File: appendices.html

package info (click to toggle)
boost1.42 1.42.0-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 277,864 kB
  • ctags: 401,076
  • sloc: cpp: 1,235,659; xml: 74,142; ansic: 41,313; python: 26,756; sh: 11,840; cs: 2,118; makefile: 655; perl: 494; yacc: 456; asm: 353; csh: 6
file content (380 lines) | stat: -rwxr-xr-x 31,160 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Appendices</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
<link rel="up" href="../proto.html" title="Chapter&#160;15.&#160;Boost.Proto">
<link rel="prev" href="../PolymorphicFunctionObject.html" title="Concept PolymorphicFunctionObject">
<link rel="next" href="../ref.html" title="Chapter&#160;16.&#160;Boost.Ref">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.html">Home</a></td>
<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../PolymorphicFunctionObject.html"><img src="../../../doc/html/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/html/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/html/images/home.png" alt="Home"></a><a accesskey="n" href="../ref.html"><img src="../../../doc/html/images/next.png" alt="Next"></a>
</div>
<div class="section" title="Appendices">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="proto.appendices"></a><a class="link" href="appendices.html" title="Appendices">Appendices</a>
</h2></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.history"> Appendix A: History</a></span></dt>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.rationale"> Appendix B: Rationale</a></span></dt>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.implementation"> Appendix C: Implementation
      Notes</a></span></dt>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.acknowledgements"> Appendix D:
      Acknowledgements</a></span></dt>
</dl></div>
<div class="section" title="Appendix A: History">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.appendices.history"></a><a class="link" href="appendices.html#boost_proto.appendices.history" title="Appendix A: History"> Appendix A: History</a>
</h3></div></div></div>
<div class="variablelist">
<p class="title"><b></b></p>
<dl>
<dt><span class="term">August 11, 2008</span></dt>
<dd><p>
            Proto v4 is merged to Boost trunk with more powerful transform protocol.
          </p></dd>
<dt><span class="term">April 7, 2008</span></dt>
<dd><p>
            Proto is accepted into Boost.
          </p></dd>
<dt><span class="term">March 1, 2008</span></dt>
<dd><p>
            Proto's Boost review begins.
          </p></dd>
<dt><span class="term">January 11, 2008</span></dt>
<dd><p>
            Boost.Proto v3 brings separation of grammars and transforms and a "round"
            lambda syntax for defining transforms in-place.
          </p></dd>
<dt><span class="term">April 15, 2007</span></dt>
<dd><p>
            Boost.Xpressive is ported from Proto compilers to Proto transforms. Support
            for old Proto compilers is dropped.
          </p></dd>
<dt><span class="term">April 4, 2007</span></dt>
<dd><p>
            Preliminary submission of Proto to Boost.
          </p></dd>
<dt><span class="term">December 11, 2006</span></dt>
<dd><p>
            The idea for transforms that decorate grammar rules is born in a private
            email discussion with Joel de Guzman and Hartmut Kaiser. The first transforms
            are committed to CVS 5 days later on December 16.
          </p></dd>
<dt><span class="term">November 1, 2006</span></dt>
<dd><p>
            The idea for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code>
            and the whole grammar facility is hatched during a discussion with Hartmut
            Kaiser on the spirit-devel list. The first version of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special">&lt;&gt;</span></code> is checked into CVS 3 days later.
            Message is <a href="http://osdir.com/ml/parsers.spirit.devel/2006-11/msg00003.html" target="_top">here</a>.
          </p></dd>
<dt><span class="term">October 28, 2006</span></dt>
<dd><p>
            Proto is reborn, this time with a uniform expression types that are POD.
            Announcement is <a href="http://lists.boost.org/Archives/boost/2006/10/112453.php" target="_top">here</a>.
          </p></dd>
<dt><span class="term">April 20, 2005</span></dt>
<dd><p>
            Proto is born as a major refactorization of Boost.Xpressive's meta-programming.
            Proto offers expression types, operator overloads and "compilers",
            an early formulation of what later became transforms. Announcement is
            <a href="http://lists.boost.org/Archives/boost/2005/04/85256.php" target="_top">here</a>.
          </p></dd>
</dl>
</div>
</div>
<div class="section" title="Appendix B: Rationale">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.appendices.rationale"></a><a class="link" href="appendices.html#boost_proto.appendices.rationale" title="Appendix B: Rationale"> Appendix B: Rationale</a>
</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.rationale.static_initialization">
        Static Initialization</a></span></dt>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.rationale.preprocessor"> Why
        Not Reuse MPL, Fusion, et cetera?</a></span></dt>
</dl></div>
<div class="section" title="Static Initialization">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.appendices.rationale.static_initialization"></a><a class="link" href="appendices.html#boost_proto.appendices.rationale.static_initialization" title="Static Initialization">
        Static Initialization</a>
</h4></div></div></div>
<p>
          Proto expression types are PODs (Plain Old Data), and do not have constructors.
          They are brace-initialized, as follows:
        </p>
<pre class="programlisting"><span class="identifier">terminal</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_i</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">};</span>
</pre>
<p>
          The reason is so that expression objects like <code class="computeroutput"><span class="identifier">_i</span></code>
          above can be <span class="emphasis"><em>statically initialized</em></span>. Why is static
          initialization important? The terminals of many domain- specific embedded
          languages are likely to be global const objects, like <code class="computeroutput"><span class="identifier">_1</span></code>
          and <code class="computeroutput"><span class="identifier">_2</span></code> from the Boost Lambda
          Library. Were these object to require run-time initialization, it might
          be possible to use these objects before they are initialized. That would
          be bad. Statically initialized objects cannot be misused that way.
        </p>
</div>
<div class="section" title="Why Not Reuse MPL, Fusion, et cetera?">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.appendices.rationale.preprocessor"></a><a class="link" href="appendices.html#boost_proto.appendices.rationale.preprocessor" title="Why Not Reuse MPL, Fusion, et cetera?"> Why
        Not Reuse MPL, Fusion, et cetera?</a>
</h4></div></div></div>
<p>
          Anyone who has peeked at Proto's source code has probably wondered, "Why
          all the dirty preprocessor gunk? Couldn't this have been all implemented
          cleanly on top of libraries like MPL and Fusion?" The answer is that
          Proto could have been implemented this way, and in fact was at one point.
          The problem is that template metaprogramming (TMP) makes for longer compile
          times. As a foundation upon which other TMP-heavy libraries will be built,
          Proto itself should be as lightweight as possible. That is achieved by
          prefering preprocessor metaprogramming to template metaprogramming. Expanding
          a macro is far more efficient than instantiating a template. In some cases,
          the "clean" version takes 10x longer to compile than the "dirty"
          version.
        </p>
<p>
          The "clean and slow" version of Proto can still be found at http://svn.boost.org/svn/boost/branches/proto/v3.
          Anyone who is interested can download it and verify that it is, in fact,
          unusably slow to compile. Note that this branch's development was abandoned,
          and it does not conform exactly with Proto's current interface.
        </p>
</div>
</div>
<div class="section" title="Appendix C: Implementation Notes">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.appendices.implementation"></a><a class="link" href="appendices.html#boost_proto.appendices.implementation" title="Appendix C: Implementation Notes"> Appendix C: Implementation
      Notes</a>
</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.implementation.sfinae"> Quick-n-Dirty
        Type Categorization</a></span></dt>
<dt><span class="section"><a href="appendices.html#boost_proto.appendices.implementation.function_arity">
        Detecting the Arity of Function Objects</a></span></dt>
</dl></div>
<div class="section" title="Quick-n-Dirty Type Categorization">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.appendices.implementation.sfinae"></a><a class="link" href="appendices.html#boost_proto.appendices.implementation.sfinae" title="Quick-n-Dirty Type Categorization"> Quick-n-Dirty
        Type Categorization</a>
</h4></div></div></div>
<p>
          Much has already been written about dispatching on type traits using SFINAE
          (Substitution Failure Is Not An Error) techniques in C++. There is a Boost
          library, Boost.Enable_if, to make the technique idiomatic. Proto dispatches
          on type traits extensively, but it doesn't use <code class="computeroutput"><span class="identifier">enable_if</span><span class="special">&lt;&gt;</span></code> very often. Rather, it dispatches
          based on the presence or absence of nested types, often typedefs for void.
        </p>
<p>
          Consider the implementation of <code class="computeroutput"><span class="identifier">is_expr</span><span class="special">&lt;&gt;</span></code>. It could have been written as
          something like this:
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">is_expr</span>
  <span class="special">:</span> <span class="identifier">is_base_and_derived</span><span class="special">&lt;</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">some_expr_base</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="special">{};</span>
</pre>
<p>
          Rather, it is implemented as this:
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Void</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">is_expr</span>
  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
<span class="special">{};</span>

<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">is_expr</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">T</span><span class="special">::</span><span class="identifier">proto_is_expr_</span><span class="special">&gt;</span>
  <span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
</pre>
<p>
          This relies on the fact that the specialization will be preferred if <code class="computeroutput"><span class="identifier">T</span></code> has a nested <code class="computeroutput"><span class="identifier">proto_is_expr_</span></code>
          that is a typedef for <code class="computeroutput"><span class="keyword">void</span></code>.
          All Proto expression types have such a nested typedef.
        </p>
<p>
          Why does Proto do it this way? The reason is because, after running extensive
          benchmarks while trying to improve compile times, I have found that this
          approach compiles faster. It requires exactly one template instantiation.
          The other approach requires at least 2: <code class="computeroutput"><span class="identifier">is_expr</span><span class="special">&lt;&gt;</span></code> and <code class="computeroutput"><span class="identifier">is_base_and_derived</span><span class="special">&lt;&gt;</span></code>, plus whatever templates <code class="computeroutput"><span class="identifier">is_base_and_derived</span><span class="special">&lt;&gt;</span></code>
          may instantiate.
        </p>
</div>
<div class="section" title="Detecting the Arity of Function Objects">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.appendices.implementation.function_arity"></a><a class="link" href="appendices.html#boost_proto.appendices.implementation.function_arity" title="Detecting the Arity of Function Objects">
        Detecting the Arity of Function Objects</a>
</h4></div></div></div>
<p>
          In several places, Proto needs to know whether or not a function object
          <code class="computeroutput"><span class="identifier">Fun</span></code> can be called with
          certain parameters and take a fallback action if not. This happens in
          <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context&lt;&gt;</a></code>
          and in the <code class="computeroutput"><a class="link" href="../boost/proto/call.html" title="Struct template call">proto::call&lt;&gt;</a></code> transform. How does
          Proto know? It involves some tricky metaprogramming. Here's how.
        </p>
<p>
          Another way of framing the question is by trying to implement the following
          <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code>
          Boolean metafunction, which checks to see if a function object <code class="computeroutput"><span class="identifier">Fun</span></code> can be called with parameters of
          type <code class="computeroutput"><span class="identifier">A</span></code> and <code class="computeroutput"><span class="identifier">B</span></code>:
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Fun</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">B</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">can_be_called</span><span class="special">;</span>
</pre>
<p>
          First, we define the following <code class="computeroutput"><span class="identifier">dont_care</span></code>
          struct, which has an implicit conversion from anything. And not just any
          implicit conversion; it has a ellipsis conversion, which is the worst possible
          conversion for the purposes of overload resolution:
        </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">dont_care</span>
<span class="special">{</span>
    <span class="identifier">dont_care</span><span class="special">(...);</span>
<span class="special">};</span>
</pre>
<p>
          We also need some private type known only to us with an overloaded comma
          operator (!), and some functions that detect the presence of this type
          and return types with different sizes, as follows:
        </p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">private_type</span>
<span class="special">{</span>
    <span class="identifier">private_type</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="keyword">operator</span><span class="special">,(</span><span class="keyword">int</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="special">};</span>

<span class="keyword">typedef</span> <span class="keyword">char</span> <span class="identifier">yes_type</span><span class="special">;</span>      <span class="comment">// sizeof(yes_type) == 1
</span><span class="keyword">typedef</span> <span class="keyword">char</span> <span class="special">(&amp;</span><span class="identifier">no_type</span><span class="special">)[</span><span class="number">2</span><span class="special">];</span> <span class="comment">// sizeof(no_type)  == 2
</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">no_type</span> <span class="identifier">is_private_type</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&amp;);</span>

<span class="identifier">yes_type</span> <span class="identifier">is_private_type</span><span class="special">(</span><span class="identifier">private_type</span> <span class="keyword">const</span> <span class="special">&amp;);</span>
</pre>
<p>
          Next, we implement a binary function object wrapper with a very strange
          conversion operator, whose meaning will become clear later.
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Fun</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">funwrap2</span> <span class="special">:</span> <span class="identifier">Fun</span>
<span class="special">{</span>
    <span class="identifier">funwrap2</span><span class="special">();</span>
    <span class="keyword">typedef</span> <span class="identifier">private_type</span> <span class="keyword">const</span> <span class="special">&amp;(*</span><span class="identifier">pointer_to_function</span><span class="special">)(</span><span class="identifier">dont_care</span><span class="special">,</span> <span class="identifier">dont_care</span><span class="special">);</span>
    <span class="keyword">operator</span> <span class="identifier">pointer_to_function</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
          With all of these bits and pieces, we can implement <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code> as follows:
        </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Fun</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">B</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">can_be_called</span>
<span class="special">{</span>
    <span class="keyword">static</span> <span class="identifier">funwrap2</span><span class="special">&lt;</span><span class="identifier">Fun</span><span class="special">&gt;</span> <span class="special">&amp;</span><span class="identifier">fun</span><span class="special">;</span>
    <span class="keyword">static</span> <span class="identifier">A</span> <span class="special">&amp;</span><span class="identifier">a</span><span class="special">;</span>
    <span class="keyword">static</span> <span class="identifier">B</span> <span class="special">&amp;</span><span class="identifier">b</span><span class="special">;</span>

    <span class="keyword">static</span> <span class="keyword">bool</span> <span class="keyword">const</span> <span class="identifier">value</span> <span class="special">=</span> <span class="special">(</span>
        <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">no_type</span><span class="special">)</span> <span class="special">==</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">is_private_type</span><span class="special">(</span> <span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">),</span> <span class="number">0</span><span class="special">)</span> <span class="special">))</span>
    <span class="special">);</span>

    <span class="keyword">typedef</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">bool_</span><span class="special">&lt;</span><span class="identifier">value</span><span class="special">&gt;</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
          The idea is to make it so that <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">)</span></code> will
          always compile by adding our own binary function overload, but doing it
          in such a way that we can detect whether our overload was selected or not.
          And we rig it so that our overload is selected if there is really no better
          option. What follows is a description of how <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code> works.
        </p>
<p>
          We wrap <code class="computeroutput"><span class="identifier">Fun</span></code> in a type that
          has an implicit conversion to a pointer to a binary function. An object
          <code class="computeroutput"><span class="identifier">fun</span></code> of class type can be
          invoked as <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> if it has such a conversion operator,
          but since it involves a user-defined conversion operator, it is less preferred
          than an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>, which requires no such conversion.
        </p>
<p>
          The function pointer can accept any two arguments by virtue of the <code class="computeroutput"><span class="identifier">dont_care</span></code> type. The conversion sequence
          for each argument is guaranteed to be the worst possible conversion sequence:
          an implicit conversion through an ellipsis, and a user-defined conversion
          to <code class="computeroutput"><span class="identifier">dont_care</span></code>. In total,
          it means that <code class="computeroutput"><span class="identifier">funwrap2</span><span class="special">&lt;</span><span class="identifier">Fun</span><span class="special">&gt;()(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code>
          will always compile, but it will select our overload only if there really
          is no better option.
        </p>
<p>
          If there is a better option --- for example if <code class="computeroutput"><span class="identifier">Fun</span></code>
          has an overloaded function call operator such as <code class="computeroutput"><span class="keyword">void</span>
          <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">A</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">B</span> <span class="identifier">b</span><span class="special">)</span></code> ---
          then <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> will resolve to that one instead. The
          question now is how to detect which function got picked by overload resolution.
        </p>
<p>
          Notice how <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> appears in <code class="computeroutput"><span class="identifier">can_be_called</span><span class="special">&lt;&gt;</span></code>: <code class="computeroutput"><span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">),</span> <span class="number">0</span><span class="special">)</span></code>.
          Why do we use the comma operator there? The reason is because we are using
          this expression as the argument to a function. If the return type of <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">)</span></code> is <code class="computeroutput"><span class="keyword">void</span></code>,
          it cannot legally be used as an argument to a function. The comma operator
          sidesteps the issue.
        </p>
<p>
          This should also make plain the purpose of the overloaded comma operator
          in <code class="computeroutput"><span class="identifier">private_type</span></code>. The return
          type of the pointer to function is <code class="computeroutput"><span class="identifier">private_type</span></code>.
          If overload resolution selects our overload, then the type of <code class="computeroutput"><span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span>
          <span class="identifier">b</span><span class="special">),</span>
          <span class="number">0</span><span class="special">)</span></code>
          is <code class="computeroutput"><span class="identifier">private_type</span></code>. Otherwise,
          it is <code class="computeroutput"><span class="keyword">int</span></code>. That fact is used
          to dispatch to either overload of <code class="computeroutput"><span class="identifier">is_private_type</span><span class="special">()</span></code>, which encodes its answer in the size
          of its return type.
        </p>
<p>
          That's how it works with binary functions. Now repeat the above process
          for functions up to some predefined function arity, and you're done.
        </p>
</div>
</div>
<div class="section" title="Appendix D: Acknowledgements">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.appendices.acknowledgements"></a><a class="link" href="appendices.html#boost_proto.appendices.acknowledgements" title="Appendix D: Acknowledgements"> Appendix D:
      Acknowledgements</a>
</h3></div></div></div>
<p>
        I'd like to thank Joel de Guzman and Hartmut Kaiser for being willing to
        take a chance on using Proto for their work on Spirit-2 and Karma when Proto
        was little more than a vision. Their requirements and feedback have been
        indespensable.
      </p>
<p>
        Thanks also to the developers of <a href="http://www.codesourcery.com/pooma/download.html" target="_top">PETE</a>.
        I found many good ideas there.
      </p>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2008 Eric Niebler<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../PolymorphicFunctionObject.html"><img src="../../../doc/html/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/html/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/html/images/home.png" alt="Home"></a><a accesskey="n" href="../ref.html"><img src="../../../doc/html/images/next.png" alt="Next"></a>
</div>
</body>
</html>