper<T></a></code></td>
<td>
Supports the operations and has the requirements of
<ul>
<li><code><a href=
"#output_iteratable">output_iteratable<T></a></code></li>
</ul>
See also [<a href="#1">1</a>], [<a href="#2">2</a>].
</td>
</tr>
<tr valign="baseline">
<td><code><a name=
"forward_iterator_helper">forward_iterator_helper<T, V, D, P,
R></a></code></td>
<td>
Supports the operations and has the requirements of
<ul>
<li><code><a href="#forward_iteratable">forward_iteratable<T,
P></a></code></li>
</ul>
</td>
</tr>
<tr valign="baseline">
<td><code><a name=
"bidirectional_iterator_helper">bidirectional_iterator_helper<T,
V, D, P, R></a></code></td>
<td>
Supports the operations and has the requirements of
<ul>
<li><code><a href=
"#bidirectional_iteratable">bidirectional_iteratable<T,
P></a></code></li>
</ul>
</td>
</tr>
<tr valign="baseline">
<td><code><a name=
"random_access_iterator_helper">random_access_iterator_helper<T,
V, D, P, R></a></code></td>
<td>
Supports the operations and has the requirements of
<ul>
<li><code><a href=
"#random_access_iteratable">random_access_iteratable<T, P, D,
R></a></code></li>
</ul>
To satisfy <cite><a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a></cite>,
<code>x1 - x2</code> with return convertible to <code>D</code> is
also required.
</td>
</tr>
</table>
<h4><a name="iterator_helpers_notes">Iterator Helper Notes</a></h4>
<p><a name="1">[1]</a> Unlike other iterator helpers templates,
<code>output_iterator_helper</code> takes only one template parameter -
the type of its target class. Although to some it might seem like an
unnecessary restriction, the standard requires
<code>difference_type</code> and <code>value_type</code> of any output
iterator to be <code>void</code> (24.3.1 [lib.iterator.traits]), and
<code>output_iterator_helper</code> template respects this requirement.
Also, output iterators in the standard have void <code>pointer</code> and
<code>reference</code> types, so the <code>output_iterator_helper</code>
does the same.</p>
<p><a name="2">[2]</a> As self-proxying is the easiest and most common
way to implement output iterators (see, for example, insert [24.4.2] and
stream iterators [24.5] in the standard library),
<code>output_iterator_helper</code> supports the idiom by defining
<code>operator*</code> and <code>operator++</code> member functions which
just return a non-const reference to the iterator itself. Support for
self-proxying allows us, in many cases, to reduce the task of writing an
output iterator to writing just two member functions - an appropriate
constructor and a copy-assignment operator. For example, here is a
possible implementation of <code><a href=
"../iterator/doc/function_output_iterator.html">boost::function_output_iterator</a></code>
adaptor:</p>
<pre>
template<class UnaryFunction>
struct function_output_iterator
: boost::output_iterator_helper< function_output_iterator<UnaryFunction> >
{
explicit function_output_iterator(UnaryFunction const& f = UnaryFunction())
: func(f) {}
template<typename T>
function_output_iterator& operator=(T const& value)
{
this->func(value);
return *this;
}
private:
UnaryFunction func;
};
</pre>
<p>Note that support for self-proxying does not prevent you from using
<code>output_iterator_helper</code> to ease any other, different kind of
output iterator's implementation. If
<code>output_iterator_helper</code>'s target type provides its own
definition of <code>operator*</code> or/and <code>operator++</code>, then
these operators will get used and the ones supplied by
<code>output_iterator_helper</code> will never be instantiated.</p>
<h3><a name="i_demo">Iterator Demonstration</a> and Test Program</h3>
<p>The <cite><a href="iterators_test.cpp">iterators_test.cpp</a></cite>
program demonstrates the use of the iterator templates, and can also be
used to verify correct operation. The following is the custom iterator
defined in the test program. It demonstrates a correct (though trivial)
implementation of the core operations that must be defined in order for
the iterator helpers to "fill in" the rest of the iterator
operations.</p>
<blockquote>
<pre>
template <class T, class R, class P>
struct test_iter
: public boost::random_access_iterator_helper<
test_iter<T,R,P>, T, std::ptrdiff_t, P, R>
{
typedef test_iter self;
typedef R Reference;
typedef std::ptrdiff_t Distance;
public:
explicit test_iter(T* i =0);
test_iter(const self& x);
self& operator=(const self& x);
Reference operator*() const;
self& operator++();
self& operator--();
self& operator+=(Distance n);
self& operator-=(Distance n);
bool operator==(const self& x) const;
bool operator<(const self& x) const;
friend Distance operator-(const self& x, const self& y);
};
</pre>
</blockquote>
<p>Check the <a href="../../status/compiler_status.html">compiler status
report</a> for the test results with selected platforms.</p>
<hr>
<h2><a name="contributors">Contributors</a></h2>
<dl>
<dt><a href="http://www.boost.org/people/dave_abrahams.htm">Dave Abrahams</a></dt>
<dd>Started the library and contributed the arithmetic operators in
<cite><a href=
"../../boost/operators.hpp">boost/operators.hpp</a></cite>.</dd>
<dt><a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a></dt>
<dd>Contributed the <a href="#deref">dereference operators and iterator
helpers</a> in <cite><a href=
"../../boost/operators.hpp">boost/operators.hpp</a></cite>. Also
contributed <cite><a href=
"iterators_test.cpp">iterators_test.cpp</a></cite>.</dd>
<dt><a href="http://www.boost.org/people/aleksey_gurtovoy.htm">Aleksey
Gurtovoy</a></dt>
<dd>Contributed the code to support <a href="#chaining">base class
chaining</a> while remaining backward-compatible with old versions of
the library.</dd>
<dt><a href="http://www.boost.org/people/beman_dawes.html">Beman Dawes</a></dt>
<dd>Contributed <cite><a href=
"operators_test.cpp">operators_test.cpp</a></cite>.</dd>
<dt><a href="http://www.boost.org/people/daryle_walker.html">Daryle Walker</a></dt>
<dd>Contributed classes for the shift operators, equivalence, partial
ordering, and arithmetic conversions. Added the grouped operator
classes. Added helper classes for input and output iterators.</dd>
<dt>Helmut Zeisel</dt>
<dd>Contributed the 'left' operators and added some grouped operator
classes.</dd>
<dt>Daniel Frey</dt>
<dd>Contributed the NRVO-friendly and symmetric implementation of
arithmetic operators.</dd>
</dl>
<h2>Note for Users of <a name="old_lib_note">Older Versions</a></h2>
<p>The <a href="#chaining">changes in the library interface and
recommended usage</a> were motivated by some practical issues described
below. The new version of the library is still backward-compatible with
the former one (so you're not <em>forced</em> change any existing code),
but the old usage is deprecated. Though it was arguably simpler and more
intuitive than using <a href="#chaining">base class chaining</a>, it has
been discovered that the old practice of deriving from multiple operator
templates can cause the resulting classes to be much larger than they
should be. Most modern C++ compilers significantly bloat the size of
classes derived from multiple empty base classes, even though the base
classes themselves have no state. For instance, the size of
<code>point<int></code> from the <a href="#example">example</a>
above was 12-24 bytes on various compilers for the Win32 platform,
instead of the expected 8 bytes.</p>
<p>Strictly speaking, it was not the library's fault--the language rules
allow the compiler to apply the empty base class optimization in that
situation. In principle an arbitrary number of empty base classes can be
allocated at the same offset, provided that none of them have a common
ancestor (see section 10.5 [class.derived] paragraph 5 of the standard).
But the language definition also doesn't <em>require</em> implementations
to do the optimization, and few if any of today's compilers implement it
when multiple inheritance is involved. What's worse, it is very unlikely
that implementors will adopt it as a future enhancement to existing
compilers, because it would break binary compatibility between code
generated by two different versions of the same compiler. As Matt Austern
said, "One of the few times when you have the freedom to do this sort of
thing is when you're targeting a new architecture...". On the other hand,
many common compilers will use the empty base optimization for single
inheritance hierarchies.</p>
<p>Given the importance of the issue for the users of the library (which
aims to be useful for writing light-weight classes like
<code>MyInt</code> or <code>point<></code>), and the forces
described above, we decided to change the library interface so that the
object size bloat could be eliminated even on compilers that support only
the simplest form of the empty base class optimization. The current
library interface is the result of those changes. Though the new usage is
a bit more complicated than the old one, we think it's worth it to make
the library more useful in real world. Alexy Gurtovoy contributed the
code which supports the new usage idiom while allowing the library remain
backward-compatible.</p>
<hr>
<p>Revised: 29 Oct 2004</p>
<p>Copyright © Beman Dawes, David Abrahams, 1999-2001.</p>
<p>Copyright © Daniel Frey, 2002-2004.</p>
<p>Use, modification, and distribution is subject to the Boost Software
License, Version 1.0. (See accompanying file
<a href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or copy at
<a href="http://www.boost.org/LICENSE_1_0.txt">
www.boost.org/LICENSE_1_0.txt</a>)</p>
</body>
</html>
|