1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Users' Guide</title>
<link rel="stylesheet" href="../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
<link rel="up" href="../proto.html" title="Chapter 15. Boost.Proto">
<link rel="prev" href="../proto.html" title="Chapter 15. Boost.Proto">
<link rel="next" href="reference.html" title="Reference">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.html">Home</a></td>
<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../proto.html"><img src="../../../doc/html/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/html/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/html/images/home.png" alt="Home"></a><a accesskey="n" href="reference.html"><img src="../../../doc/html/images/next.png" alt="Next"></a>
</div>
<div class="section" title="Users' Guide">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="proto.users_guide"></a><a class="link" href="users_guide.html" title="Users' Guide"> Users' Guide</a>
</h2></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started"> Getting Started</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end"> Fronts Ends: Defining
Terminals and Non-Terminals of Your DSEL</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form"> Intermediate
Form: Understanding and Introspecting Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end"> Back Ends: Making
Expression Templates Do Useful Work</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples">Examples</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.resources"> Background and Resources</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.glossary">Glossary</a></span></dt>
</dl></div>
<a name="proto.users_guide.compilers__compiler_construction_toolkits__and_proto"></a><h4>
<a name="id1459816"></a>
<a class="link" href="users_guide.html#proto.users_guide.compilers__compiler_construction_toolkits__and_proto">Compilers,
Compiler Construction Toolkits, and Proto</a>
</h4>
<p>
Most compilers have front ends and back ends. The front end parses the text
of an input program into some intermediate form like an abstract syntax tree,
and the back end takes the intermediate form and generates an executable from
it.
</p>
<p>
A library built with Proto is essentially a compiler for a domain-specific
embedded language (DSEL). It also has a front end, an intermediate form, and
a back end. The front end is comprised of the symbols (a.k.a., terminals),
members, operators and functions that make up the user-visible aspects of the
DSEL. The back end is made of evaluation contexts and transforms that give
meaning and behavior to the expression templates generated by the front end.
In between is the intermediate form: the expression template itself, which
is an abstract syntax tree in a very real sense.
</p>
<p>
To build a library with Proto, you will first decide what your interface will
be; that is, you'll design a programming language for your domain and build
the front end with tools provided by Proto. Then you'll design the back end
by writing evaluation contexts and/or transforms that accept expression templates
and do interesting things with them.
</p>
<p>
This users' guide is organized as follows. After a <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started" title="Getting Started">Getting
Started guide</a>, we'll cover the tools Proto provides for defining and
manipulating the three major parts of a compiler:
</p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.front_end" title="Fronts Ends: Defining Terminals and Non-Terminals of Your DSEL">Front
Ends</a></span></dt>
<dd><p>
How to define the aspects of your DSEL with which your users will interact
directly.
</p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form" title="Intermediate Form: Understanding and Introspecting Expressions">Intermediate
Form</a></span></dt>
<dd><p>
What Proto expression templates look like, how to discover their structure
and access their constituents.
</p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end" title="Back Ends: Making Expression Templates Do Useful Work">Back
Ends</a></span></dt>
<dd><p>
How to define evaluation contexts and transforms that make expression templates
do interesting things.
</p></dd>
</dl>
</div>
<p>
After that, you may be interested in seeing some <a class="link" href="users_guide.html#boost_proto.users_guide.examples" title="Examples">Examples</a>
to get a better idea of how the pieces all fit together.
</p>
<div class="section" title="Getting Started">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.getting_started"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started" title="Getting Started"> Getting Started</a>
</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto">Installing
Proto</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.naming"> Naming
Conventions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.hello_world">Hello
World</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator">Hello
Calculator</a></span></dt>
</dl></div>
<div class="section" title="Installing Proto">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.installing_proto"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto" title="Installing Proto">Installing
Proto</a>
</h4></div></div></div>
<a name="boost_proto.users_guide.getting_started.installing_proto.getting_proto"></a><h6>
<a name="id1459990"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.getting_proto">Getting
Proto</a>
</h6>
<p>
You can get Proto by downloading <code class="literal">proto.zip</code> from <a href="http://www.boost-consulting.com/vault/index.php?directory=Template%20Metaprogramming" target="_top">http://www.boost-consulting.com/vault/index.php?directory=Template%20Metaprogramming</a>,
by downloading Boost (Proto is in version 1.37 and later), or by accessing
Boost's SVN repository on SourceForge.net. Just go to <a href="http://svn.boost.org/trac/boost/wiki/BoostSubversion" target="_top">http://svn.boost.org/trac/boost/wiki/BoostSubversion</a>
and follow the instructions there for anonymous SVN access.
</p>
<a name="boost_proto.users_guide.getting_started.installing_proto.building_with_proto"></a><h6>
<a name="id1460042"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.building_with_proto">Building
with Proto</a>
</h6>
<p>
Proto is a header-only template library, which means you don't need to
alter your build scripts or link to any separate lib file to use it. All
you need to do is <code class="computeroutput"><span class="preprocessor">#include</span>
<span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span></code>. Or, you might decide to just include
the core of Proto (<code class="computeroutput"><span class="preprocessor">#include</span>
<span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span></code>) and whichever contexts and transforms
you happen to use.
</p>
<a name="boost_proto.users_guide.getting_started.installing_proto.requirements"></a><h6>
<a name="id1460174"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.requirements">Requirements</a>
</h6>
<p>
Proto depends on Boost. You must use either Boost version 1.34.1 or higher,
or the version in SVN trunk.
</p>
<a name="boost_proto.users_guide.getting_started.installing_proto.supported_compilers"></a><h6>
<a name="id1460203"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.installing_proto.supported_compilers">Supported
Compilers</a>
</h6>
<p>
Currently, Boost.Proto is known to work on the following compilers:
</p>
<div class="itemizedlist"><ul class="itemizedlist" type="disc">
<li class="listitem">
Visual C++ 7.1 and higher
</li>
<li class="listitem">
GNU C++ 3.4 and higher
</li>
<li class="listitem">
Intel on Linux 8.1 and higher
</li>
<li class="listitem">
Intel on Windows 9.1 and higher
</li>
</ul></div>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
Please send any questions, comments and bug reports to eric <at>
boostpro <dot> com.
</p></td></tr>
</table></div>
</div>
<div class="section" title="Naming Conventions">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.naming"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming" title="Naming Conventions"> Naming
Conventions</a>
</h4></div></div></div>
<p>
Proto is a large library and probably quite unlike any library you've used
before. Proto uses some consistent naming conventions to make it easier
to navigate, and they're described below.
</p>
<a name="boost_proto.users_guide.getting_started.naming.functions"></a><h6>
<a name="id1460283"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.functions">Functions</a>
</h6>
<p>
All of Proto's functions are defined in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
namespace. For example, there is a function called <code class="computeroutput"><span class="identifier">value</span><span class="special">()</span></code> defined in <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
that accepts a terminal expression and returns the terminal's value.
</p>
<a name="boost_proto.users_guide.getting_started.naming.metafunctions"></a><h6>
<a name="id1460360"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.metafunctions">Metafunctions</a>
</h6>
<p>
Proto defines <span class="emphasis"><em>metafunctions</em></span> that correspond to each
of Proto's free functions. The metafunctions are used to compute the functions'
return types. All of Proto's metafunctions live in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span></code>
namespace and have the same name as the functions to which they correspond.
For instance, there is a class template <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><></span></code> that you can use to compute the
return type of the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code> function.
</p>
<a name="boost_proto.users_guide.getting_started.naming.function_objects"></a><h6>
<a name="id1460493"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.function_objects">Function
Objects</a>
</h6>
<p>
Proto defines <span class="emphasis"><em>function object</em></span> equivalents of all of
its free functions. (A function object is an instance of a class type that
defines an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
member function.) All of Proto's function object types are defined in the
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span></code> namespace and have the same
name as their corresponding free functions. For example, <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span></code> is a class that defines a function
object that does the same thing as the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code> free function.
</p>
<a name="boost_proto.users_guide.getting_started.naming.primitive_transforms"></a><h6>
<a name="id1460637"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.naming.primitive_transforms">Primitive
Transforms</a>
</h6>
<p>
Proto also defines <span class="emphasis"><em>primitive transforms</em></span> -- class types
that can be used to compose larger transforms for manipulating expression
trees. Many of Proto's free functions have corresponding primitive transforms.
These live in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
namespace and their names have a leading underscore. For instance, the
transform corresponding to the <code class="computeroutput"><span class="identifier">value</span><span class="special">()</span></code> function is called <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>.
</p>
<p>
The following table summarizes the discussion above:
</p>
<div class="table">
<a name="id1460726"></a><p class="title"><b>Table 15.1. Proto Naming Conventions</b></p>
<div class="table-contents"><table class="table" summary="Proto Naming Conventions">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Entity
</p>
</th>
<th>
<p>
Example
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Free Function
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
Metafunction
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
Function Object
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
Transform
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break">
</div>
<div class="section" title="Hello World">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.hello_world"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_world" title="Hello World">Hello
World</a>
</h4></div></div></div>
<p>
Below is a very simple program that uses Proto to build an expression template
and then execute it.
</p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special"><<</span> <span class="string">"hello"</span> <span class="special"><<</span> <span class="char">','</span> <span class="special"><<</span> <span class="string">" world"</span> <span class="special">);</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
This program outputs the following:
</p>
<pre class="programlisting">hello, world
</pre>
<p>
This program builds an object representing the output operation and passes
it to an <code class="computeroutput"><span class="identifier">evaluate</span><span class="special">()</span></code>
function, which then executes it.
</p>
<p>
The basic idea of expression templates is to overload all the operators
so that, rather than evaluating the expression immediately, they build
a tree-like representation of the expression so that it can be evaluated
later. For each operator in an expression, at least one operand must be
Protofied in order for Proto's operator overloads to be found. In the expression
...
</p>
<pre class="programlisting"><span class="identifier">cout_</span> <span class="special"><<</span> <span class="string">"hello"</span> <span class="special"><<</span> <span class="char">','</span> <span class="special"><<</span> <span class="string">" world"</span>
</pre>
<p>
... the Protofied sub-expression is <code class="computeroutput"><span class="identifier">cout_</span></code>,
which is the Proto-ification of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span></code>.
The presence of <code class="computeroutput"><span class="identifier">cout_</span></code> "infects"
the expression, and brings Proto's tree-building operator overloads into
consideration. Any literals in the expression are then Protofied by wrapping
them in a Proto terminal before they are combined into larger Proto expressions.
</p>
<p>
Once Proto's operator overloads have built the expression tree, the expression
can be lazily evaluated later by walking the tree. That is what <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
does. It is a general tree-walking expression evaluator, whose behavior
is customizable via a <span class="emphasis"><em>context</em></span> parameter. The use of
<code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>
assigns the standard meanings to the operators in the expression. (By using
a different context, you could give the operators in your expressions different
semantics. By default, Proto makes no assumptions about what operators
actually <span class="emphasis"><em>mean</em></span>.)
</p>
<a name="boost_proto.users_guide.getting_started.hello_world.proto_design_philosophy"></a><h6>
<a name="id1461644"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_world.proto_design_philosophy">Proto
Design Philosophy</a>
</h6>
<p>
Before we continue, let's use the above example to illustrate an important
design principle of Proto's. The expression template created in the <span class="emphasis"><em>hello
world</em></span> example is totally general and abstract. It is not tied
in any way to any particular domain or application, nor does it have any
particular meaning or behavior on its own, until it is evaluated in a
<span class="emphasis"><em>context</em></span>. Expression templates are really just heterogeneous
trees, which might mean something in one domain, and something else entirely
in a different one.
</p>
<p>
As we'll see later, there is a way to create Proto expression trees that
are <span class="emphasis"><em>not</em></span> purely abstract, and that have meaning and
behaviors independent of any context. There is also a way to control which
operators are overloaded for your particular domain. But that is not the
default behavior. We'll see later why the default is often a good thing.
</p>
</div>
<div class="section" title="Hello Calculator">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.getting_started.hello_calculator"></a><a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
Calculator</a>
</h4></div></div></div>
<p>
"Hello, world" is nice, but it doesn't get you very far. Let's
use Proto to build a DSEL (domain-specific embedded language) for a lazily-evaluated
calculator. We'll see how to define the terminals in your mini-language,
how to compose them into larger expressions, and how to define an evaluation
context so that your expressions can do useful work. When we're done, we'll
have a mini-language that will allow us to declare a lazily-evaluated arithmetic
expression, such as <code class="computeroutput"><span class="special">(</span><span class="identifier">_2</span>
<span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span>
<span class="special">*</span> <span class="number">100</span></code>,
where <code class="computeroutput"><span class="identifier">_1</span></code> and <code class="computeroutput"><span class="identifier">_2</span></code> are placeholders for values to be
passed in when the expression is evaluated.
</p>
<a name="boost_proto.users_guide.getting_started.hello_calculator.defining_terminals"></a><h6>
<a name="id1461792"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.defining_terminals">Defining
Terminals</a>
</h6>
<p>
The first order of business is to define the placeholders <code class="computeroutput"><span class="identifier">_1</span></code> and <code class="computeroutput"><span class="identifier">_2</span></code>.
For that, we'll use the <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal<></a></code>
metafunction.
</p>
<pre class="programlisting"><span class="comment">// Define a placeholder type
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{};</span>
<span class="comment">// Define the Protofied placeholder terminals
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>
</pre>
<p>
The initialization may look a little odd at first, but there is a good
reason for doing things this way. The objects <code class="computeroutput"><span class="identifier">_1</span></code>
and <code class="computeroutput"><span class="identifier">_2</span></code> above do not require
run-time construction -- they are <span class="emphasis"><em>statically initialized</em></span>,
which means they are essentially initialized at compile time. See the
<a class="link" href="appendices.html#boost_proto.appendices.rationale.static_initialization" title="Static Initialization">Static
Initialization</a> section in the <a class="link" href="appendices.html#boost_proto.appendices.rationale" title="Appendix B: Rationale">Rationale</a>
appendix for more information.
</p>
<a name="boost_proto.users_guide.getting_started.hello_calculator.constructing_expression_trees"></a><h6>
<a name="id1462095"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.constructing_expression_trees">Constructing
Expression Trees</a>
</h6>
<p>
Now that we have terminals, we can use Proto's operator overloads to combine
these terminals into larger expressions. So, for instance, we can immediately
say things like:
</p>
<pre class="programlisting"><span class="comment">// This builds an expression template
</span><span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">;</span>
</pre>
<p>
This creates an expression tree with a node for each operator. The type
of the resulting object is large and complex, but we are not terribly interested
in it right now.
</p>
<p>
So far, the object is just a tree representing the expression. It has no
behavior. In particular, it is not yet a calculator. Below we'll see how
to make it a calculator by defining an evaluation context.
</p>
<a name="boost_proto.users_guide.getting_started.hello_calculator.evaluating_expression_trees"></a><h6>
<a name="id1462200"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.evaluating_expression_trees">Evaluating
Expression Trees</a>
</h6>
<p>
No doubt you want your expression templates to actually <span class="emphasis"><em>do</em></span>
something. One approach is to define an <span class="emphasis"><em>evaluation context</em></span>.
The context is like a function object that associates behaviors with the
node types in your expression tree. The following example should make it
clear. It is explained below.
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">calculator_context</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="comment">// Values to replace the placeholders
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">args</span><span class="special">;</span>
<span class="comment">// Define the result type of the calculator.
</span> <span class="comment">// (This makes the calculator_context "callable".)
</span> <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Handle the placeholders:
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">>)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="keyword">this</span><span class="special">-></span><span class="identifier">args</span><span class="special">[</span><span class="identifier">I</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
In <code class="computeroutput"><span class="identifier">calculator_context</span></code>,
we specify how Proto should evaluate the placeholder terminals by defining
the appropriate overloads of the function call operator. For any other
nodes in the expression tree (e.g., arithmetic operations or non-placeholder
terminals), Proto will evaluate the expression in the "default"
way. For example, a binary plus node is evaluated by first evaluating the
left and right operands and adding the results. Proto's default evaluator
uses the <a href="../../../libs/typeof/index.html" target="_top">Boost.Typeof</a>
library to compute return types.
</p>
<p>
Now that we have an evaluation context for our calculator, we can use it
to evaluate our arithmetic expressions, as below:
</p>
<pre class="programlisting"><span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">45</span><span class="special">);</span> <span class="comment">// the value of _1 is 45
</span><span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">50</span><span class="special">);</span> <span class="comment">// the value of _2 is 50
</span>
<span class="comment">// Create an arithmetic expression and immediately evaluate it
</span><span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">,</span> <span class="identifier">ctx</span> <span class="special">);</span>
<span class="comment">// This prints "10"
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">d</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
Later, we'll see how to define more interesting evaluation contexts and
expression transforms that give you total control over how your expressions
are evaluated.
</p>
<a name="boost_proto.users_guide.getting_started.hello_calculator.customizing_expression_trees"></a><h6>
<a name="id1462814"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.customizing_expression_trees">Customizing
Expression Trees</a>
</h6>
<p>
Our calculator DSEL is already pretty useful, and for many DSEL scenarios,
no more would be needed. But let's keep going. Imagine how much nicer it
would be if all calculator expressions overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> so that they could be used as function
objects. We can do that by creating a calculator <span class="emphasis"><em>domain</em></span>
and telling Proto that all expressions in the calculator domain have extra
members. Here is how to define a calculator domain:
</p>
<pre class="programlisting"><span class="comment">// Forward-declare an expression wrapper
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator</span><span class="special">;</span>
<span class="comment">// Define a calculator domain. Expression within
</span><span class="comment">// the calculator domain will be wrapped in the
</span><span class="comment">// calculator<> expression wrapper.
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">calculator</span><span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code>
type will be an expression wrapper. It will behave just like the expression
that it wraps, but it will have extra member functions that we will define.
The <code class="computeroutput"><span class="identifier">calculator_domain</span></code> is
what informs Proto about our wrapper. It is used below in the definition
of <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code>.
Read on for a description.
</p>
<pre class="programlisting"><span class="comment">// Define a calculator expression wrapper. It behaves just like
</span><span class="comment">// the expression it wraps, but with an extra operator() member
</span><span class="comment">// function that evaluates the expression.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="identifier">base_type</span><span class="special">;</span>
<span class="identifier">calculator</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
<span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Overload operator() to invoke proto::eval() with
</span> <span class="comment">// our calculator_context.
</span> <span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span> <span class="special">=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a2</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
The <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code>
struct is an expression <span class="emphasis"><em>extension</em></span>. It uses <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><></span></code>
to effectively add additional members to an expression type. When composing
larger expressions from smaller ones, Proto notes what domain the smaller
expressions are in. The larger expression is in the same domain and is
automatically wrapped in the domain's extension wrapper.
</p>
<p>
All that remains to be done is to put our placeholders in the calculator
domain. We do that by wrapping them in our <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> wrapper, as below:
</p>
<pre class="programlisting"><span class="comment">// Define the Protofied placeholder terminals, in the
</span><span class="comment">// calculator domain.
</span><span class="identifier">calculator</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>
</pre>
<p>
Any larger expression that contain these placeholders will automatically
be wrapped in the <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> wrapper and have our <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
overload. That means we can use them as function objects as follows.
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">result</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">)(</span><span class="number">45.0</span><span class="special">,</span> <span class="number">50.0</span><span class="special">);</span>
<span class="identifier">assert</span><span class="special">(</span><span class="identifier">result</span> <span class="special">==</span> <span class="special">(</span><span class="number">50.0</span> <span class="special">-</span> <span class="number">45.0</span><span class="special">)</span> <span class="special">/</span> <span class="number">50.0</span> <span class="special">*</span> <span class="number">100</span><span class="special">));</span>
</pre>
<p>
Since calculator expressions are now valid function objects, we can use
them with standard algorithms, as shown below:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">56</span><span class="special">,</span> <span class="number">84</span><span class="special">,</span> <span class="number">37</span><span class="special">,</span> <span class="number">69</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a2</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">65</span><span class="special">,</span> <span class="number">120</span><span class="special">,</span> <span class="number">60</span><span class="special">,</span> <span class="number">70</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a3</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0</span> <span class="special">};</span>
<span class="comment">// Use std::transform() and a calculator expression
</span><span class="comment">// to calculate percentages given two input sequences:
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span><span class="identifier">a1</span><span class="special">,</span> <span class="identifier">a1</span><span class="special">+</span><span class="number">4</span><span class="special">,</span> <span class="identifier">a2</span><span class="special">,</span> <span class="identifier">a3</span><span class="special">,</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">);</span>
</pre>
<p>
Now, let's use the calculator example to explore some other useful features
of Proto.
</p>
<a name="boost_proto.users_guide.getting_started.hello_calculator.detecting_invalid_expressions"></a><h6>
<a name="id1464343"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.detecting_invalid_expressions">Detecting
Invalid Expressions</a>
</h6>
<p>
You may have noticed that you didn't have to define an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">-()</span></code>
or <code class="computeroutput"><span class="keyword">operator</span><span class="special">/()</span></code>
-- Proto defined them for you. In fact, Proto overloads <span class="emphasis"><em>all</em></span>
the operators for you, even though they may not mean anything in your domain-specific
language. That means it may be possible to create expressions that are
invalid in your domain. You can detect invalid expressions with Proto by
defining the <span class="emphasis"><em>grammar</em></span> of your domain-specific language.
</p>
<p>
For simplicity, assume that our calculator DSEL should only allow addition,
subtraction, multiplication and division. Any expression involving any
other operator is invalid. Using Proto, we can state this requirement by
defining the grammar of the calculator DSEL. It looks as follows:
</p>
<pre class="programlisting"><span class="comment">// Define the grammar of calculator expressions
</span><span class="keyword">struct</span> <span class="identifier">calculator_grammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
You can read the above grammar as follows: an expression tree conforms
to the calculator grammar if it is a binary plus, minus, multiplies or
divides node, where both child nodes also conform to the calculator grammar;
or if it is a terminal. In a Proto grammar, <code class="computeroutput"><a class="link" href="../boost/proto/_.html" title="Struct _">proto::_</a></code> is a wildcard that matches
any type, so <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span></code>
matches any terminal, whether it is a placeholder or a literal.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
This grammar is actually a little looser than we would like. Only placeholders
and literals that are convertible to doubles are valid terminals. Later
on we'll see how to express things like that in Proto grammars.
</p></td></tr>
</table></div>
<p>
Once you have defined the grammar of your DSEL, you can use the <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches<></a></code> metafunction to check
whether a given expression type conforms to the grammar. For instance,
we might add the following to our <code class="computeroutput"><span class="identifier">calculator</span><span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> overload:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span> <span class="comment">/* ... as before ... */</span> <span class="special">></span>
<span class="special">{</span>
<span class="comment">/* ... */</span>
<span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span> <span class="special">=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="comment">// Check here that the expression we are about to
</span> <span class="comment">// evaluate actually conforms to the calculator grammar.
</span> <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_grammar</span><span class="special">>));</span>
<span class="comment">/* ... */</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
The addition of the <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code> line enforces at compile time that we
only evaluate expressions that conform to the calculator DSEL's grammar.
With Proto grammars, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><></span></code> and <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code> it is very easy to give the users of
your DSEL short and readable compile-time errors when they accidentally
misuse your DSEL.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
<code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code>
is part of the Boost Metaprogramming Library. To use it, just <code class="computeroutput"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span></code>.
</p></td></tr>
</table></div>
<a name="boost_proto.users_guide.getting_started.hello_calculator.controlling_operator_overloads"></a><h6>
<a name="id1465185"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.controlling_operator_overloads">Controlling
Operator Overloads</a>
</h6>
<p>
Grammars and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><></span></code>
make it possible to detect when a user has created an invalid expression
and issue a compile-time error. But what if you want to prevent users from
creating invalid expressions in the first place? By using grammars and
domains together, you can disable any of Proto's operator overloads that
would create an invalid expression. It is as simple as specifying the DSEL's
grammar when you define the domain, as shown below:
</p>
<pre class="programlisting"><span class="comment">// Define a calculator domain. Expression within
</span><span class="comment">// the calculator domain will be wrapped in the
</span><span class="comment">// calculator<> expression wrapper.
</span><span class="comment">// NEW: Any operator overloads that would create an
</span><span class="comment">// expression that does not conform to the
</span><span class="comment">// calculator grammar is automatically disabled.
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">calculator</span><span class="special">>,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The only thing we changed is we added <code class="computeroutput"><span class="identifier">calculator_grammar</span></code>
as the second template parameter to the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><></span></code> template when defining <code class="computeroutput"><span class="identifier">calculator_domain</span></code>. With this simple addition,
we disable any of Proto's operator overloads that would create an invalid
calculator expression.
</p>
<a name="boost_proto.users_guide.getting_started.hello_calculator.____and_much_more"></a><h6>
<a name="id1465410"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator.____and_much_more">...
And Much More</a>
</h6>
<p>
Hopefully, this gives you an idea of what sorts of things Proto can do
for you. But this only scratches the surface. The rest of this users' guide
will describe all these features and others in more detail.
</p>
<p>
Happy metaprogramming!
</p>
</div>
</div>
<div class="section" title="Fronts Ends: Defining Terminals and Non-Terminals of Your DSEL">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.front_end"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end" title="Fronts Ends: Defining Terminals and Non-Terminals of Your DSEL"> Fronts Ends: Defining
Terminals and Non-Terminals of Your DSEL</a>
</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.making_terminals">Making
Terminals</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads">Proto's
Operator Overloads</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions">Making
Lazy Functions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions">Adding
Members by Extending Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.define_operators">
Adapting Existing Types to Proto</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.code_repetition">
Generating Repetitive Code with the Preprocessor</a></span></dt>
</dl></div>
<p>
Here is the fun part: designing your own mini-programming language. In this
section we'll talk about the nuts and bolts of designing a DSEL interface
using Proto. We'll cover the definition of terminals and lazy functions that
the users of your DSEL will get to program with. We'll also talk about Proto's
expression template-building operator overloads, and about ways to add additional
members to expressions within your domain.
</p>
<div class="section" title="Making Terminals">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.making_terminals"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_terminals" title="Making Terminals">Making
Terminals</a>
</h4></div></div></div>
<p>
As we saw with the Calculator example from the Introduction, the simplest
way to get a DSEL up and running is simply to define some terminals, as
follows.
</p>
<pre class="programlisting"><span class="comment">// Define a literal integer Proto expression.
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">};</span>
<span class="comment">// This creates an expression template.
</span><span class="identifier">i</span> <span class="special">+</span> <span class="number">1</span><span class="special">;</span>
</pre>
<p>
With some terminals and Proto's operator overloads, you can immediately
start creating expression templates.
</p>
<p>
Defining terminals -- with aggregate initialization -- can be a little
awkward at times. Proto provides an easier-to-use wrapper for literals
that can be used to construct Protofied terminal expressions. It's called
<code class="computeroutput"><a class="link" href="../boost/proto/literal.html" title="Struct template literal">proto::literal<></a></code>.
</p>
<pre class="programlisting"><span class="comment">// Define a literal integer Proto expression.
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="comment">// Proto literals are really just Proto terminal expressions.
</span><span class="comment">// For example, this builds a Proto expression template:
</span><span class="identifier">i</span> <span class="special">+</span> <span class="number">1</span><span class="special">;</span>
</pre>
<p>
There is also a <code class="computeroutput"><a class="link" href="../boost/proto/lit.html" title="Function lit">proto::lit()</a></code> function for constructing
a <code class="computeroutput"><a class="link" href="../boost/proto/literal.html" title="Struct template literal">proto::literal<></a></code> in-place. The above
expression can simply be written as:
</p>
<pre class="programlisting"><span class="comment">// proto::lit(0) creates an integer terminal expression
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">0</span><span class="special">)</span> <span class="special">+</span> <span class="number">1</span><span class="special">;</span>
</pre>
</div>
<div class="section" title="Proto's Operator Overloads">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.proto_s_operator_overloads"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads" title="Proto's Operator Overloads">Proto's
Operator Overloads</a>
</h4></div></div></div>
<p>
Once we have some Proto terminals, expressions involving those terminals
build expression trees for us. Proto defines overloads for each of C++'s
overloadable operators in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
namespace. As long as one operand is a Proto expression, the result of
the operation is a tree node representing that operation.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
Proto's operator overloads live in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
namespace and are found via ADL (argument-dependent lookup). That is
why expressions must be "tainted" with Proto-ness for Proto
to be able to build trees out of expressions.
</p></td></tr>
</table></div>
<p>
As a result of Proto's operator overloads, we can say:
</p>
<pre class="programlisting"><span class="special">-</span><span class="identifier">_1</span><span class="special">;</span> <span class="comment">// OK, build a unary-negate tree node
</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">42</span><span class="special">;</span> <span class="comment">// OK, build a binary-plus tree node
</span></pre>
<p>
For the most part, this Just Works and you don't need to think about it,
but a few operators are special and it can be helpful to know how Proto
handles them.
</p>
<a name="boost_proto.users_guide.front_end.proto_s_operator_overloads.assignment__subscript__and_function_call_operators"></a><h6>
<a name="id1465920"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads.assignment__subscript__and_function_call_operators">Assignment,
Subscript, and Function Call Operators</a>
</h6>
<p>
Proto also overloads <code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code>, <code class="computeroutput"><span class="keyword">operator</span><span class="special">[]</span></code>, and <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>, but these operators are member functions
of the expression template rather than free functions in Proto's namespace.
The following are valid Proto expressions:
</p>
<pre class="programlisting"><span class="identifier">_1</span> <span class="special">=</span> <span class="number">5</span><span class="special">;</span> <span class="comment">// OK, builds a binary assign tree node
</span><span class="identifier">_1</span><span class="special">[</span><span class="number">6</span><span class="special">];</span> <span class="comment">// OK, builds a binary subscript tree node
</span><span class="identifier">_1</span><span class="special">();</span> <span class="comment">// OK, builds a unary function tree node
</span><span class="identifier">_1</span><span class="special">(</span><span class="number">7</span><span class="special">);</span> <span class="comment">// OK, builds a binary function tree node
</span><span class="identifier">_1</span><span class="special">(</span><span class="number">8</span><span class="special">,</span><span class="number">9</span><span class="special">);</span> <span class="comment">// OK, builds a ternary function tree node
</span><span class="comment">// ... etc.
</span></pre>
<p>
For the first two lines, assignment and subscript, it should be fairly
unsurprising that the resulting expression node should be binary. After
all, there are two operands in each expression. It may be surprising at
first that what appears to be a function call with no arguments, <code class="computeroutput"><span class="identifier">_1</span><span class="special">()</span></code>,
actually creates an expression node with one child. The child is <code class="computeroutput"><span class="identifier">_1</span></code> itself. Likewise, the expression
<code class="computeroutput"><span class="identifier">_1</span><span class="special">(</span><span class="number">7</span><span class="special">)</span></code> has two
children: <code class="computeroutput"><span class="identifier">_1</span></code> and <code class="computeroutput"><span class="number">7</span></code>.
</p>
<p>
Because these operators can only be defined as member functions, the following
expressions are invalid:
</p>
<pre class="programlisting"><span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
<span class="identifier">i</span> <span class="special">=</span> <span class="identifier">_1</span><span class="special">;</span> <span class="comment">// ERROR: cannot assign _1 to an int
</span>
<span class="keyword">int</span> <span class="special">*</span><span class="identifier">p</span><span class="special">;</span>
<span class="identifier">p</span><span class="special">[</span><span class="identifier">_1</span><span class="special">];</span> <span class="comment">// ERROR: cannot use _1 as an index
</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">(</span><span class="identifier">_1</span><span class="special">);</span> <span class="comment">// ERROR: cannot call std::sin() with _1
</span></pre>
<p>
Also, C++ has special rules for overloads of <code class="computeroutput"><span class="keyword">operator</span><span class="special">-></span></code> that make it useless for building
expression templates, so Proto does not overload it.
</p>
<a name="boost_proto.users_guide.front_end.proto_s_operator_overloads.the_address_of_operator"></a><h6>
<a name="id1466337"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.front_end.proto_s_operator_overloads.the_address_of_operator">The
Address-Of Operator</a>
</h6>
<p>
Proto overloads the address-of operator for expression types, so that the
following code creates a new unary address-of tree node:
</p>
<pre class="programlisting"><span class="special">&</span><span class="identifier">_1</span><span class="special">;</span> <span class="comment">// OK, creates a unary address-of tree node
</span></pre>
<p>
It does <span class="emphasis"><em>not</em></span> return the address of the <code class="computeroutput"><span class="identifier">_1</span></code> object. However, there is special
code in Proto such that a unary address-of node is implicitly convertible
to a pointer to its child. In other words, the following code works and
does what you might expect, but not in the obvious way:
</p>
<pre class="programlisting"><span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">_1_type</span><span class="special">;</span>
<span class="identifier">_1_type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">_1_type</span> <span class="keyword">const</span> <span class="special">*</span> <span class="identifier">p</span> <span class="special">=</span> <span class="special">&</span><span class="identifier">_1</span><span class="special">;</span> <span class="comment">// OK, &_1 implicitly converted
</span></pre>
</div>
<div class="section" title="Making Lazy Functions">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.making_lazy_functions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions" title="Making Lazy Functions">Making
Lazy Functions</a>
</h4></div></div></div>
<p>
If we limited ourselves to nothing but terminals and operator overloads,
our domain-specific embedded languages wouldn't be very expressive. Imagine
that we wanted to extend our calculator DSEL with a full suite of math
functions like <code class="computeroutput"><span class="identifier">sin</span><span class="special">()</span></code>
and <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code>
that we could invoke lazily as follows.
</p>
<pre class="programlisting"><span class="comment">// A calculator expression that takes one argument
</span><span class="comment">// and takes the sine of it.
</span><span class="identifier">sin</span><span class="special">(</span><span class="identifier">_1</span><span class="special">);</span>
</pre>
<p>
We would like the above to create an expression template representing a
function invocation. When that expression is evaluated, it should cause
the function to be invoked. (At least, that's the meaning of function invocation
we'd like the calculator DSEL to have.) You can define <code class="computeroutput"><span class="identifier">sin</span></code>
quite simply as follows.
</p>
<pre class="programlisting"><span class="comment">// "sin" is a Proto terminal containing a function pointer
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">double</span><span class="special">(*)(</span><span class="keyword">double</span><span class="special">)</span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">sin</span> <span class="special">=</span> <span class="special">{&</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">};</span>
</pre>
<p>
In the above, we define <code class="computeroutput"><span class="identifier">sin</span></code>
as a Proto terminal containing a pointer to the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">()</span></code> function. Now we can use <code class="computeroutput"><span class="identifier">sin</span></code> as a lazy function. The <code class="computeroutput"><span class="identifier">default_context</span></code> that we saw in the Introduction
knows how to evaluate lazy functions. Consider the following:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">pi</span> <span class="special">=</span> <span class="number">3.1415926535</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="comment">// Create a lazy "sin" invocation and immediately evaluate it
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="identifier">sin</span><span class="special">(</span><span class="identifier">pi</span><span class="special">/</span><span class="number">2</span><span class="special">),</span> <span class="identifier">ctx</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
The above code prints out:
</p>
<pre class="programlisting">1</pre>
<p>
It is important to note that there is nothing special about terminals that
contain function pointers. <span class="emphasis"><em>Any</em></span> Proto expression has
an overloaded function call operator. Consider:
</p>
<pre class="programlisting"><span class="comment">// This compiles!
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)(</span><span class="number">2</span><span class="special">)(</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">)(</span><span class="number">5</span><span class="special">,</span><span class="number">6</span><span class="special">,</span><span class="number">7</span><span class="special">,</span><span class="number">8</span><span class="special">);</span>
</pre>
<p>
That may look strange at first. It creates an integer terminal with <code class="computeroutput"><a class="link" href="../boost/proto/lit.html" title="Function lit">proto::lit()</a></code>, and then invokes it like
a function again and again. What does it mean? To be sure, the <code class="computeroutput"><span class="identifier">default_context</span></code> wouldn't know what to
do with it. The <code class="computeroutput"><span class="identifier">default_context</span></code>
only knows how to evaluate expressions that are sufficiently C++-like.
In the case of function call expressions, the left hand side must evaluate
to something that can be invoked: a pointer to a function, a reference
to a function, or a TR1-style function object. That doesn't stop you from
defining your own evaluation context that gives that expression a meaning.
But more on that later.
</p>
<a name="boost_proto.users_guide.front_end.making_lazy_functions.making_lazy_functions__continued"></a><h6>
<a name="id1467131"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions.making_lazy_functions__continued">Making
Lazy Functions, Continued</a>
</h6>
<p>
Now, what if we wanted to add a <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> function to our calculator DSEL that
users could invoke as follows?
</p>
<pre class="programlisting"><span class="comment">// A calculator expression that takes one argument
</span><span class="comment">// and raises it to the 2nd power
</span><span class="identifier">pow</span><span class="special"><</span> <span class="number">2</span> <span class="special">>(</span><span class="identifier">_1</span><span class="special">);</span>
</pre>
<p>
The simple technique described above of making <code class="computeroutput"><span class="identifier">pow</span></code>
a terminal containing a function pointer doesn't work here. If <code class="computeroutput"><span class="identifier">pow</span></code> is an object, then the expression
<code class="computeroutput"><span class="identifier">pow</span><span class="special"><</span>
<span class="number">2</span> <span class="special">>(</span><span class="identifier">_1</span><span class="special">)</span></code> is
not valid C++. <code class="computeroutput"><span class="identifier">pow</span></code> needs
to be a real function template. But it must be an unusual function; it
must return an expression template.
</p>
<p>
Before we can write the <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> function, we need a function object that
wraps an invocation of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span><span class="special">()</span></code>.
</p>
<pre class="programlisting"><span class="comment">// Define a pow_fun function object
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">Exp</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">pow_fun</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">d</span><span class="special">,</span> <span class="identifier">Exp</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Now, let's try to define a function template that returns an expression
template. We'll use the <code class="computeroutput"><a class="link" href="../boost/proto/function.html" title="Struct template function">proto::function<></a></code>
metafunction to calculate the type of a Proto expression that represents
a function call. It is analogous to <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal<></a></code>.
(We'll see a couple of different ways to solve this problem, and each will
demonstrate another utility for defining Proto front-ends.)
</p>
<pre class="programlisting"><span class="comment">// Define a lazy pow() function for the calculator DSEL.
</span><span class="comment">// Can be used as: pow< 2 >(_1)
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">Exp</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span>
<span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span>
<span class="identifier">pow</span><span class="special">(</span><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">arg</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span>
<span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="identifier">result</span> <span class="special">=</span> <span class="special">{{{}},</span> <span class="identifier">arg</span><span class="special">};</span>
<span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
In the code above, notice how the <code class="computeroutput"><a class="link" href="../boost/proto/function.html" title="Struct template function">proto::function<></a></code>
and <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal<></a></code> metafunctions are used
to calculate the return type: <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> returns an expression template representing
a function call where the first child is the function to call and the second
is the argument to the function. (Unfortunately, the same type calculation
is repeated in the body of the function so that we can initialize a local
variable of the correct type. We'll see in a moment how to avoid that.)
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
As with <code class="computeroutput"><a class="link" href="../boost/proto/function.html" title="Struct template function">proto::function<></a></code>, there are metafunctions
corresponding to all of the overloadable C++ operators for calculating
expression types.
</p></td></tr>
</table></div>
<p>
With the above definition of the <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> function, we can create calculator expressions
like the one below and evaluate them using the <code class="computeroutput"><span class="identifier">calculator_context</span></code>
we implemented in the Introduction.
</p>
<pre class="programlisting"><span class="comment">// Initialize a calculator context
</span><span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">3</span><span class="special">);</span> <span class="comment">// let _1 be 3
</span>
<span class="comment">// Create a calculator expression that takes one argument,
</span><span class="comment">// adds one to it, and raises it to the 2nd power; and then
</span><span class="comment">// immediately evaluate it using the calculator_context.
</span><span class="identifier">assert</span><span class="special">(</span> <span class="number">16</span> <span class="special">==</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="identifier">pow</span><span class="special"><</span><span class="number">2</span><span class="special">>(</span> <span class="identifier">_1</span> <span class="special">+</span> <span class="number">1</span> <span class="special">),</span> <span class="identifier">ctx</span> <span class="special">)</span> <span class="special">);</span>
</pre>
<a name="boost_proto.users_guide.front_end.making_lazy_functions.protofying_lazy_function_arguments"></a><h6>
<a name="id1468454"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions.protofying_lazy_function_arguments">Protofying
Lazy Function Arguments</a>
</h6>
<p>
Above, we defined a <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> function template that returns an expression
template representing a lazy function invocation. But if we tried to call
it as below, we'll run into a problem.
</p>
<pre class="programlisting"><span class="comment">// ERROR: pow() as defined above doesn't work when
</span><span class="comment">// called with a non-Proto argument.
</span><span class="identifier">pow</span><span class="special"><</span> <span class="number">2</span> <span class="special">>(</span> <span class="number">4</span> <span class="special">);</span>
</pre>
<p>
Proto expressions can only have other Proto expressions as children. But
if we look at <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code>'s
function signature, we can see that if we pass it a non-Proto object, it
will try to make it a child.
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">Exp</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span> <span class="comment">// <=== ERROR! This may not be a Proto type!
</span><span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span>
<span class="identifier">pow</span><span class="special">(</span><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">arg</span><span class="special">)</span>
</pre>
<p>
What we want is a way to make <code class="computeroutput"><span class="identifier">Arg</span></code>
into a Proto terminal if it is not a Proto expression already, and leave
it alone if it is. For that, we can use <code class="computeroutput"><a class="link" href="../boost/proto/as_child_id1264710.html" title="Function as_child">proto::as_child()</a></code>.
The following implementation of the <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> function handles all argument types,
expression templates or otherwise.
</p>
<pre class="programlisting"><span class="comment">// Define a lazy pow() function for the calculator DSEL. Use
</span><span class="comment">// proto::as_child() to Protofy the argument, but only if it
</span><span class="comment">// is not a Proto expression type to begin with!
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">Exp</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_child</span><span class="special"><</span><span class="identifier">Arg</span> <span class="keyword">const</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span>
<span class="identifier">pow</span><span class="special">(</span><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">arg</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_child</span><span class="special"><</span><span class="identifier">Arg</span> <span class="keyword">const</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="identifier">result</span> <span class="special">=</span> <span class="special">{{{}},</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_child</span><span class="special">(</span><span class="identifier">arg</span><span class="special">)};</span>
<span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
Notice how we use the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_child</span><span class="special"><></span></code> metafunction to calculate the return
type, and the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_child</span><span class="special">()</span></code>
function to actually normalize the argument.
</p>
<a name="boost_proto.users_guide.front_end.making_lazy_functions.lazy_functions_made_simple_with__literal_make_expr____literal_"></a><h6>
<a name="id1469345"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.front_end.making_lazy_functions.lazy_functions_made_simple_with__literal_make_expr____literal_">Lazy
Functions Made Simple With <code class="literal">make_expr()</code></a>
</h6>
<p>
The versions of the <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code> function we've seen above are rather
verbose. In the return type calculation, you have to be very explicit about
wrapping non-Proto types. Worse, you have to restate the return type calculation
in the body of <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code>
itself. Proto provides a helper for building expression templates directly
that handles these mundane details for you. It's called <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_id1241909.html" title="Function make_expr">proto::make_expr()</a></code>.
We can redefine <code class="computeroutput"><span class="identifier">pow</span><span class="special">()</span></code>
with it as below.
</p>
<pre class="programlisting"><span class="comment">// Define a lazy pow() function for the calculator DSEL.
</span><span class="comment">// Can be used as: pow< 2 >(_1)
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">Exp</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span> <span class="comment">// Tag type
</span> <span class="special">,</span> <span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">></span> <span class="comment">// First child (by value)
</span> <span class="special">,</span> <span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span> <span class="comment">// Second child (by reference)
</span><span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span>
<span class="identifier">pow</span><span class="special">(</span><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">arg</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">>(</span>
<span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">>()</span> <span class="comment">// First child (by value)
</span> <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">arg</span><span class="special">)</span> <span class="comment">// Second child (by reference)
</span> <span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
There are some things to notice about the above code. We use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><></span></code>
to calculate the return type. The first template parameter is the tag type
for the expression node we're building -- in this case, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span></code>,
which is the tag type Proto uses for function call expressions.
</p>
<p>
Subsequent template parameters to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><></span></code> represent children nodes. If a
child type is not already a Proto expression, it is made into a terminal
with <code class="computeroutput"><a class="link" href="../boost/proto/as_child_id1264710.html" title="Function as_child">proto::as_child()</a></code>. A type such as <code class="computeroutput"><span class="identifier">pow_fun</span><span class="special"><</span><span class="identifier">Exp</span><span class="special">></span></code>
results in terminal that is held by value, whereas a type like <code class="computeroutput"><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span></code> (note the reference) indicates that
the result should be held by reference.
</p>
<p>
In the function body is the runtime invocation of <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_id1241909.html" title="Function make_expr">proto::make_expr()</a></code>.
It closely mirrors the return type calculation. <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_id1241909.html" title="Function make_expr">proto::make_expr()</a></code>
requires you to specify the node's tag type as a template parameter. The
arguments to the function become the node's children. When a child should
be stored by value, nothing special needs to be done. When a child should
be stored by reference, you must use the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">()</span></code> function to wrap the argument. Without
this extra information, the <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_id1241909.html" title="Function make_expr">proto::make_expr()</a></code>
function couldn't know whether to store a child by value or by reference.
</p>
</div>
<div class="section" title="Adding Members by Extending Expressions">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.adding_members_by_extending_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions" title="Adding Members by Extending Expressions">Adding
Members by Extending Expressions</a>
</h4></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.domains">Domains</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.extends">
The <code class="literal">extends<></code> Expression Wrapper</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.expression_generators">Expression
Generators</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.inhibiting_overloads">
Controlling Operator Overloads</a></span></dt>
</dl></div>
<p>
In this section, we'll see how to associate Proto expressions with a <span class="emphasis"><em>domain</em></span>,
how to add members to expressions within a domain, and how to control which
operators are overloaded in a domain.
</p>
<div class="section" title="Domains">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.adding_members_by_extending_expressions.domains"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.domains" title="Domains">Domains</a>
</h5></div></div></div>
<p>
In the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
Calculator</a> section, we looked into making calculator expressions
directly usable as lambda expressions in calls to STL algorithms, as
below:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">data</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1.</span><span class="special">,</span> <span class="number">2.</span><span class="special">,</span> <span class="number">3.</span><span class="special">,</span> <span class="number">4.</span><span class="special">};</span>
<span class="comment">// Use the calculator DSEL to square each element ... HOW?
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">data</span> <span class="special">+</span> <span class="number">4</span><span class="special">,</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_1</span> <span class="special">);</span>
</pre>
<p>
The difficulty, if you recall, was that by default Proto expressions
don't have interesting behaviors of their own. They're just trees. In
particular, the expression <code class="computeroutput"><span class="identifier">_1</span>
<span class="special">*</span> <span class="identifier">_1</span></code>
won't have an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
that takes a double and returns a double like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">()</span></code> expects -- unless we give it one. To
make this work, we needed to define an expression wrapper type that defined
the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
member function, and we needed to associate the wrapper with the calculator
<span class="emphasis"><em>domain</em></span>.
</p>
<p>
In Proto, the term <span class="emphasis"><em>domain</em></span> refers to a type that
associates expressions in that domain to an expression <span class="emphasis"><em>generator</em></span>.
The generator is just a function object that accepts an expression and
does something to it, like wrapping it in an expression wrapper.
</p>
<p>
You can also use a domain to associate expressions with a grammar. When
you specify a domain's grammar, Proto ensures that all the expressions
it generates in that domain conform to the domain's grammar. It does
that by disabling any operator overloads that would create invalid expressions.
</p>
</div>
<div class="section" title="The extends<> Expression Wrapper">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.adding_members_by_extending_expressions.extends"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.extends" title="The extends<> Expression Wrapper">
The <code class="literal">extends<></code> Expression Wrapper</a>
</h5></div></div></div>
<p>
The first step to giving your calculator expressions extra behaviors
is to define a calculator domain. All expressions within the calculator
domain will be imbued with calculator-ness, as we'll see.
</p>
<pre class="programlisting"><span class="comment">// A type to be used as a domain tag (to be defined below)
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span><span class="special">;</span>
</pre>
<p>
We use this domain type when extending the <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code>
type, which we do with the <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>
class template. Here is our expression wrapper, which imbues an expression
with calculator-ness. It is described below.
</p>
<pre class="programlisting"><span class="comment">// The calculator<> expression wrapper makes expressions
</span><span class="comment">// function objects.
</span><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span> <span class="identifier">Expr</span> <span class="special">>,</span> <span class="identifier">calculator_domain</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span> <span class="identifier">Expr</span> <span class="special">>,</span> <span class="identifier">calculator_domain</span> <span class="special">></span>
<span class="identifier">base_type</span><span class="special">;</span>
<span class="identifier">calculator</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">()</span> <span class="special">)</span>
<span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// This is usually needed because by default, the compiler-
</span> <span class="comment">// generated assignment operator hides extends<>::operator=
</span> <span class="keyword">using</span> <span class="identifier">base_type</span><span class="special">::</span><span class="keyword">operator</span> <span class="special">=;</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Hide base_type::operator() by defining our own which
</span> <span class="comment">// evaluates the calculator expression with a calculator context.
</span> <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.0</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="comment">// As defined in the Hello Calculator section.
</span> <span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="comment">// ctx.args is a vector<double> that holds the values
</span> <span class="comment">// with which we replace the placeholders (e.g., _1 and _2)
</span> <span class="comment">// in the expression.
</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span> <span class="identifier">d1</span> <span class="special">);</span> <span class="comment">// _1 gets the value of d1
</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span> <span class="identifier">d2</span> <span class="special">);</span> <span class="comment">// _2 gets the value of d2
</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span> <span class="special">);</span> <span class="comment">// evaluate the expression
</span> <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
We want calculator expressions to be function objects, so we have to
define an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
that takes and returns doubles. The <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> wrapper above does that with
the help of the <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>
template. The first template to <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>
parameter is the expression type we are extending. The second is the
type of the wrapped expression. The third parameter is the domain that
this wrapper is associated with. A wrapper type like <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> that inherits from <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code> behaves just like
the expression type it has extended, with any additional behaviors you
choose to give it.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
<span class="bold"><strong>Why not just inherit from <code class="literal">proto::expr<></code>?</strong></span>
</p>
<p>
You might be thinking that this expression extension business is unnecessarily
complicated. After all, isn't this why C++ supports inheritance? Why
can't <code class="literal">calculator<Expr></code> just inherit from
<code class="literal">Expr</code> directly? The reason is because <code class="literal">Expr</code>,
which presumably is an instantiation of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code>,
has expression template-building operator overloads that will be incorrect
for derived types. They will store <code class="computeroutput"><span class="special">*</span><span class="keyword">this</span></code> by reference to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><></span></code>, effectively slicing off any
derived parts. <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>
gives your derived types operator overloads that don't slice off your
additional members.
</p>
</td></tr>
</table></div>
<p>
Although not strictly necessary in this case, we bring <code class="computeroutput"><span class="identifier">extends</span><span class="special"><>::</span><span class="keyword">operator</span><span class="special">=</span></code>
into scope with a <code class="computeroutput"><span class="keyword">using</span></code>
declaration. This is really only necessary if you want expressions like
<code class="computeroutput"><span class="identifier">_1</span> <span class="special">=</span>
<span class="number">3</span></code> to create a lazily evaluated
assignment. <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code> defines the appropriate
<code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code>
for you, but the compiler-generated <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><>::</span><span class="keyword">operator</span><span class="special">=</span></code> will hide it unless you make it available
with the <code class="computeroutput"><span class="keyword">using</span></code> declaration.
</p>
<p>
Note that in the implementation of <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><>::</span><span class="keyword">operator</span><span class="special">()</span></code>, we evaluate the expression with the
<code class="computeroutput"><span class="identifier">calculator_context</span></code> we
defined earlier. As we saw before, the context is what gives the operators
their meaning. In the case of the calculator, the context is also what
defines the meaning of the placeholder terminals.
</p>
<p>
Now that we have defined the <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> expression wrapper, we need to
wrap the placeholders to imbue them with calculator-ness:
</p>
<pre class="programlisting"><span class="identifier">calculator</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="special">></span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="special">></span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>
</pre>
<a name="boost_proto.users_guide.front_end.adding_members_by_extending_expressions.extends.retaining_pod_ness_with__literal_boost_proto_extends____literal_"></a><h6>
<a name="id1471599"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.extends.retaining_pod_ness_with__literal_boost_proto_extends____literal_">Retaining
POD-ness with <code class="literal">BOOST_PROTO_EXTENDS()</code></a>
</h6>
<p>
To use <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>, your extension type
must derive from <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>.
Unfortunately, that means that your extension type is no longer POD and
its instances cannot be <span class="emphasis"><em>statically initialized</em></span>.
(See the <a class="link" href="appendices.html#boost_proto.appendices.rationale.static_initialization" title="Static Initialization">Static
Initialization</a> section in the <a class="link" href="appendices.html#boost_proto.appendices.rationale" title="Appendix B: Rationale">Rationale</a>
appendix for why this matters.) In particular, as defined above, the
global placeholder objects <code class="computeroutput"><span class="identifier">_1</span></code>
and <code class="computeroutput"><span class="identifier">_2</span></code> will need to be
initialized at runtime, which could lead to subtle order of initialization
bugs.
</p>
<p>
There is another way to make an expression extension that doesn't sacrifice
POD-ness : the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
macro. You can use it much like you use <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>.
We can use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
to keep <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code>
a POD and our placeholders statically initialized.
</p>
<pre class="programlisting"><span class="comment">// The calculator<> expression wrapper makes expressions
</span><span class="comment">// function objects.
</span><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">{</span>
<span class="comment">// Use BOOST_PROTO_EXTENDS() instead of proto::extends<> to
</span> <span class="comment">// make this type a Proto expression extension.
</span> <span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">)</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.0</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="comment">/* ... as before ... */</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
With the new <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> type, we can redefine our placeholders
to be statically initialized:
</p>
<pre class="programlisting"><span class="identifier">calculator</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="special">></span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{{}}};</span>
<span class="identifier">calculator</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="special">></span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{{}}};</span>
</pre>
<p>
We need to make one additional small change to accommodate the POD-ness
of our expression extension, which we'll describe below in the section
on expression generators.
</p>
<p>
What does <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
do? It defines a data member of the expression type being extended; some
nested typedefs that Proto requires; <code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code>, <code class="computeroutput"><span class="keyword">operator</span><span class="special">[]</span></code> and <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> overloads for building expression templates;
and a nested <code class="computeroutput"><span class="identifier">result</span><span class="special"><></span></code>
template for calculating the return type of <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>. In this case, however, the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
overloads and the <code class="computeroutput"><span class="identifier">result</span><span class="special"><></span></code> template are not needed because
we are defining our own <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> in the <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> type. Proto provides additional
macros for finer control over which member functions are defined. We
could improve our <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> type as follows:
</p>
<pre class="programlisting"><span class="comment">// The calculator<> expression wrapper makes expressions
</span><span class="comment">// function objects.
</span><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">{</span>
<span class="comment">// Use BOOST_PROTO_BASIC_EXTENDS() instead of proto::extends<> to
</span> <span class="comment">// make this type a Proto expression extension:
</span> <span class="identifier">BOOST_PROTO_BASIC_EXTENDS</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">)</span>
<span class="comment">// Define operator[] to build expression templates:
</span> <span class="identifier">BOOST_PROTO_EXTENDS_SUBSCRIPT</span><span class="special">()</span>
<span class="comment">// Define operator= to build expression templates:
</span> <span class="identifier">BOOST_PROTO_EXTENDS_ASSIGN</span><span class="special">()</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.0</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="comment">/* ... as before ... */</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Notice that we are now using <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>
instead of <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>.
This just adds the data member and the nested typedefs but not any of
the overloaded operators. Those are added separately with <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_ASSIGN.html" title="Macro BOOST_PROTO_EXTENDS_ASSIGN">BOOST_PROTO_EXTENDS_ASSIGN</a></code>()</code>
and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_SUBSCRIPT.html" title="Macro BOOST_PROTO_EXTENDS_SUBSCRIPT">BOOST_PROTO_EXTENDS_SUBSCRIPT</a></code>()</code>.
We are leaving out the function call operator and the nested <code class="computeroutput"><span class="identifier">result</span><span class="special"><></span></code>
template that could have been defined with Proto's <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_FUNCTION.html" title="Macro BOOST_PROTO_EXTENDS_FUNCTION">BOOST_PROTO_EXTENDS_FUNCTION</a></code>()</code>
macro.
</p>
<p>
In summary, here are the macros you can use to define expression extensions,
and a brief description of each.
</p>
<div class="table">
<a name="id1472736"></a><p class="title"><b>Table 15.2. Expression Extension Macros</b></p>
<div class="table-contents"><table class="table" summary="Expression Extension Macros">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Macro
</p>
</th>
<th>
<p>
Purpose
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code><span class="special">(</span>
<em class="replaceable"><code>expression</code></em>
<span class="special">,</span> <em class="replaceable"><code>extension</code></em>
<span class="special">,</span> <em class="replaceable"><code>domain</code></em>
<span class="special">)</span></pre>
<p>
</p>
</td>
<td>
<p>
Defines a data member of type <code class="computeroutput">
<em class="replaceable"><code>
expression
</code></em>
</code> and some nested typedefs that Proto requires.
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_ASSIGN.html" title="Macro BOOST_PROTO_EXTENDS_ASSIGN">BOOST_PROTO_EXTENDS_ASSIGN</a></code>()</code>
</p>
</td>
<td>
<p>
Defines <code class="computeroutput"><span class="keyword">operator</span><span class="special">=</span></code>.
Only valid when preceded by <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>.
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_SUBSCRIPT.html" title="Macro BOOST_PROTO_EXTENDS_SUBSCRIPT">BOOST_PROTO_EXTENDS_SUBSCRIPT</a></code>()</code>
</p>
</td>
<td>
<p>
Defines <code class="computeroutput"><span class="keyword">operator</span><span class="special">[]</span></code>.
Only valid when preceded by <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>.
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_FUNCTION.html" title="Macro BOOST_PROTO_EXTENDS_FUNCTION">BOOST_PROTO_EXTENDS_FUNCTION</a></code>()</code>
</p>
</td>
<td>
<p>
Defines <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
and a nested <code class="computeroutput"><span class="identifier">result</span><span class="special"><></span></code> template for return type
calculation. Only valid when preceded by <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code>()</code>.
</p>
</td>
</tr>
<tr>
<td>
<p>
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code><span class="special">(</span>
<em class="replaceable"><code>expression</code></em>
<span class="special">,</span> <em class="replaceable"><code>extension</code></em>
<span class="special">,</span> <em class="replaceable"><code>domain</code></em>
<span class="special">)</span></pre>
<p>
</p>
</td>
<td>
<p>
Equivalent to:
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_BASIC_EXTENDS.html" title="Macro BOOST_PROTO_BASIC_EXTENDS">BOOST_PROTO_BASIC_EXTENDS</a></code><span class="special">(</span><em class="replaceable"><code>expression</code></em><span class="special">,</span> <em class="replaceable"><code>extension</code></em><span class="special">,</span> <em class="replaceable"><code>domain</code></em><span class="special">)</span>
<code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_ASSIGN.html" title="Macro BOOST_PROTO_EXTENDS_ASSIGN">BOOST_PROTO_EXTENDS_ASSIGN</a></code>()</code>
<code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_SUBSCRIPT.html" title="Macro BOOST_PROTO_EXTENDS_SUBSCRIPT">BOOST_PROTO_EXTENDS_SUBSCRIPT</a></code>()</code>
<code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS_FUNCTION.html" title="Macro BOOST_PROTO_EXTENDS_FUNCTION">BOOST_PROTO_EXTENDS_FUNCTION</a></code>()</code></pre>
<p>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="warning" title="Warning"><table border="0" summary="Warning">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../doc/html/images/warning.png"></td>
<th align="left">Warning</th>
</tr>
<tr><td align="left" valign="top">
<p>
<span class="bold"><strong>Argument-Dependent Lookup and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code></strong></span>
</p>
<p>
Proto's operator overloads are defined in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
namespace and are found by argument-dependent lookup (ADL). This usually
just works because expressions are made up of types that live in the
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code> namespace. However, sometimes
when you use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
that is not the case. Consider:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">my_complex</span>
<span class="special">{</span>
<span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">(</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="identifier">my_complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span>
<span class="special">)</span>
<span class="special">};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">my_complex</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">c0</span><span class="special">,</span> <span class="identifier">c1</span><span class="special">;</span>
<span class="identifier">c0</span> <span class="special">+</span> <span class="identifier">c1</span><span class="special">;</span> <span class="comment">// ERROR: operator+ not found
</span><span class="special">}</span>
</pre>
<p>
</p>
<p>
The problem has to do with how argument-dependent lookup works. The
type <code class="computeroutput"><span class="identifier">my_complex</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code>
is not associated in any way with the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
namespace, so the operators defined there are not considered. (Had
we inherited from <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>
instead of used <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>,
we would have avoided the problem because inheriting from a type in
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code> namespace is enough to get
ADL to kick in.)
</p>
<p>
So what can we do? By adding an extra dummy template parameter that
defaults to a type in the <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code>
namespace, we can trick ADL into finding the right operator overloads.
The solution looks like this:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Dummy</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_proto_expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">my_complex</span>
<span class="special">{</span>
<span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">(</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="identifier">my_complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span>
<span class="special">)</span>
<span class="special">};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">my_complex</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">c0</span><span class="special">,</span> <span class="identifier">c1</span><span class="special">;</span>
<span class="identifier">c0</span> <span class="special">+</span> <span class="identifier">c1</span><span class="special">;</span> <span class="comment">// OK, operator+ found now!
</span><span class="special">}</span>
</pre>
<p>
</p>
<p>
The type <code class="computeroutput"><a class="link" href="../boost/proto/is_proto_expr.html" title="Struct is_proto_expr">proto::is_proto_expr</a></code> is nothing
but an empty struct, but by making it a template parameter we make
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span></code> an associated namespace of
<code class="computeroutput"><span class="identifier">my_complex</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code>.
Now ADL can successfully find Proto's operator overloads.
</p>
</td></tr>
</table></div>
</div>
<div class="section" title="Expression Generators">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.adding_members_by_extending_expressions.expression_generators"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.expression_generators" title="Expression Generators">Expression
Generators</a>
</h5></div></div></div>
<p>
The last thing that remains to be done is to tell Proto that it needs
to wrap all of our calculator expressions in our <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> wrapper. We have already wrapped
the placeholders, but we want <span class="emphasis"><em>all</em></span> expressions that
involve the calculator placeholders to be calculators. We can do that
by specifying an expression generator when we define our <code class="computeroutput"><span class="identifier">calculator_domain</span></code>, as follows:
</p>
<pre class="programlisting"><span class="comment">// Define the calculator_domain we forward-declared above.
</span><span class="comment">// Specify that all expression in this domain should be wrapped
</span><span class="comment">// in the calculator<> expression wrapper.
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span> <span class="identifier">calculator</span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The first template parameter to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><></span></code> is the generator. "Generator"
is just a fancy name for a function object that accepts an expression
and does something to it. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><></span></code> is a very simple one --- it wraps
an expression in the wrapper you specify. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><></span></code> inherits from its generator parameter,
so all domains are themselves function objects.
</p>
<p>
If we used <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_EXTENDS.html" title="Macro BOOST_PROTO_EXTENDS">BOOST_PROTO_EXTENDS</a></code>()</code>
to keep our expression extension type POD, then we need to use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special"><></span></code>
instead of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><></span></code>,
as follows:
</p>
<pre class="programlisting"><span class="comment">// If calculator<> uses BOOST_PROTO_EXTENDS() instead of
</span><span class="comment">// use proto::extends<>, use proto::pod_generator<> instead
</span><span class="comment">// of proto::generator<>.
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special"><</span> <span class="identifier">calculator</span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
After Proto has calculated a new expression type, it checks the domains
of the child expressions. They must match. Assuming they do, Proto creates
the new expression and passes it to <code class="computeroutput">
<em class="replaceable"><code>
Domain
</code></em>
<span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> for any additional processing. If we
don't specify a generator, the new expression gets passed through unchanged.
But since we've specified a generator above, <code class="computeroutput"><span class="identifier">calculator_domain</span><span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> returns <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> objects.
</p>
<p>
Now we can use calculator expressions as function objects to STL algorithms,
as follows:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">data</span><span class="special">[]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1.</span><span class="special">,</span> <span class="number">2.</span><span class="special">,</span> <span class="number">3.</span><span class="special">,</span> <span class="number">4.</span><span class="special">};</span>
<span class="comment">// Use the calculator DSEL to square each element ... WORKS! :-)
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">data</span> <span class="special">+</span> <span class="number">4</span><span class="special">,</span> <span class="identifier">data</span><span class="special">,</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_1</span> <span class="special">);</span>
</pre>
</div>
<div class="section" title="Controlling Operator Overloads">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.front_end.adding_members_by_extending_expressions.inhibiting_overloads"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.adding_members_by_extending_expressions.inhibiting_overloads" title="Controlling Operator Overloads">
Controlling Operator Overloads</a>
</h5></div></div></div>
<p>
By default, Proto defines every possible operator overload for Protofied
expressions. This makes it simple to bang together a DSEL. In some cases,
however, the presence of Proto's promiscuous overloads can lead to confusion
or worse. When that happens, you'll have to disable some of Proto's overloaded
operators. That is done by defining the grammar for your domain and specifying
it as the second parameter of the <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain<></a></code>
template.
</p>
<p>
In the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
Calculator</a> section, we saw an example of a Proto grammar, which
is repeated here:
</p>
<pre class="programlisting"><span class="comment">// Define the grammar of calculator expressions
</span><span class="keyword">struct</span> <span class="identifier">calculator_grammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><</span> <span class="identifier">calculator_grammar</span><span class="special">,</span> <span class="identifier">calculator_grammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
We'll have much more to say about grammars in subsequent sections, but
for now, we'll just say that the <code class="computeroutput"><span class="identifier">calculator_grammar</span></code>
struct describes a subset of all expression types -- the subset that
comprise valid calculator expressions. We would like to prohibit Proto
from creating a calculator expression that does not conform to this grammar.
We do that by changing the definition of the <code class="computeroutput"><span class="identifier">calculator_domain</span></code>
struct.
</p>
<pre class="programlisting"><span class="comment">// Define the calculator_domain. Expressions in the calculator
</span><span class="comment">// domain are wrapped in the calculator<> wrapper, and they must
</span><span class="comment">// conform to the calculator_grammar:
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span> <span class="identifier">calculator</span> <span class="special">>,</span> <span class="bold"><strong>calculator_grammar</strong></span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The only new addition is <code class="computeroutput"><span class="identifier">calculator_grammar</span></code>
as the second template parameter to the <code class="computeroutput"><a class="link" href="../boost/proto/domain.html" title="Struct template domain">proto::domain<></a></code>
template. That has the effect of disabling any of Proto's operator overloads
that would create an invalid calculator expression.
</p>
<p>
Another common use for this feature would be to disable Proto's unary
<code class="computeroutput"><span class="keyword">operator</span><span class="special">&</span></code>
overload. It may be surprising for users of your DSEL that they cannot
take the address of their expressions! You can very easily disable Proto's
unary <code class="computeroutput"><span class="keyword">operator</span><span class="special">&</span></code>
overload for your domain with a very simple grammar, as below:
</p>
<pre class="programlisting"><span class="comment">// For expressions in my_domain, disable Proto's
</span><span class="comment">// unary address-of operator.
</span><span class="keyword">struct</span> <span class="identifier">my_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span> <span class="identifier">my_wrapper</span> <span class="special">></span>
<span class="comment">// A simple grammar that matches any expression that
</span> <span class="comment">// is not a unary address-of expression.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special"><</span> <span class="identifier">_</span> <span class="special">></span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special"><</span>
<span class="identifier">_</span> <span class="special">></span>
<span class="special">></span></code> is a very simple grammar
that matches all expressions except unary address-of expressions. In
the section describing Proto's intermediate form, we'll have much more
to say about grammars.
</p>
</div>
</div>
<div class="section" title="Adapting Existing Types to Proto">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.define_operators"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.define_operators" title="Adapting Existing Types to Proto">
Adapting Existing Types to Proto</a>
</h4></div></div></div>
<p>
The preceding discussions of defining Proto front ends have all made a
big assumption: that you have the luxury of defining everything from scratch.
What happens if you have existing types, say a matrix type and a vector
type, that you would like to treat as if they were Proto terminals? Proto
usually trades only in its own expression types, but with <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>,
it can accomodate your custom terminal types, too.
</p>
<p>
Let's say, for instance, that you have the following types and that you
can't modify then to make them <span class="quote">“<span class="quote">native</span>”</span> Proto terminal types.
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">math</span>
<span class="special">{</span>
<span class="comment">// A matrix type ...
</span> <span class="keyword">struct</span> <span class="identifier">matrix</span> <span class="special">{</span> <span class="comment">/*...*/</span> <span class="special">};</span>
<span class="comment">// A vector type ...
</span> <span class="keyword">struct</span> <span class="identifier">vector</span> <span class="special">{</span> <span class="comment">/*...*/</span> <span class="special">};</span>
<span class="special">}</span>
</pre>
<p>
You can non-intrusively make objects of these types Proto terminals by
defining the proper operator overloads using <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>.
The basic procedure is as follows:
</p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
Define a trait that returns true for your types and false for all others.
</li>
<li class="listitem">
Reopen the namespace of your types and use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>
to define a set of operator overloads, passing the name of the trait
as the first macro parameter, and the name of a Proto domain (e.g.,
<code class="computeroutput"><a class="link" href="../boost/proto/default_domain.html" title="Struct default_domain">proto::default_domain</a></code>)
as the second.
</li>
</ol></div>
<p>
The following code demonstrates how it works.
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">math</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">is_terminal</span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
<span class="special">{};</span>
<span class="comment">// OK, "matrix" is a custom terminal type
</span> <span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">is_terminal</span><span class="special"><</span><span class="identifier">matrix</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
<span class="comment">// OK, "vector" is a custom terminal type
</span> <span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">is_terminal</span><span class="special"><</span><span class="identifier">vector</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
<span class="comment">// Define all the operator overloads to construct Proto
</span> <span class="comment">// expression templates, treating "matrix" and "vector"
</span> <span class="comment">// objects as if they were Proto terminals.
</span> <span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">(</span><span class="identifier">is_terminal</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_domain</span><span class="special">)</span>
<span class="special">}</span>
</pre>
<p>
The invocation of the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_DEFINE_OPERATORS.html" title="Macro BOOST_PROTO_DEFINE_OPERATORS">BOOST_PROTO_DEFINE_OPERATORS</a></code>()</code>
macro defines a complete set of operator overloads that treat <code class="computeroutput"><span class="identifier">matrix</span></code> and <code class="computeroutput"><span class="identifier">vector</span></code>
objects as if they were Proto terminals. And since the operators are defined
in the same namespace as the <code class="computeroutput"><span class="identifier">matrix</span></code>
and <code class="computeroutput"><span class="identifier">vector</span></code> types, the operators
will be found by argument-dependent lookup. With the code above, we can
now construct expression templates with matrices and vectors, as shown
below.
</p>
<pre class="programlisting"><span class="identifier">math</span><span class="special">::</span><span class="identifier">matrix</span> <span class="identifier">m1</span><span class="special">;</span>
<span class="identifier">math</span><span class="special">::</span><span class="identifier">vector</span> <span class="identifier">v1</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">i</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>
<span class="identifier">m1</span> <span class="special">*</span> <span class="number">1</span><span class="special">;</span> <span class="comment">// custom terminal and literals are OK
</span><span class="identifier">m1</span> <span class="special">*</span> <span class="identifier">i</span><span class="special">;</span> <span class="comment">// custom terminal and Proto expressions are OK
</span><span class="identifier">m1</span> <span class="special">*</span> <span class="identifier">v1</span><span class="special">;</span> <span class="comment">// two custom terminals are OK, too.
</span></pre>
</div>
<div class="section" title="Generating Repetitive Code with the Preprocessor">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.front_end.code_repetition"></a><a class="link" href="users_guide.html#boost_proto.users_guide.front_end.code_repetition" title="Generating Repetitive Code with the Preprocessor">
Generating Repetitive Code with the Preprocessor</a>
</h4></div></div></div>
<p>
Sometimes as a DSEL designer, to make the lives of your users easy, you
have to make your own life hard. Giving your users natural and flexible
syntax often involves writing large numbers of repetitive function overloads.
It can be enough to give you repetitive stress injury! Before you hurt
yourself, check out the macros Proto provides for automating many repetitive
code-generation chores.
</p>
<p>
Imagine that we are writing a lambda DSEL, and we would like to enable
syntax for constructing temporary objects of any type using the following
syntax:
</p>
<pre class="programlisting"><span class="comment">// A lambda expression that takes two arguments and
</span><span class="comment">// uses them to construct a temporary std::complex<>
</span><span class="identifier">construct</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="special">>(</span> <span class="identifier">_1</span><span class="special">,</span> <span class="identifier">_2</span> <span class="special">)</span>
</pre>
<p>
For the sake of the discussion, imagine that we already have a function
object template <code class="computeroutput"><span class="identifier">construct_impl</span><span class="special"><></span></code> that accepts arguments and constructs
new objects from them. We would want the above lambda expression to be
equivalent to the following:
</p>
<pre class="programlisting"><span class="comment">// The above lambda expression should be roughly equivalent
</span><span class="comment">// to the following:
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">>(</span>
<span class="identifier">construct_impl</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="special">>()</span> <span class="comment">// The function to invoke lazily
</span> <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">_1</span><span class="special">)</span> <span class="comment">// The first argument to the function
</span> <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">_2</span><span class="special">)</span> <span class="comment">// The second argument to the function
</span><span class="special">);</span>
</pre>
<p>
We can define our <code class="computeroutput"><span class="identifier">construct</span><span class="special">()</span></code> function template as follows:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>
<span class="special">,</span> <span class="identifier">construct_impl</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&</span>
<span class="special">,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&</span>
<span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span>
<span class="identifier">construct</span><span class="special">(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">a0</span><span class="special">,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">a1</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">>(</span>
<span class="identifier">construct_impl</span><span class="special"><</span><span class="identifier">T</span><span class="special">>()</span>
<span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">a0</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">a1</span><span class="special">)</span>
<span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
This works for two arguments, but we would like it to work for any number
of arguments, up to ( <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_MAX_ARITY.html" title="Macro BOOST_PROTO_MAX_ARITY">BOOST_PROTO_MAX_ARITY</a></code></code>
- 1). (Why "- 1"? Because one child is taken up by the <code class="computeroutput"><span class="identifier">construct_impl</span><span class="special"><</span><span class="identifier">T</span><span class="special">>()</span></code>
terminal leaving room for only ( <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_MAX_ARITY.html" title="Macro BOOST_PROTO_MAX_ARITY">BOOST_PROTO_MAX_ARITY</a></code></code>
- 1) other children.)
</p>
<p>
For cases like this, Proto provides the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT.html" title="Macro BOOST_PROTO_REPEAT">BOOST_PROTO_REPEAT</a></code>()</code>
and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO">BOOST_PROTO_REPEAT_FROM_TO</a></code>()</code>
macros. To use it, we turn the function definition above into a macro as
follows:
</p>
<pre class="programlisting"><span class="preprocessor">#define</span> <span class="identifier">M0</span><span class="special">(</span><span class="identifier">N</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">,</span> <span class="identifier">A_const_ref_a</span><span class="special">,</span> <span class="identifier">ref_a</span><span class="special">)</span> <span class="special">\</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">(</span><span class="identifier">N</span><span class="special">)></span> <span class="special">\</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span> <span class="special">\</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">construct_impl</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span> <span class="special">\</span>
<span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="special">\</span>
<span class="identifier">construct</span><span class="special">(</span><span class="identifier">A_const_ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">))</span> <span class="special">\</span>
<span class="special">{</span> <span class="special">\</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">>(</span> <span class="special">\</span>
<span class="identifier">construct_impl</span><span class="special"><</span><span class="identifier">T</span><span class="special">>()</span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span> <span class="special">\</span>
<span class="special">);</span> <span class="special">\</span>
<span class="special">}</span>
</pre>
<p>
Notice that we turned the function into a macro that takes 5 arguments.
The first is the current iteration number. The rest are the names of other
macros that generate different sequences. For instance, Proto passes as
the second parameter the name of a macro that will expand to <code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">,</span> <span class="special">...</span></code>.
</p>
<p>
Now that we have turned our function into a macro, we can pass the macro
to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO">BOOST_PROTO_REPEAT_FROM_TO</a></code>()</code>.
Proto will invoke it iteratively, generating all the function overloads
for us.
</p>
<pre class="programlisting"><span class="comment">// Generate overloads of construct() that accept from
</span><span class="comment">// 1 to BOOST_PROTO_MAX_ARITY-1 arguments:
</span><span class="identifier">BOOST_PROTO_REPEAT_FROM_TO</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="identifier">BOOST_PROTO_MAX_ARITY</span><span class="special">,</span> <span class="identifier">M0</span><span class="special">)</span>
<span class="preprocessor">#undef</span> <span class="identifier">M0</span>
</pre>
<a name="boost_proto.users_guide.front_end.code_repetition.non_default_sequences"></a><h6>
<a name="id1477570"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.front_end.code_repetition.non_default_sequences">Non-Default
Sequences</a>
</h6>
<p>
As mentioned above, Proto passes as the last 4 arguments to your macro
the names of other macros that generate various sequences. The macros
<code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT.html" title="Macro BOOST_PROTO_REPEAT">BOOST_PROTO_REPEAT</a></code>()</code>
and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO">BOOST_PROTO_REPEAT_FROM_TO</a></code>()</code>
select defaults for these parameters. If the defaults do not meet your
needs, you can use <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_EX.html" title="Macro BOOST_PROTO_REPEAT_EX">BOOST_PROTO_REPEAT_EX</a></code>()</code>
and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO_EX.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO_EX">BOOST_PROTO_REPEAT_FROM_TO_EX</a></code>()</code>
and pass different macros that generate different sequences. Proto defines
a number of such macros for use as parameters to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_EX.html" title="Macro BOOST_PROTO_REPEAT_EX">BOOST_PROTO_REPEAT_EX</a></code>()</code>
and <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT_FROM_TO_EX.html" title="Macro BOOST_PROTO_REPEAT_FROM_TO_EX">BOOST_PROTO_REPEAT_FROM_TO_EX</a></code>()</code>.
Check the reference section for <code class="computeroutput"><a class="link" href="reference.html#header.boost.proto.repeat_hpp" title="Header <boost/proto/repeat.hpp>">boost/proto/repeat.hpp</a></code>
for all the details.
</p>
<p>
Also, check out <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_LOCAL_ITERATE.html" title="Macro BOOST_PROTO_LOCAL_ITERATE">BOOST_PROTO_LOCAL_ITERATE</a></code>()</code>.
It works similarly to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_REPEAT.html" title="Macro BOOST_PROTO_REPEAT">BOOST_PROTO_REPEAT</a></code>()</code>
and friends, but it can be easier to use when you want to change one macro
argument and accept defaults for the others.
</p>
</div>
</div>
<div class="section" title="Intermediate Form: Understanding and Introspecting Expressions">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.intermediate_form"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form" title="Intermediate Form: Understanding and Introspecting Expressions"> Intermediate
Form: Understanding and Introspecting Expressions</a>
</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child">
Accessing Parts of an Expression</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.deep_copying_expressions">Deep-copying
Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.debugging_expressions">Debugging
Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.tags_and_metafunctions">
Operator Tags and Metafunctions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences">Expressions
as Fusion Sequences</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection">
Expression Introspection: Defining a Grammar</a></span></dt>
</dl></div>
<p>
By now, you know a bit about how to build a front-end for your DSEL "compiler"
-- you can define terminals and functions that generate expression templates.
But we haven't said anything about the expression templates themselves. What
do they look like? What can you do with them? In this section we'll see.
</p>
<a name="boost_proto.users_guide.intermediate_form.the__literal_expr_lt__gt___literal__type"></a><h5>
<a name="id1477777"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.the__literal_expr_lt__gt___literal__type">The
<code class="literal">expr<></code> Type</a>
</h5>
<p>
All Proto expressions are an instantiation of a template called <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code> (or a wrapper around
such an instantiation). When we define a terminal as below, we are really
initializing an instance of the <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code>
template.
</p>
<pre class="programlisting"><span class="comment">// Define a placeholder type
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{};</span>
<span class="comment">// Define the Protofied placeholder terminal
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
</pre>
<p>
The actual type of <code class="computeroutput"><span class="identifier">_1</span></code> looks
like this:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>,</span> <span class="number">0</span> <span class="special">></span>
</pre>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code> template is the most
important type in Proto. Although you will rarely need to deal with it directly,
it's always there behind the scenes holding your expression trees together.
In fact, <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code> <span class="emphasis"><em>is</em></span>
the expression tree -- branches, leaves and all.
</p>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code> template makes up the
nodes in expression trees. The first template parameter is the node type;
in this case, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span></code>.
That means that <code class="computeroutput"><span class="identifier">_1</span></code> is a leaf-node
in the expression tree. The second template parameter is a list of child
types, or in the case of terminals, the terminal's value type. Terminals
will always have only one type in the type list. The last parameter is the
arity of the expression. Terminals have arity 0, unary expressions have arity
1, etc.
</p>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code> struct is defined as
follows:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Args</span><span class="special">,</span> <span class="keyword">long</span> <span class="identifier">Arity</span> <span class="special">=</span> <span class="identifier">Args</span><span class="special">::</span><span class="identifier">arity</span> <span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">expr</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Args</span> <span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">expr</span><span class="special"><</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="identifier">Args</span><span class="special">,</span> <span class="number">1</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">Args</span><span class="special">::</span><span class="identifier">child0</span> <span class="identifier">proto_child0</span><span class="special">;</span>
<span class="identifier">proto_child0</span> <span class="identifier">child0</span><span class="special">;</span>
<span class="comment">// ...
</span><span class="special">};</span>
</pre>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code> struct does not define
a constructor, or anything else that would prevent static initialization.
All <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code> objects are initialized
using <span class="emphasis"><em>aggregate initialization</em></span>, with curly braces. In
our example, <code class="computeroutput"><span class="identifier">_1</span></code> is initialized
with the initializer <code class="computeroutput"><span class="special">{{}}</span></code>. The
outer braces are the initializer for the <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code>
struct, and the inner braces are for the member <code class="computeroutput"><span class="identifier">_1</span><span class="special">.</span><span class="identifier">child0</span></code>
which is of type <code class="computeroutput"><span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span></code>.
Note that we use braces to initialize <code class="computeroutput"><span class="identifier">_1</span><span class="special">.</span><span class="identifier">child0</span></code>
because <code class="computeroutput"><span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span></code> is also
an aggregate.
</p>
<a name="boost_proto.users_guide.intermediate_form.building_expression_trees"></a><h5>
<a name="id1478580"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.building_expression_trees">Building
Expression Trees</a>
</h5>
<p>
The <code class="computeroutput"><span class="identifier">_1</span></code> node is an instantiation
of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code>, and expressions containing
<code class="computeroutput"><span class="identifier">_1</span></code> are also instantiations
of <code class="computeroutput"><a class="link" href="../boost/proto/expr.html" title="Struct template expr">proto::expr<></a></code>. To use Proto effectively,
you won't have to bother yourself with the actual types that Proto generates.
These are details, but you're likely to encounter these types in compiler
error messages, so it's helpful to be familiar with them. The types look
like this:
</p>
<pre class="programlisting"><span class="comment">// The type of the expression -_1
</span><span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">negate</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">list1</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="number">0</span>
<span class="special">></span> <span class="keyword">const</span> <span class="special">&</span>
<span class="special">></span>
<span class="special">,</span> <span class="number">1</span>
<span class="special">></span>
<span class="identifier">negate_placeholder_type</span><span class="special">;</span>
<span class="identifier">negate_placeholder_type</span> <span class="identifier">x</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">_1</span><span class="special">;</span>
<span class="comment">// The type of the expression _1 + 42
</span><span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">list2</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="number">0</span>
<span class="special">></span> <span class="keyword">const</span> <span class="special">&</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">term</span><span class="special"><</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">&</span> <span class="special">></span>
<span class="special">,</span> <span class="number">0</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">,</span> <span class="number">2</span>
<span class="special">></span>
<span class="identifier">placeholder_plus_int_type</span><span class="special">;</span>
<span class="identifier">placeholder_plus_int_type</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">_1</span> <span class="special">+</span> <span class="number">42</span><span class="special">;</span>
</pre>
<p>
There are a few things to note about these types:
</p>
<div class="itemizedlist"><ul class="itemizedlist" type="disc">
<li class="listitem">
Terminals have arity zero, unary expressions have arity one and binary
expressions have arity two.
</li>
<li class="listitem">
When one Proto expression is made a child node of another Proto expression,
it is held by reference, <span class="emphasis"><em>even if it is a temporary object</em></span>.
This last point becomes important later.
</li>
<li class="listitem">
Non-Proto expressions, such as the integer literal, are turned into Proto
expressions by wrapping them in new <code class="computeroutput"><span class="identifier">expr</span><span class="special"><></span></code> terminal objects. These new wrappers
are not themselves held by reference, but the object wrapped <span class="emphasis"><em>is</em></span>.
Notice that the type of the Protofied <code class="computeroutput"><span class="number">42</span></code>
literal is <code class="computeroutput"><span class="keyword">int</span> <span class="keyword">const</span>
<span class="special">&</span></code> -- held by reference.
</li>
</ul></div>
<p>
The types make it clear: everything in a Proto expression tree is held by
reference. That means that building an expression tree is exceptionally cheap.
It involves no copying at all.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
An astute reader will notice that the object <code class="computeroutput"><span class="identifier">y</span></code>
defined above will be left holding a dangling reference to a temporary
int. In the sorts of high-performance applications Proto addresses, it
is typical to build and evaluate an expression tree before any temporary
objects go out of scope, so this dangling reference situation often doesn't
arise, but it is certainly something to be aware of. Proto provides utilities
for deep-copying expression trees so they can be passed around as value
types without concern for dangling references.
</p></td></tr>
</table></div>
<div class="section" title="Accessing Parts of an Expression">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.left_right_child"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child" title="Accessing Parts of an Expression">
Accessing Parts of an Expression</a>
</h4></div></div></div>
<p>
After assembling an expression into a tree, you'll naturally want to be
able to do the reverse, and access a node's children. You may even want
to be able to iterate over the children with algorithms from the Boost.Fusion
library. This section shows how.
</p>
<a name="boost_proto.users_guide.intermediate_form.left_right_child.getting_expression_tags_and_arities"></a><h6>
<a name="id1479417"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.getting_expression_tags_and_arities">Getting
Expression Tags and Arities</a>
</h6>
<p>
Every node in an expression tree has both a <span class="emphasis"><em>tag</em></span> type
that describes the node, and an <span class="emphasis"><em>arity</em></span> corresponding
to the number of child nodes it has. You can use the <code class="computeroutput"><a class="link" href="../boost/proto/tag_of.html" title="Struct template tag_of">proto::tag_of<></a></code>
and <code class="computeroutput"><a class="link" href="../boost/proto/arity_of.html" title="Struct template arity_of">proto::arity_of<></a></code> metafunctions to fetch
them. Consider the following:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">void</span> <span class="identifier">check_plus_node</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&)</span>
<span class="special">{</span>
<span class="comment">// Assert that the tag type is proto::tag::plus
</span> <span class="identifier">BOOST_STATIC_ASSERT</span><span class="special">((</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span>
<span class="special">>::</span><span class="identifier">value</span>
<span class="special">));</span>
<span class="comment">// Assert that the arity is 2
</span> <span class="identifier">BOOST_STATIC_ASSERT</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">arity_of</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">value</span> <span class="special">==</span> <span class="number">2</span> <span class="special">);</span>
<span class="special">}</span>
<span class="comment">// Create a binary plus node and use check_plus_node()
</span><span class="comment">// to verify its tag type and arity:
</span><span class="identifier">check_plus_node</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
For a given type <code class="computeroutput"><span class="identifier">Expr</span></code>,
you could access the tag and arity directly as <code class="computeroutput"><span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_tag</span></code>
and <code class="computeroutput"><span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_arity</span></code>, where <code class="computeroutput"><span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_arity</span></code>
is an MPL Integral Constant.
</p>
<a name="boost_proto.users_guide.intermediate_form.left_right_child.getting_terminal_values"></a><h6>
<a name="id1479864"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.getting_terminal_values">Getting
Terminal Values</a>
</h6>
<p>
There is no simpler expression than a terminal, and no more basic operation
than extracting its value. As we've already seen, that is what <code class="computeroutput"><a class="link" href="../boost/proto/value_id1265317.html" title="Function value">proto::value()</a></code> is for.
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">};</span>
<span class="comment">// Get the value of the cout_ terminal:
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="identifier">sout</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special">);</span>
<span class="comment">// Assert that we got back what we put in:
</span><span class="identifier">assert</span><span class="special">(</span> <span class="special">&</span><span class="identifier">sout</span> <span class="special">==</span> <span class="special">&</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">);</span>
</pre>
<p>
To compute the return type of the <code class="computeroutput"><a class="link" href="../boost/proto/value_id1265317.html" title="Function value">proto::value()</a></code>
function, you can use <code class="computeroutput"><a class="link" href="../boost/proto/result_of/value.html" title="Struct template value">proto::result_of::value<></a></code>.
When the parameter to <code class="computeroutput"><a class="link" href="../boost/proto/result_of/value.html" title="Struct template value">proto::result_of::value<></a></code>
is a non-reference type, the result type of the metafunction is the type
of the value as suitable for storage by value; that is, top-level reference
and qualifiers are stripped from it. But when instantiated with a reference
type, the result type has a reference <span class="emphasis"><em>added</em></span> to it,
yielding a type suitable for storage by reference. If you want to know
the actual type of the terminal's value including whether it is stored
by value or reference, you can use <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="number">0</span><span class="special">>::</span><span class="identifier">type</span></code>.
</p>
<p>
The following table summarizes the above paragraph.
</p>
<div class="table">
<a name="id1480213"></a><p class="title"><b>Table 15.3. Accessing Value Types</b></p>
<div class="table-contents"><table class="table" summary="Accessing Value Types">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Metafunction Invocation
</p>
</th>
<th>
<p>
When the Value Type Is ...
</p>
</th>
<th>
<p>
The Result Is ...
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_const</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">>::</span><span class="identifier">type</span> <sup>[<a name="id1480400" href="#ftn.id1480400" class="footnote">a</a>]</sup></pre>
<p>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><</span><span class="identifier">Expr</span> <span class="special">&>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span></pre>
<p>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><</span><span class="identifier">Expr</span> <span class="keyword">const</span>
<span class="special">&>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">>::</span><span class="identifier">type</span></pre>
<p>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span>
<span class="number">0</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
</tr>
</tbody>
<tbody class="footnotes"><tr><td colspan="3"><div class="footnote"><p><sup>[<a name="ftn.id1480400" href="#id1480400" class="para">a</a>] </sup>If <code class="computeroutput"><span class="identifier">T</span></code> is a reference-to-function type, then the result type is simply <code class="computeroutput"><span class="identifier">T</span></code>.</p></div></td></tr></tbody>
</table></div>
</div>
<br class="table-break"><a name="boost_proto.users_guide.intermediate_form.left_right_child.getting_child_expressions"></a><h6>
<a name="id1480801"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.getting_child_expressions">Getting
Child Expressions</a>
</h6>
<p>
Each non-terminal node in an expression tree corresponds to an operator
in an expression, and the children correspond to the operands, or arguments
of the operator. To access them, you can use the <code class="computeroutput"><a class="link" href="../boost/proto/child_c_id1265156.html" title="Function child_c">proto::child_c()</a></code>
function template, as demonstrated below:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">};</span>
<span class="comment">// Get the 0-th operand of an addition operation:
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="special">&</span><span class="identifier">ri</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">0</span><span class="special">>(</span> <span class="identifier">i</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
<span class="comment">// Assert that we got back what we put in:
</span><span class="identifier">assert</span><span class="special">(</span> <span class="special">&</span><span class="identifier">i</span> <span class="special">==</span> <span class="special">&</span><span class="identifier">ri</span> <span class="special">);</span>
</pre>
<p>
You can use the <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child_c.html" title="Struct template child_c">proto::result_of::child_c<></a></code>
metafunction to get the type of the Nth child of an expression node. Usually
you don't care to know whether a child is stored by value or by reference,
so when you ask for the type of the Nth child of an expression <code class="computeroutput"><span class="identifier">Expr</span></code> (where <code class="computeroutput"><span class="identifier">Expr</span></code>
is not a reference type), you get the child's type after references and
cv-qualifiers have been stripped from it.
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">void</span> <span class="identifier">test_result_of_child_c</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="number">0</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">type</span><span class="special">;</span>
<span class="comment">// Since Expr is not a reference type,
</span> <span class="comment">// result_of::child_c<Expr, 0>::type is a
</span> <span class="comment">// non-cv qualified, non-reference type:
</span> <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special"><</span> <span class="identifier">type</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="special">></span>
<span class="special">));</span>
<span class="special">}</span>
<span class="comment">// ...
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">};</span>
<span class="identifier">test_result_of_child_c</span><span class="special">(</span> <span class="identifier">i</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
However, if you ask for the type of the Nth child of <code class="computeroutput"><span class="identifier">Expr</span>
<span class="special">&</span></code> or <code class="computeroutput"><span class="identifier">Expr</span>
<span class="keyword">const</span> <span class="special">&</span></code>
(note the reference), the result type will be a reference, regardless of
whether the child is actually stored by reference or not. If you need to
know exactly how the child is stored in the node, whether by reference
or by value, you can use <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">N</span><span class="special">>::</span><span class="identifier">type</span></code>. The following table summarizes
the behavior of the <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child_c.html" title="Struct template child_c">proto::result_of::child_c<></a></code>
metafunction.
</p>
<div class="table">
<a name="id1481542"></a><p class="title"><b>Table 15.4. Accessing Child Types</b></p>
<div class="table-contents"><table class="table" summary="Accessing Child Types">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Metafunction Invocation
</p>
</th>
<th>
<p>
When the Child Is ...
</p>
</th>
<th>
<p>
The Result Is ...
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span>
<span class="identifier">N</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_const</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">>::</span><span class="identifier">type</span></pre>
<p>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="identifier">Expr</span> <span class="special">&,</span>
<span class="identifier">N</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span></pre>
<p>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="identifier">Expr</span> <span class="keyword">const</span>
<span class="special">&,</span> <span class="identifier">N</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
</p>
<pre class="programlisting"><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">>::</span><span class="identifier">type</span></pre>
<p>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value_at</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span>
<span class="identifier">N</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">T</span></code>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><a name="boost_proto.users_guide.intermediate_form.left_right_child.common_shortcuts"></a><h6>
<a name="id1482135"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.left_right_child.common_shortcuts">Common
Shortcuts</a>
</h6>
<p>
Most operators in C++ are unary or binary, so accessing the only operand,
or the left and right operands, are very common operations. For this reason,
Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/child_id1264914.html" title="Function child">proto::child()</a></code>,
<code class="computeroutput"><a class="link" href="../boost/proto/left_id1265424.html" title="Function left">proto::left()</a></code>, and <code class="computeroutput"><a class="link" href="../boost/proto/right_id1265548.html" title="Function right">proto::right()</a></code>
functions. <code class="computeroutput"><a class="link" href="../boost/proto/child_id1264914.html" title="Function child">proto::child()</a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/left_id1265424.html" title="Function left">proto::left()</a></code>
are synonymous with <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">0</span><span class="special">>()</span></code>,
and <code class="computeroutput"><a class="link" href="../boost/proto/right_id1265548.html" title="Function right">proto::right()</a></code> is synonymous with <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">1</span><span class="special">>()</span></code>.
</p>
<p>
There are also <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child.html" title="Struct template child">proto::result_of::child<></a></code>,
<code class="computeroutput"><a class="link" href="../boost/proto/result_of/left.html" title="Struct template left">proto::result_of::left<></a></code>, and <code class="computeroutput"><a class="link" href="../boost/proto/result_of/right.html" title="Struct template right">proto::result_of::right<></a></code>
metafunctions that merely forward to their <code class="computeroutput"><a class="link" href="../boost/proto/result_of/child_c.html" title="Struct template child_c">proto::result_of::child_c<></a></code>
counterparts.
</p>
</div>
<div class="section" title="Deep-copying Expressions">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.deep_copying_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.deep_copying_expressions" title="Deep-copying Expressions">Deep-copying
Expressions</a>
</h4></div></div></div>
<p>
When you build an expression template with Proto, all the intermediate
child nodes are held <span class="emphasis"><em>by reference</em></span>. The avoids needless
copies, which is crucial if you want your DSEL to perform well at runtime.
Naturally, there is a danger if the temporary objects go out of scope before
you try to evaluate your expression template. This is especially a problem
in C++0x with the new <code class="computeroutput"><span class="identifier">decltype</span></code>
and <code class="computeroutput"><span class="keyword">auto</span></code> keywords. Consider:
</p>
<pre class="programlisting"><span class="comment">// OOPS: "ex" is left holding dangling references
</span><span class="keyword">auto</span> <span class="identifier">ex</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span><span class="special">;</span>
</pre>
<p>
The problem can happen in today's C++ also if you use <code class="computeroutput"><span class="identifier">BOOST_TYPEOF</span><span class="special">()</span></code> or <code class="computeroutput"><span class="identifier">BOOST_AUTO</span><span class="special">()</span></code>, or if you try to pass an expression
template outside the scope of its constituents.
</p>
<p>
In these cases, you want to deep-copy your expression template so that
all intermediate nodes and the terminals are held <span class="emphasis"><em>by value</em></span>.
That way, you can safely assign the expression template to a local variable
or return it from a function without worrying about dangling references.
You can do this with <code class="computeroutput"><a class="link" href="../boost/proto/deep_copy_id1235315.html" title="Function template deep_copy">proto::deep_copy()</a></code>
as fo llows:
</p>
<pre class="programlisting"><span class="comment">// OK, "ex" has no dangling references
</span><span class="keyword">auto</span> <span class="identifier">ex</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">deep_copy</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
If you are using <a href="../../../libs/typeof/index.html" target="_top">Boost.Typeof</a>,
it would look like this:
</p>
<pre class="programlisting"><span class="comment">// OK, use BOOST_AUTO() and proto::deep_copy() to
</span><span class="comment">// store an expression template in a local variable
</span><span class="identifier">BOOST_AUTO</span><span class="special">(</span> <span class="identifier">ex</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">deep_copy</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">)</span> <span class="special">);</span>
</pre>
<p>
For the above code to work, you must include the <code class="computeroutput"><a class="link" href="reference.html#header.boost.proto.proto_typeof_hpp" title="Header <boost/proto/proto_typeof.hpp>">boost/proto/proto_typeof.hpp</a></code>
header, which also defines the <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_AUTO.html" title="Macro BOOST_PROTO_AUTO">BOOST_PROTO_AUTO</a></code>()</code>
macro which automatically deep-copies its argument. With <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_AUTO.html" title="Macro BOOST_PROTO_AUTO">BOOST_PROTO_AUTO</a></code>()</code>, the above
code can be writen as:
</p>
<pre class="programlisting"><span class="comment">// OK, BOOST_PROTO_AUTO() automatically deep-copies
</span><span class="comment">// its argument:
</span><span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span> <span class="identifier">ex</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="number">2</span> <span class="special">);</span>
</pre>
<p>
When deep-copying an expression tree, all intermediate nodes and all terminals
are stored by value. The only exception is terminals that are function
references, which are left alone.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
<code class="computeroutput"><a class="link" href="../boost/proto/deep_copy_id1235315.html" title="Function template deep_copy">proto::deep_copy()</a></code> makes no exception for
arrays, which it stores by value. That can potentially cause a large
amount of data to be copied.
</p></td></tr>
</table></div>
</div>
<div class="section" title="Debugging Expressions">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.debugging_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.debugging_expressions" title="Debugging Expressions">Debugging
Expressions</a>
</h4></div></div></div>
<p>
Proto provides a utility for pretty-printing expression trees that comes
in very handy when you're trying to debug your DSEL. It's called <code class="computeroutput"><a class="link" href="../boost/proto/display_expr_id1234972.html" title="Function display_expr">proto::display_expr()</a></code>, and you pass it the expression
to print and optionally, an <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>
to which to send the output. Consider:
</p>
<pre class="programlisting"><span class="comment">// Use display_expr() to pretty-print an expression tree
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span> <span class="special">+</span> <span class="number">42</span>
<span class="special">);</span>
</pre>
<p>
The above code writes this to <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span></code>:
</p>
<pre class="programlisting">plus(
terminal(hello)
, terminal(42)
)</pre>
<p>
In order to call <code class="computeroutput"><a class="link" href="../boost/proto/display_expr_id1234972.html" title="Function display_expr">proto::display_expr()</a></code>,
all the terminals in the expression must be Streamable (that is, they can
be written to a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>). In addition, the tag types
must all be Streamable as well. Here is an example that includes a custom
terminal type and a custom tag:
</p>
<pre class="programlisting"><span class="comment">// A custom tag type that is Streamable
</span><span class="keyword">struct</span> <span class="identifier">MyTag</span>
<span class="special">{</span>
<span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span><span class="special"><<(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">MyTag</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">s</span> <span class="special"><<</span> <span class="string">"MyTag"</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Some other Streamable type
</span><span class="keyword">struct</span> <span class="identifier">MyTerminal</span>
<span class="special">{</span>
<span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span><span class="special"><<(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="identifier">s</span><span class="special">,</span> <span class="identifier">MyTerminal</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">s</span> <span class="special"><<</span> <span class="string">"MyTerminal"</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Display an expression tree that contains a custom
</span> <span class="comment">// tag and a user-defined type in a terminal
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span><span class="identifier">MyTag</span><span class="special">>(</span><span class="identifier">MyTerminal</span><span class="special">())</span> <span class="special">+</span> <span class="number">42</span>
<span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
The above code prints the following:
</p>
<pre class="programlisting">plus(
MyTag(
terminal(MyTerminal)
)
, terminal(42)
)</pre>
</div>
<div class="section" title="Operator Tags and Metafunctions">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.tags_and_metafunctions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.tags_and_metafunctions" title="Operator Tags and Metafunctions">
Operator Tags and Metafunctions</a>
</h4></div></div></div>
<p>
The following table lists the overloadable C++ operators, the Proto tag
types for each, and the name of the metafunctions for generating the corresponding
Proto expression types. And as we'll see later, the metafunctions are also
usable as grammars for matching such nodes, as well as pass-through transforms.
</p>
<div class="table">
<a name="id1483490"></a><p class="title"><b>Table 15.5. Operators, Tags and Metafunctions</b></p>
<div class="table-contents"><table class="table" summary="Operators, Tags and Metafunctions">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Operator
</p>
</th>
<th>
<p>
Proto Tag
</p>
</th>
<th>
<p>
Proto Metafunction
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
unary <code class="computeroutput"><span class="special">+</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">unary_plus</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary <code class="computeroutput"><span class="special">-</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">negate</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary <code class="computeroutput"><span class="special">*</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">dereference</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">dereference</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary <code class="computeroutput"><span class="special">~</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">complement</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary <code class="computeroutput"><span class="special">&</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">address_of</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary <code class="computeroutput"><span class="special">!</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">logical_not</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_not</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary prefix <code class="computeroutput"><span class="special">++</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">pre_inc</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_inc</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary prefix <code class="computeroutput"><span class="special">--</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">pre_dec</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_dec</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary postfix <code class="computeroutput"><span class="special">++</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">post_inc</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_inc</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
unary postfix <code class="computeroutput"><span class="special">--</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">post_dec</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_dec</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special"><<</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">>></span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">*</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">/</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">%</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">+</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">-</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special"><</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">less</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">></span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">greater</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special"><=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">less_equal</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less_equal</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">>=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">greater_equal</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater_equal</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">==</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">equal_to</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">equal_to</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">!=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">not_equal_to</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_equal_to</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">||</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">logical_or</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_or</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">&&</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">logical_and</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_and</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">&</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">|</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">^</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">,</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">comma</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">comma</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">->*</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">mem_ptr</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">mem_ptr</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special"><<=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">>>=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">*=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">/=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">%=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">+=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">-=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">&=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">|=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary <code class="computeroutput"><span class="special">^=</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
binary subscript
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">subscript</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">subscript</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
ternary <code class="computeroutput"><span class="special">?:</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">if_else_</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">if_else_</span><span class="special"><></span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
n-ary function call
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><></span></code>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break">
</div>
<div class="section" title="Expressions as Fusion Sequences">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences" title="Expressions as Fusion Sequences">Expressions
as Fusion Sequences</a>
</h4></div></div></div>
<p>
Boost.Fusion is a library of iterators, algorithms, containers and adaptors
for manipulating heterogeneous sequences. In essence, a Proto expression
is just a heterogeneous sequence of its child expressions, and so Proto
expressions are valid Fusion random-access sequences. That means you can
apply Fusion algorithms to them, transform them, apply Fusion filters and
views to them, and access their elements using <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">at</span><span class="special">()</span></code>. The things Fusion can do to heterogeneous
sequences are beyond the scope of this users' guide, but below is a simple
example. It takes a lazy function invocation like <code class="computeroutput"><span class="identifier">fun</span><span class="special">(</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">)</span></code>
and uses Fusion to print the function arguments in order.
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">display</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">t</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">t</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">fun_t</span> <span class="special">{};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">fun_t</span><span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">fun</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="comment">// ...
</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">(</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span>
<span class="comment">// pop_front() removes the "fun" child
</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">pop_front</span><span class="special">(</span><span class="identifier">fun</span><span class="special">(</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">))</span>
<span class="comment">// Extract the ints from the terminal nodes
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span>
<span class="special">)</span>
<span class="special">,</span> <span class="identifier">display</span><span class="special">()</span>
<span class="special">);</span>
</pre>
<p>
Recall from the Introduction that types in the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span></code>
namespace define function objects that correspond to Proto's free functions.
So <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code>
creates a function object that is equivalent to the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span></code> function. The above invocation of <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">()</span></code>
displays the following:
</p>
<pre class="programlisting">1
2
3
4
</pre>
<p>
Terminals are also valid Fusion sequences. They contain exactly one element:
their value.
</p>
<a name="boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences.flattening_proto_expression_tress"></a><h6>
<a name="id1487837"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expressions_as_fusion_sequences.flattening_proto_expression_tress">Flattening
Proto Expression Tress</a>
</h6>
<p>
Imagine a slight variation of the above example where, instead of iterating
over the arguments of a lazy function invocation, we would like to iterate
over the terminals in an addition expression:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">};</span>
<span class="comment">// ERROR: this doesn't work! Why?
</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">(</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span>
<span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span> <span class="number">4</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span>
<span class="special">)</span>
<span class="special">,</span> <span class="identifier">display</span><span class="special">()</span>
<span class="special">);</span>
</pre>
<p>
The reason this doesn't work is because the expression <code class="computeroutput"><span class="identifier">_1</span>
<span class="special">+</span> <span class="number">2</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span>
<span class="number">4</span></code> does not describe a flat sequence
of terminals --- it describes a binary tree. We can treat it as a flat
sequence of terminals, however, using Proto's <code class="computeroutput"><a class="link" href="../boost/proto/flatten_id1239332.html" title="Function flatten">proto::flatten()</a></code>
function. <code class="computeroutput"><a class="link" href="../boost/proto/flatten_id1239332.html" title="Function flatten">proto::flatten()</a></code> returns a view which makes
a tree appear as a flat Fusion sequence. If the top-most node has a tag
type <code class="computeroutput"><span class="identifier">T</span></code>, then the elements
of the flattened sequence are the child nodes that do <span class="emphasis"><em>not</em></span>
have tag type <code class="computeroutput"><span class="identifier">T</span></code>. This process
is evaluated recursively. So the above can correctly be written as:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">};</span>
<span class="comment">// OK, iterate over a flattened view
</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">(</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">flatten</span><span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span> <span class="number">4</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">functional</span><span class="special">::</span><span class="identifier">value</span><span class="special">()</span>
<span class="special">)</span>
<span class="special">,</span> <span class="identifier">display</span><span class="special">()</span>
<span class="special">);</span>
</pre>
<p>
The above invocation of <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">for_each</span><span class="special">()</span></code> displays the following:
</p>
<pre class="programlisting">1
2
3
4
</pre>
</div>
<div class="section" title="Expression Introspection: Defining a Grammar">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection" title="Expression Introspection: Defining a Grammar">
Expression Introspection: Defining a Grammar</a>
</h4></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.patterns">
Finding Patterns in Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.fuzzy_and_exact_matches_of_terminals">Fuzzy
and Exact Matches of Terminals</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.if_and_not">
<code class="literal">if_<></code>, <code class="literal">and_<></code>, and <code class="literal">not_<></code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.switch">
Improving Compile Times With <code class="literal">switch_<></code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.matching_vararg_expressions">Matching
Vararg Expressions</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.defining_dsel_grammars">Defining
DSEL Grammars</a></span></dt>
</dl></div>
<p>
Expression trees can have a very rich and complicated structure. Often,
you need to know some things about an expression's structure before you
can process it. This section describes the tools Proto provides for peering
inside an expression tree and discovering its structure. And as you'll
see in later sections, all the really interesting things you can do with
Proto begin right here.
</p>
<div class="section" title="Finding Patterns in Expressions">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.patterns"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.patterns" title="Finding Patterns in Expressions">
Finding Patterns in Expressions</a>
</h5></div></div></div>
<p>
Imagine your DSEL is a miniature I/O facility, with iostream operations
that execute lazily. You might want expressions representing input operations
to be processed by one function, and output operations to be processed
by a different function. How would you do that?
</p>
<p>
The answer is to write patterns (a.k.a, <span class="emphasis"><em>grammars</em></span>)
that match the structure of input and output expressions. Proto provides
utilities for defining the grammars, and the <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches<></a></code>
template for checking whether a given expression type matches the grammar.
</p>
<p>
First, let's define some terminals we can use in our lazy I/O expressions:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span> <span class="special">&</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">cin_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cin</span> <span class="special">};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>
</pre>
<p>
Now, we can use <code class="computeroutput"><span class="identifier">cout_</span></code>
instead of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span></code>, and get I/O expression trees
that we can execute later. To define grammars that match input and output
expressions of the form <code class="computeroutput"><span class="identifier">cin_</span>
<span class="special">>></span> <span class="identifier">i</span></code>
and <code class="computeroutput"><span class="identifier">cout_</span> <span class="special"><<</span>
<span class="number">1</span></code> we do this:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Input</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span> <span class="special">&</span> <span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Output</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
We've seen the template <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><></span></code> before, but here we're using
it without accessing the nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>. When used like this, it is a
very simple grammar, as are <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special"><></span></code> and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><></span></code>. The newcomer here is <code class="computeroutput"><span class="identifier">_</span></code> in the <code class="computeroutput"><span class="identifier">proto</span></code>
namespace. It is a wildcard that matches anything. The <code class="computeroutput"><span class="identifier">Input</span></code> struct is a grammar that matches
any right-shift expression that has a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span></code>
terminal as its left operand.
</p>
<p>
We can use these grammars together with the <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches<></a></code>
template to query at compile time whether a given I/O expression type
is an input or output operation. Consider the following:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">void</span> <span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="keyword">if</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Input</span> <span class="special">>::</span><span class="identifier">value</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Input!\n"</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">if</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Output</span> <span class="special">>::</span><span class="identifier">value</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Output!\n"</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special"><<</span> <span class="number">1</span> <span class="special">);</span>
<span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">cin_</span> <span class="special">>></span> <span class="identifier">i</span> <span class="special">);</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
This program prints the following:
</p>
<pre class="programlisting">Output!
Input!
</pre>
<p>
If we wanted to break the <code class="computeroutput"><span class="identifier">input_output</span><span class="special">()</span></code> function into two functions, one that
handles input expressions and one for output expressions, we can use
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special"><></span></code>,
as follows:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Input</span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Input!\n"</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Output</span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Output!\n"</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
This works as the previous version did. However, the following does not
compile at all:
</p>
<pre class="programlisting"><span class="identifier">input_output</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special"><<</span> <span class="number">1</span> <span class="special"><<</span> <span class="number">2</span> <span class="special">);</span> <span class="comment">// oops!
</span></pre>
<p>
What's wrong? The problem is that this expression does not match our
grammar. The expression groups as if it were written like <code class="computeroutput"><span class="special">(</span><span class="identifier">cout_</span> <span class="special"><<</span> <span class="number">1</span><span class="special">)</span> <span class="special"><<</span> <span class="number">2</span></code>. It will not match the <code class="computeroutput"><span class="identifier">Output</span></code> grammar, which expects the left
operand to be a terminal, not another left-shift operation. We need to
fix the grammar.
</p>
<p>
We notice that in order to verify an expression as input or output, we'll
need to recurse down to the bottom-left-most leaf and check that it is
a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span></code> or <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span></code>.
When we get to the terminal, we must stop recursing. We can express this
in our grammar using <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>.
Here are the correct <code class="computeroutput"><span class="identifier">Input</span></code>
and <code class="computeroutput"><span class="identifier">Output</span></code> grammars:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Input</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">istream</span> <span class="special">&</span> <span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special"><</span> <span class="identifier">Input</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Output</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><</span> <span class="identifier">Output</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
This may look a little odd at first. We seem to be defining the <code class="computeroutput"><span class="identifier">Input</span></code> and <code class="computeroutput"><span class="identifier">Output</span></code>
types in terms of themselves. This is perfectly OK, actually. At the
point in the grammar that the <code class="computeroutput"><span class="identifier">Input</span></code>
and <code class="computeroutput"><span class="identifier">Output</span></code> types are
being used, they are <span class="emphasis"><em>incomplete</em></span>, but by the time
we actually evaluate the grammar with <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches<></a></code>,
the types will be complete. These are recursive grammars, and rightly
so because they must match a recursive data structure!
</p>
<p>
Matching an expression such as <code class="computeroutput"><span class="identifier">cout_</span>
<span class="special"><<</span> <span class="number">1</span>
<span class="special"><<</span> <span class="number">2</span></code>
against the <code class="computeroutput"><span class="identifier">Output</span></code> grammar
procedes as follows:
</p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
The first alternate of the <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>
is tried first. It will fail, because the expression <code class="computeroutput"><span class="identifier">cout_</span> <span class="special"><<</span>
<span class="number">1</span> <span class="special"><<</span>
<span class="number">2</span></code> does not match the grammar
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span>
<span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span></code>.
</li>
<li class="listitem">
Then the second alternate is tried next. We match the expression against
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><</span>
<span class="identifier">Output</span><span class="special">,</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span></code>.
The expression is a left-shift, so we next try to match the operands.
</li>
<li class="listitem">
The right operand <code class="computeroutput"><span class="number">2</span></code> matches
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code> trivially.
</li>
<li class="listitem">
To see if the left operand <code class="computeroutput"><span class="identifier">cout_</span>
<span class="special"><<</span> <span class="number">1</span></code>
matches <code class="computeroutput"><span class="identifier">Output</span></code>, we
must recursively evaluate the <code class="computeroutput"><span class="identifier">Output</span></code>
grammar. This time we succeed, because <code class="computeroutput"><span class="identifier">cout_</span>
<span class="special"><<</span> <span class="number">1</span></code>
will match the first alternate of the <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>.
</li>
</ol></div>
<p>
We're done -- the grammar matches successfully.
</p>
</div>
<div class="section" title="Fuzzy and Exact Matches of Terminals">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.fuzzy_and_exact_matches_of_terminals"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.fuzzy_and_exact_matches_of_terminals" title="Fuzzy and Exact Matches of Terminals">Fuzzy
and Exact Matches of Terminals</a>
</h5></div></div></div>
<p>
The terminals in an expression tree could be const or non-const references,
or they might not be references at all. When writing grammars, you usually
don't have to worry about it because <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches<></a></code>
gives you a little wiggle room when matching terminals. A grammar such
as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code>
will match a terminal of type <code class="computeroutput"><span class="keyword">int</span></code>,
<code class="computeroutput"><span class="keyword">int</span> <span class="special">&</span></code>,
or <code class="computeroutput"><span class="keyword">int</span> <span class="keyword">const</span>
<span class="special">&</span></code>.
</p>
<p>
You can explicitly specify that you want to match a reference type. If
you do, the type must match exactly. For instance, a grammar such as
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span> <span class="special">&></span></code>
will only match an <code class="computeroutput"><span class="keyword">int</span> <span class="special">&</span></code>. It will not match an <code class="computeroutput"><span class="keyword">int</span></code> or an <code class="computeroutput"><span class="keyword">int</span>
<span class="keyword">const</span> <span class="special">&</span></code>.
</p>
<p>
The table below shows how Proto matches terminals. The simple rule is:
if you want to match only reference types, you must specify the reference
in your grammar. Otherwise, leave it off and Proto will ignore const
and references.
</p>
<div class="table">
<a name="id1491135"></a><p class="title"><b>Table 15.6. proto::matches<> and Reference / CV-Qualification
of Terminals</b></p>
<div class="table-contents"><table class="table" summary="proto::matches<> and Reference / CV-Qualification
of Terminals">
<colgroup>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Terminal
</p>
</th>
<th>
<p>
Grammar
</p>
</th>
<th>
<p>
Matches?
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
T
</p>
</td>
<td>
<p>
T
</p>
</td>
<td>
<p>
yes
</p>
</td>
</tr>
<tr>
<td>
<p>
T &
</p>
</td>
<td>
<p>
T
</p>
</td>
<td>
<p>
yes
</p>
</td>
</tr>
<tr>
<td>
<p>
T const &
</p>
</td>
<td>
<p>
T
</p>
</td>
<td>
<p>
yes
</p>
</td>
</tr>
<tr>
<td>
<p>
T
</p>
</td>
<td>
<p>
T &
</p>
</td>
<td>
<p>
no
</p>
</td>
</tr>
<tr>
<td>
<p>
T &
</p>
</td>
<td>
<p>
T &
</p>
</td>
<td>
<p>
yes
</p>
</td>
</tr>
<tr>
<td>
<p>
T const &
</p>
</td>
<td>
<p>
T &
</p>
</td>
<td>
<p>
no
</p>
</td>
</tr>
<tr>
<td>
<p>
T
</p>
</td>
<td>
<p>
T const &
</p>
</td>
<td>
<p>
no
</p>
</td>
</tr>
<tr>
<td>
<p>
T &
</p>
</td>
<td>
<p>
T const &
</p>
</td>
<td>
<p>
no
</p>
</td>
</tr>
<tr>
<td>
<p>
T const &
</p>
</td>
<td>
<p>
T const &
</p>
</td>
<td>
<p>
yes
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
This begs the question: What if you want to match an <code class="computeroutput"><span class="keyword">int</span></code>,
but not an <code class="computeroutput"><span class="keyword">int</span> <span class="special">&</span></code>
or an <code class="computeroutput"><span class="keyword">int</span> <span class="keyword">const</span>
<span class="special">&</span></code>? For forcing exact matches,
Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact<></a></code>
template. For instance, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">exact</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="special">></span></code>
would only match an <code class="computeroutput"><span class="keyword">int</span></code>
held by value.
</p>
<p>
Proto gives you extra wiggle room when matching array types. Array types
match themselves or the pointer types they decay to. This is especially
useful with character arrays. The type returned by <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span></code> is <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]>::</span><span class="identifier">type</span></code>. That's a terminal containing
a 6-element character array. Naturally, you can match this terminal with
the grammar <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]></span></code>,
but the grammar <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*></span></code>
will match it as well, as the following code fragment illustrates.
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CharString</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">char_array</span><span class="special">;</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">char_array</span><span class="special">,</span> <span class="identifier">CharString</span> <span class="special">></span> <span class="special">));</span>
</pre>
<p>
What if we only wanted <code class="computeroutput"><span class="identifier">CharString</span></code>
to match terminals of exactly the type <code class="computeroutput"><span class="keyword">char</span>
<span class="keyword">const</span> <span class="special">*</span></code>?
You can use <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact<></a></code> here to turn off
the fuzzy matching of terminals, as follows:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CharString</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">exact</span><span class="special"><</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span><span class="number">6</span><span class="special">]>::</span><span class="identifier">type</span> <span class="identifier">char_array</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*>::</span><span class="identifier">type</span> <span class="identifier">char_string</span><span class="special">;</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">char_string</span><span class="special">,</span> <span class="identifier">CharString</span> <span class="special">></span> <span class="special">));</span>
<span class="identifier">BOOST_MPL_ASSERT_NOT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">char_array</span><span class="special">,</span> <span class="identifier">CharString</span> <span class="special">></span> <span class="special">));</span>
</pre>
<p>
Now, <code class="computeroutput"><span class="identifier">CharString</span></code> does
not match array types, only character string pointers.
</p>
<p>
The inverse problem is a little trickier: what if you wanted to match
all character arrays, but not character pointers? As mentioned above,
the expression <code class="computeroutput"><span class="identifier">as_expr</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span></code> has the type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span> <span class="number">6</span> <span class="special">]</span> <span class="special">>::</span><span class="identifier">type</span></code>. If you wanted to match character
arrays of arbitrary size, you could use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">N</span></code>,
which is an array-size wildcard. The following grammar would match any
string literal: <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">char</span> <span class="keyword">const</span><span class="special">[</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">N</span> <span class="special">]</span> <span class="special">></span></code>.
</p>
<p>
Sometimes you need even more wiggle room when matching terminals. For
example, maybe you're building a calculator DSEL and you want to allow
any terminals that are convertible to <code class="computeroutput"><span class="keyword">double</span></code>.
For that, Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/convertible_to.html" title="Struct template convertible_to">proto::convertible_to<></a></code>
template. You can use it as: <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">convertible_to</span><span class="special"><</span> <span class="keyword">double</span>
<span class="special">></span> <span class="special">></span></code>.
</p>
<p>
There is one more way you can perform a fuzzy match on terminals. Consider
the problem of trying to match a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><></span></code> terminal. You can easily match
a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">float</span><span class="special">></span></code>
or a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span></code>,
but how would you match any instantiation of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><></span></code>? You can use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
here to solve this problem. Here is the grammar to match any <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><></span></code>
instantiation:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">StdComplex</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
When given a grammar like this, Proto will deconstruct the grammar and
the terminal it is being matched against and see if it can match all
the constituents.
</p>
</div>
<div class="section" title="if_<>, and_<>, and not_<>">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.if_and_not"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.if_and_not" title="if_<>, and_<>, and not_<>">
<code class="literal">if_<></code>, <code class="literal">and_<></code>, and <code class="literal">not_<></code></a>
</h5></div></div></div>
<p>
We've already seen how to use expression generators like <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><></span></code>
and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special"><></span></code>
as grammars. We've also seen <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>,
which we can use to express a set of alternate grammars. There are a
few others of interest; in particular, <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_<></a></code>,
<code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_<></a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/not_.html" title="Struct template not_">proto::not_<></a></code>.
</p>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/not_.html" title="Struct template not_">proto::not_<></a></code> template is the simplest.
It takes a grammar as a template parameter and logically negates it;
<code class="computeroutput"><span class="identifier">not_</span><span class="special"><</span><span class="identifier">Grammar</span><span class="special">></span></code>
will match any expression that <code class="computeroutput"><span class="identifier">Grammar</span></code>
does <span class="emphasis"><em>not</em></span> match.
</p>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_<></a></code> template is used
together with a Proto transform that is evaluated against expression
types to find matches. (Proto transforms will be described later.)
</p>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_<></a></code> template is like
<code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>, except that each
argument of the <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_<></a></code> must match in order
for the <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_<></a></code> to match. As an example,
consider the definition of <code class="computeroutput"><span class="identifier">CharString</span></code>
above that uses <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact<></a></code>. It could have been
written without <code class="computeroutput"><a class="link" href="../boost/proto/exact.html" title="Struct template exact">proto::exact<></a></code> as follows:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CharString</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">if_</span><span class="special"><</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">>()</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
This says that a <code class="computeroutput"><span class="identifier">CharString</span></code>
must be a terminal, <span class="emphasis"><em>and</em></span> its value type must be the
same as <code class="computeroutput"><span class="keyword">char</span> <span class="keyword">const</span>
<span class="special">*</span></code>. Notice the template argument
of <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_<></a></code>: <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span> <span class="special">>()</span></code>. This is Proto transform that compares
the value type of a terminal to <code class="computeroutput"><span class="keyword">char</span>
<span class="keyword">const</span> <span class="special">*</span></code>.
</p>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_<></a></code> template has a couple
of variants. In addition to <code class="computeroutput"><span class="identifier">if_</span><span class="special"><</span><span class="identifier">Condition</span><span class="special">></span></code> you can also say <code class="computeroutput"><span class="identifier">if_</span><span class="special"><</span><span class="identifier">Condition</span><span class="special">,</span> <span class="identifier">ThenGrammar</span><span class="special">></span></code> and <code class="computeroutput"><span class="identifier">if_</span><span class="special"><</span><span class="identifier">Condition</span><span class="special">,</span> <span class="identifier">ThenGrammar</span><span class="special">,</span> <span class="identifier">ElseGrammar</span><span class="special">></span></code>. These let you select one sub-grammar
or another based on the <code class="computeroutput"><span class="identifier">Condition</span></code>.
</p>
</div>
<div class="section" title="Improving Compile Times With switch_<>">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.switch"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.switch" title="Improving Compile Times With switch_<>">
Improving Compile Times With <code class="literal">switch_<></code></a>
</h5></div></div></div>
<p>
When your Proto grammar gets large, you'll start to run into some scalability
problems with <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>, the construct you
use to specify alternate sub-grammars. First, due to limitations in C++,
<code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code> can only accept up
to a certain number of sub-grammars, controlled by the <code class="computeroutput"><span class="identifier">BOOST_PROTO_MAX_LOGICAL_ARITY</span></code> macro.
This macro defaults to eight, and you can set it higher, but doing so
will aggravate another scalability problem: long compile times. With
<code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>, alternate sub-grammars
are tried in order -- like a series of cascading <code class="computeroutput"><span class="keyword">if</span></code>'s
-- leading to lots of unnecessary template instantiations. What you would
prefer instead is something like <code class="computeroutput"><span class="keyword">switch</span></code>
that avoids the expense of cascading <code class="computeroutput"><span class="keyword">if</span></code>'s.
That's the purpose of <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_<></a></code>;
although less convenient than <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>,
it improves compile times for larger grammars and does not have an arbitrary
fixed limit on the number of sub-grammars.
</p>
<p>
Let's illustrate how to use <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_<></a></code>
by first writing a big grammar with <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>
and then translating it to an equivalent grammar using <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_<></a></code>:
</p>
<pre class="programlisting"><span class="comment">// Here is a big, inefficient grammar
</span><span class="keyword">struct</span> <span class="identifier">ABigGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The above might be the grammar to a more elaborate calculator DSEL. Notice
that since there are more than eight sub-grammars, we had to chain the
sub-grammars with a nested <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>
-- not very nice.
</p>
<p>
The idea behind <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_<></a></code>
is to dispatch based on an expression's tag type to a sub-grammar that
handles expressions of that type. To use <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_<></a></code>,
you define a struct with a nested <code class="computeroutput"><span class="identifier">case_</span><span class="special"><></span></code> template, specialized on tag
types. The above grammar can be expressed using <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_<></a></code>
as follows. It is described below.
</p>
<pre class="programlisting"><span class="comment">// Redefine ABigGrammar more efficiently using proto::switch_<>
</span><span class="keyword">struct</span> <span class="identifier">ABigGrammar</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span>
<span class="special">{</span>
<span class="comment">// The primary template matches nothing:
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">case_</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">{};</span>
<span class="special">};</span>
<span class="comment">// Terminal expressions are handled here
</span><span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Non-terminals are handled similarly
</span><span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">negate</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">complement</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special"><</span><span class="identifier">ABigGrammar</span><span class="special">,</span> <span class="identifier">ABigGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Define ABigGrammar in terms of ABigGrammarCases
</span><span class="comment">// using proto::switch_<>
</span><span class="keyword">struct</span> <span class="identifier">ABigGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special"><</span><span class="identifier">ABigGrammarCases</span><span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Matching an expression type <code class="computeroutput"><span class="identifier">E</span></code>
against <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special"><</span><span class="identifier">C</span><span class="special">></span></code>
is equivalent to matching it against <code class="computeroutput"><span class="identifier">C</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">E</span><span class="special">::</span><span class="identifier">proto_tag</span><span class="special">></span></code>. By dispatching on the expression's
tag type, we can jump to the sub-grammar that handles expressions of
that type, skipping over all the other sub-grammars that couldn't possibly
match. If there is no specialization of <code class="computeroutput"><span class="identifier">case_</span><span class="special"><></span></code> for a particular tag type, we
select the primary template. In this case, the primary template inherits
from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span></code>
which matches no expressions.
</p>
<p>
Notice the specialization that handles terminals:
</p>
<pre class="programlisting"><span class="comment">// Terminal expressions are handled here
</span><span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span><span class="special">::</span><span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span></code> type by itself isn't enough
to select an appropriate sub-grammar, so we use <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>
to list the alternate sub-grammars that match terminals.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
You might be tempted to define your <code class="computeroutput"><span class="identifier">case_</span><span class="special"><></span></code> specializations <span class="emphasis"><em>in
situ</em></span> as follows:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">case_</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">{};</span>
<span class="comment">// ERROR: not legal C++
</span> <span class="keyword">template</span><span class="special"><></span>
<span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">></span>
<span class="comment">/* ... */</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
Unfortunately, for arcane reasons, it is not legal to define an explicit
nested specialization <span class="emphasis"><em>in situ</em></span> like this. It is,
however, perfectly legal to define <span class="emphasis"><em>partial</em></span> specializations
<span class="emphasis"><em>in situ</em></span>, so you can add a extra dummy template
parameter that has a default, as follows:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">ABigGrammarCases</span>
<span class="special">{</span>
<span class="comment">// Note extra "Dummy" template parameter here:
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">Dummy</span> <span class="special">=</span> <span class="number">0</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">case_</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">{};</span>
<span class="comment">// OK: "Dummy" makes this a partial specialization
</span> <span class="comment">// instead of an explicit specialization.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">Dummy</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">Dummy</span><span class="special">></span>
<span class="comment">/* ... */</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
You might find this cleaner than defining explicit <code class="computeroutput"><span class="identifier">case_</span><span class="special"><></span></code> specializations outside of
their enclosing struct.
</p>
</td></tr>
</table></div>
</div>
<div class="section" title="Matching Vararg Expressions">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.matching_vararg_expressions"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.matching_vararg_expressions" title="Matching Vararg Expressions">Matching
Vararg Expressions</a>
</h5></div></div></div>
<p>
Not all of C++'s overloadable operators are unary or binary. There is
the oddball <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>
-- the function call operator -- which can have any number of arguments.
Likewise, with Proto you may define your own "operators" that
could also take more that two arguments. As a result, there may be nodes
in your Proto expression tree that have an arbitrary number of children
(up to <code class="literal"><code class="computeroutput"><a class="link" href="../BOOST_PROTO_MAX_ARITY.html" title="Macro BOOST_PROTO_MAX_ARITY">BOOST_PROTO_MAX_ARITY</a></code></code>,
which is configurable). How do you write a grammar to match such a node?
</p>
<p>
For such cases, Proto provides the <code class="computeroutput"><a class="link" href="../boost/proto/vararg.html" title="Struct template vararg">proto::vararg<></a></code>
class template. Its template argument is a grammar, and the <code class="computeroutput"><a class="link" href="../boost/proto/vararg.html" title="Struct template vararg">proto::vararg<></a></code> will match the grammar
zero or more times. Consider a Proto lazy function called <code class="computeroutput"><span class="identifier">fun</span><span class="special">()</span></code>
that can take zero or more characters as arguments, as follows:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">fun_tag</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">FunTag</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">fun_tag</span> <span class="special">></span> <span class="special">{};</span>
<span class="identifier">FunTag</span><span class="special">::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">fun</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="comment">// example usage:
</span><span class="identifier">fun</span><span class="special">();</span>
<span class="identifier">fun</span><span class="special">(</span><span class="char">'a'</span><span class="special">);</span>
<span class="identifier">fun</span><span class="special">(</span><span class="char">'a'</span><span class="special">,</span> <span class="char">'b'</span><span class="special">);</span>
<span class="special">...</span>
</pre>
<p>
Below is the grammar that matches all the allowable invocations of <code class="computeroutput"><span class="identifier">fun</span><span class="special">()</span></code>:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">FunCall</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span> <span class="identifier">FunTag</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">char</span> <span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The <code class="computeroutput"><span class="identifier">FunCall</span></code> grammar uses
<code class="computeroutput"><a class="link" href="../boost/proto/vararg.html" title="Struct template vararg">proto::vararg<></a></code> to match zero or
more character literals as arguments of the <code class="computeroutput"><span class="identifier">fun</span><span class="special">()</span></code> function.
</p>
<p>
As another example, can you guess what the following grammar matches?
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Foo</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span> <span class="identifier">Foo</span> <span class="special">></span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Here's a hint: the first template parameter to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><></span></code> represents the node type, and
any additional template parameters represent child nodes. The answer
is that this is a degenerate grammar that matches every possible expression
tree, from root to leaves.
</p>
</div>
<div class="section" title="Defining DSEL Grammars">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.intermediate_form.expression_introspection.defining_dsel_grammars"></a><a class="link" href="users_guide.html#boost_proto.users_guide.intermediate_form.expression_introspection.defining_dsel_grammars" title="Defining DSEL Grammars">Defining
DSEL Grammars</a>
</h5></div></div></div>
<p>
In this section we'll see how to use Proto to define a grammar for your
DSEL and use it to validate expression templates, giving short, readable
compile-time errors for invalid expressions.
</p>
<div class="tip" title="Tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../doc/html/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top">
<p>
You might think that this is a backwards way of doing things. <span class="quote">“<span class="quote">If
Proto let me select which operators to overload, my users wouldn't
be able to create invalid expressions in the first place, and I wouldn't
need a grammar at all!</span>”</span> That may be true, but there are reasons
for preferring to do things this way.
</p>
<p>
First, it lets you develop your DSEL rapidly -- all the operators are
there for you already! -- and worry about invalid syntax later.
</p>
<p>
Second, it might be the case that some operators are only allowed in
certain contexts within your DSEL. This is easy to express with a grammar,
and hard to do with straight operator overloading.
</p>
<p>
Third, using a DSEL grammar to flag invalid expressions can often yield
better errors than manually selecting the overloaded operators.
</p>
<p>
Fourth, the grammar can be used for more than just validation. You
can use your grammar to define <span class="emphasis"><em>tree transformations</em></span>
that convert expression templates into other more useful objects.
</p>
<p>
If none of the above convinces you, you actually <span class="emphasis"><em>can</em></span>
use Proto to control which operators are overloaded within your domain.
And to do it, you need to define a grammar!
</p>
</td></tr>
</table></div>
<p>
In a previous section, we used Proto to define a DSEL for a lazily evaluated
calculator that allowed any combination of placeholders, floating-point
literals, addition, subtraction, multiplication, division and grouping.
If we were to write the grammar for this DSEL in <a href="http://en.wikipedia.org/wiki/Extended_Backus_Naur_Form" target="_top">EBNF</a>,
it might look like this:
</p>
<pre class="programlisting">group ::= '(' expression ')'
factor ::= double | '_1' | '_2' | group
term ::= factor (('*' factor) | ('/' factor))*
expression ::= term (('+' term) | ('-' term))*
</pre>
<p>
This captures the syntax, associativity and precedence rules of a calculator.
Writing the grammar for our calculator DSEL using Proto is <span class="emphasis"><em>even
simpler</em></span>. Since we are using C++ as the host language, we are
bound to the associativity and precedence rules for the C++ operators.
Our grammar can assume them. Also, in C++ grouping is already handled
for us with the use of parenthesis, so we don't have to code that into
our grammar.
</p>
<p>
Let's begin our grammar for forward-declaring it:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CalculatorGrammar</span><span class="special">;</span>
</pre>
<p>
It's an incomplete type at this point, but we'll still be able to use
it to define the rules of our grammar. Let's define grammar rules for
the terminals:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Double</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">convertible_to</span><span class="special"><</span> <span class="keyword">double</span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Placeholder1</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Placeholder2</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Terminal</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span> <span class="identifier">Double</span><span class="special">,</span> <span class="identifier">Placeholder1</span><span class="special">,</span> <span class="identifier">Placeholder2</span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Now let's define the rules for addition, subtraction, multiplication
and division. Here, we can ignore issues of associativity and precedence
-- the C++ compiler will enforce that for us. We only must enforce that
the arguments to the operators must themselves conform to the <code class="computeroutput"><span class="identifier">CalculatorGrammar</span></code> that we forward-declared
above.
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">Plus</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Minus</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Multiplies</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Divides</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><</span> <span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Now that we've defined all the parts of the grammar, we can define <code class="computeroutput"><span class="identifier">CalculatorGrammar</span></code>:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CalculatorGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">Terminal</span>
<span class="special">,</span> <span class="identifier">Plus</span>
<span class="special">,</span> <span class="identifier">Minus</span>
<span class="special">,</span> <span class="identifier">Multiplies</span>
<span class="special">,</span> <span class="identifier">Divides</span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
That's it! Now we can use <code class="computeroutput"><span class="identifier">CalculatorGrammar</span></code>
to enforce that an expression template conforms to our grammar. We can
use <code class="computeroutput"><a class="link" href="../boost/proto/matches.html" title="Struct template matches">proto::matches<></a></code> and <code class="computeroutput"><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">()</span></code>
to issue readable compile-time errors for invalid expressions, as below:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">CalculatorGrammar</span> <span class="special">></span> <span class="special">));</span>
<span class="comment">// ...
</span><span class="special">}</span>
</pre>
</div>
</div>
</div>
<div class="section" title="Back Ends: Making Expression Templates Do Useful Work">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.back_end"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end" title="Back Ends: Making Expression Templates Do Useful Work"> Back Ends: Making
Expression Templates Do Useful Work</a>
</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation">
Expression Evaluation: Imparting Behaviors with a Context</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation">
Expression Transformation: Semantic Actions</a></span></dt>
</dl></div>
<p>
Now that you've written the front end for your DSEL compiler, and you've
learned a bit about the intermediate form it produces, it's time to think
about what to <span class="emphasis"><em>do</em></span> with the intermediate form. This is
where you put your domain-specific algorithms and optimizations. Proto gives
you two ways to evaluate and manipulate expression templates: contexts and
transforms.
</p>
<div class="itemizedlist"><ul class="itemizedlist" type="disc">
<li class="listitem">
A <span class="emphasis"><em>context</em></span> is like a function object that you pass
along with an expression to the <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>
function. It associates behaviors with node types. <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>
walks the expression and invokes your context at each node.
</li>
<li class="listitem">
A <span class="emphasis"><em>transform</em></span> is a way to associate behaviors, not with
node types in an expression, but with rules in a Proto grammar. In this
way, they are like semantic actions in other compiler-construction toolkits.
</li>
</ul></div>
<p>
Two ways to evaluate expressions! How to choose? Since contexts are largely
procedural, they are a bit simpler to understand and debug so they are a
good place to start. But although transforms are more advanced, they are
also more powerful; since they are associated with rules in your grammar,
you can select the proper transform based on the entire <span class="emphasis"><em>structure</em></span>
of a sub-expression rather than simply on the type of its top-most node.
</p>
<p>
Also, transforms have a concise and declarative syntax that can be confusing
at first, but highly expressive and fungible once you become accustomed to
it. And -- this is admittedly very subjective -- the author finds programming
with Proto transforms to be an inordinate amount of <span class="emphasis"><em>fun!</em></span>
Your mileage may vary.
</p>
<div class="section" title="Expression Evaluation: Imparting Behaviors with a Context">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation" title="Expression Evaluation: Imparting Behaviors with a Context">
Expression Evaluation: Imparting Behaviors with a Context</a>
</h4></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.proto_eval">
Evaluating an Expression with <code class="literal">proto::eval()</code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.contexts">
Defining an Evaluation Context</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts">
Proto's Built-In Contexts</a></span></dt>
</dl></div>
<p>
Once you have constructed a Proto expression tree, either by using Proto's
operator overloads or with <code class="computeroutput"><a class="link" href="../boost/proto/make_expr_id1241909.html" title="Function make_expr">proto::make_expr()</a></code>
and friends, you probably want to actually <span class="emphasis"><em>do</em></span> something
with it. The simplest option is to use <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>, a generic expression evaluator. To use
<code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>, you'll need to define
a <span class="emphasis"><em>context</em></span> that tells <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>
how each node should be evaluated. This section goes through the nuts and
bolts of using <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>, defining evaluation contexts,
and using the contexts that Proto provides.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
is a less powerful but easier-to-use evaluation technique than Proto
transforms, which are covered later. Although very powerful, transforms
have a steep learning curve and can be more difficult to debug. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
is a rather weak tree traversal algorithm. Dan Marsden has been working
on a more general and powerful tree traversal library. When it is ready,
I anticipate that it will eliminate the need for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>.
</p></td></tr>
</table></div>
<div class="section" title="Evaluating an Expression with proto::eval()">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.proto_eval"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.proto_eval" title="Evaluating an Expression with proto::eval()">
Evaluating an Expression with <code class="literal">proto::eval()</code></a>
</h5></div></div></div>
<div class="blockquote"><blockquote class="blockquote">
<p>
</p>
<p>
<span class="bold"><strong>Synopsis:</strong></span>
</p>
<p>
</p>
</blockquote></div>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">proto</span>
<span class="special">{</span>
<span class="keyword">namespace</span> <span class="identifier">result_of</span>
<span class="special">{</span>
<span class="comment">// A metafunction for calculating the return
</span> <span class="comment">// type of proto::eval() given certain Expr
</span> <span class="comment">// and Context types.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">::</span><span class="keyword">template</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="special">}</span>
<span class="keyword">namespace</span> <span class="identifier">functional</span>
<span class="special">{</span>
<span class="comment">// A callable function object type for evaluating
</span> <span class="comment">// a Proto expression with a certain context.
</span> <span class="keyword">struct</span> <span class="identifier">eval</span> <span class="special">:</span> <span class="identifier">callable</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&</span><span class="identifier">context</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">context</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="special">};</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">eval</span><span class="special">(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&</span><span class="identifier">context</span><span class="special">);</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">eval</span><span class="special">(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">context</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
Given an expression and an evaluation context, using <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>
is quite simple. Simply pass the expression and the context to <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code> and it does the rest
and returns the result. You can use the <code class="computeroutput"><span class="identifier">eval</span><span class="special"><></span></code> metafunction in the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span></code> namespace to compute the
return type of <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>. The following demonstrates
a use of <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">MyContext</span><span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">MyEvaluate</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// Some user-defined context type
</span> <span class="identifier">MyContext</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="comment">// Evaluate an expression with the context
</span> <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
What <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code> does is also very simple.
It defers most of the work to the context itself. Here essentially is
the implementation of <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code>:
</p>
<pre class="programlisting"><span class="comment">// eval() dispatches to a nested "eval<>" function
</span><span class="comment">// object within the Context:
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">::</span><span class="keyword">template</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">eval</span><span class="special">(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">::</span><span class="keyword">template</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">></span> <span class="identifier">eval_fun</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">eval_fun</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
Really, <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code> is nothing more than
a thin wrapper that dispatches to the appropriate handler within the
context class. In the next section, we'll see how to implement a context
class from scratch.
</p>
</div>
<div class="section" title="Defining an Evaluation Context">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.contexts"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.contexts" title="Defining an Evaluation Context">
Defining an Evaluation Context</a>
</h5></div></div></div>
<p>
As we saw in the previous section, there is really not much to the <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code> function. Rather, all
the interesting expression evaluation goes on within a context class.
This section shows how to implement one from scratch.
</p>
<p>
All context classes have roughly the following form:
</p>
<pre class="programlisting"><span class="comment">// A prototypical user-defined context.
</span><span class="keyword">struct</span> <span class="identifier">MyContext</span>
<span class="special">{</span>
<span class="comment">// A nested eval<> class template
</span> <span class="keyword">template</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">Expr</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Tag</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">;</span>
<span class="comment">// Handle terminal nodes here...
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">></span>
<span class="special">{</span>
<span class="comment">// Must have a nested result_type typedef.
</span> <span class="keyword">typedef</span> <span class="special">...</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Must have a function call operator that takes
</span> <span class="comment">// an expression and the context.
</span> <span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">MyContext</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="special">...;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// ... other specializations of struct eval<> ...
</span><span class="special">};</span>
</pre>
<p>
Context classes are nothing more than a collection of specializations
of a nested <code class="computeroutput"><span class="identifier">eval</span><span class="special"><></span></code>
class template. Each specialization handles a different expression type.
</p>
<p>
In the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
Calculator</a> section, we saw an example of a user-defined context
class for evaluating calculator expressions. That context class was implemented
with the help of Proto's <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>.
If we were to implement it from scratch, it would look something like
this:
</p>
<pre class="programlisting"><span class="comment">// The calculator_context from the "Hello Calculator" section,
</span><span class="comment">// implemented from scratch.
</span><span class="keyword">struct</span> <span class="identifier">calculator_context</span>
<span class="special">{</span>
<span class="comment">// The values with which we'll replace the placeholders
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">args</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">Expr</span>
<span class="comment">// defaulted template parameters, so we can
</span> <span class="comment">// specialize on the expressions that need
</span> <span class="comment">// special handling.
</span> <span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Tag</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag_of</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg0</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="number">0</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special">;</span>
<span class="comment">// Handle placeholder terminals here...
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">></span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&,</span> <span class="identifier">MyContext</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">[</span><span class="identifier">I</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Handle other terminals here...
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg0</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">Arg0</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">MyContext</span> <span class="special">&)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child</span><span class="special">(</span><span class="identifier">expr</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Handle addition here...
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg0</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">,</span> <span class="identifier">Arg0</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">MyContext</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">left</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">)</span>
<span class="special">+</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">right</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// ... other eval<> specializations for other node types ...
</span><span class="special">};</span>
</pre>
<p>
Now we can use <code class="computeroutput"><a class="link" href="../boost/proto/eval_id1236049.html" title="Function eval">proto::eval()</a></code> with the context class
above to evaluate calculator expressions as follows:
</p>
<pre class="programlisting"><span class="comment">// Evaluate an expression with a calculator_context
</span><span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">5</span><span class="special">);</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">6</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="identifier">_2</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="identifier">assert</span><span class="special">(</span><span class="number">11</span> <span class="special">==</span> <span class="identifier">d</span><span class="special">);</span>
</pre>
<p>
Defining a context from scratch this way is tedious and verbose, but
it gives you complete control over how the expression is evaluated. The
context class in the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">Hello
Calculator</a> example was much simpler. In the next section we'll
see the helper class Proto provides to ease the job of implementing context
classes.
</p>
</div>
<div class="section" title="Proto's Built-In Contexts">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts" title="Proto's Built-In Contexts">
Proto's Built-In Contexts</a>
</h5></div></div></div>
<p>
Proto provides some ready-made context classes that you can use as-is,
or that you can use to help while implementing your own contexts. They
are:
</p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.default_context" title="default_context"><code class="literal">default_context</code></a></span></dt>
<dd><p>
An evaluation context that assigns the usual C++ meanings to all
the operators. For example, addition nodes are handled by evaluating
the left and right children and then adding the results. The <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>
uses Boost.Typeof to deduce the types of the expressions it evaluates.
</p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context" title="null_context"><code class="literal">null_context</code></a></span></dt>
<dd><p>
A simple context that recursively evaluates children but does not
combine the results in any way and returns void.
</p></dd>
<dt><span class="term"><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.callable_context" title="callable_context<>"><code class="literal">callable_context<></code></a></span></dt>
<dd><p>
A helper that simplifies the job of writing context classes. Rather
than writing template specializations, with <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
you write a function object with an overloaded function call operator.
Any expressions not handled by an overload are automatically dispatched
to a default evaluation context that you can specify.
</p></dd>
</dl>
</div>
<div class="section" title="default_context">
<div class="titlepage"><div><div><h6 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.default_context"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.default_context" title="default_context">
<code class="literal">default_context</code></a>
</h6></div></div></div>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code> is an
evaluation context that assigns the usual C++ meanings to all the operators.
For example, addition nodes are handled by evaluating the left and
right children and then adding the results. The <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code> uses
Boost.Typeof to deduce the types of the expressions it evaluates.
</p>
<p>
For example, consider the following "Hello World" example:
</p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="comment">// Evaluate the expression with default_context,
</span> <span class="comment">// to give the operators their C++ meanings:
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special"><<</span> <span class="string">"hello"</span> <span class="special"><<</span> <span class="char">','</span> <span class="special"><<</span> <span class="string">" world"</span> <span class="special">);</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
This program outputs the following:
</p>
<pre class="programlisting">hello, world
</pre>
<p>
<code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code> is trivially
defined in terms of a <code class="computeroutput"><span class="identifier">default_eval</span><span class="special"><></span></code> template, as follows:
</p>
<pre class="programlisting"><span class="comment">// Definition of default_context
</span><span class="keyword">struct</span> <span class="identifier">default_context</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">default_eval</span><span class="special"><</span>
<span class="identifier">Expr</span>
<span class="special">,</span> <span class="identifier">default_context</span> <span class="keyword">const</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">tag_of</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span>
<span class="special">></span>
<span class="special">{};</span>
<span class="special">};</span>
</pre>
<p>
There are a bunch of <code class="computeroutput"><span class="identifier">default_eval</span><span class="special"><></span></code> specializations, each of which
handles a different C++ operator. Here, for instance, is the specialization
for binary addition:
</p>
<pre class="programlisting"><span class="comment">// A default expression evaluator for binary addition
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">default_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="keyword">static</span> <span class="identifier">Expr</span> <span class="special">&</span> <span class="identifier">s_expr</span><span class="special">;</span>
<span class="keyword">static</span> <span class="identifier">Context</span> <span class="special">&</span> <span class="identifier">s_ctx</span><span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="keyword">typedef</span>
<span class="identifier">decltype</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">0</span><span class="special">>(</span><span class="identifier">s_expr</span><span class="special">),</span> <span class="identifier">s_ctx</span><span class="special">)</span>
<span class="special">+</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">1</span><span class="special">>(</span><span class="identifier">s_expr</span><span class="special">),</span> <span class="identifier">s_ctx</span><span class="special">)</span>
<span class="special">)</span>
<span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">0</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">)</span>
<span class="special">+</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">1</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
The above code uses <code class="computeroutput"><span class="identifier">decltype</span></code>
to calculate the return type of the function call operator. <code class="computeroutput"><span class="identifier">decltype</span></code> is a new keyword in the
next version of C++ that gets the type of any expression. Most compilers
do not yet support <code class="computeroutput"><span class="identifier">decltype</span></code>
directly, so <code class="computeroutput"><span class="identifier">default_eval</span><span class="special"><></span></code> uses the Boost.Typeof library
to emulate it. On some compilers, that may mean that <code class="computeroutput"><span class="identifier">default_context</span></code> either doesn't work
or that it requires you to register your types with the Boost.Typeof
library. Check the documentation for Boost.Typeof to see.
</p>
</div>
<div class="section" title="null_context">
<div class="titlepage"><div><div><h6 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context" title="null_context">
<code class="literal">null_context</code></a>
</h6></div></div></div>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/context/null_context.html" title="Struct null_context">proto::null_context<></a></code>
is a simple context that recursively evaluates children but does not
combine the results in any way and returns void. It is useful in conjunction
with <code class="computeroutput"><span class="identifier">callable_context</span><span class="special"><></span></code>, or when defining your own
contexts which mutate an expression tree in-place rather than accumulate
a result, as we'll see below.
</p>
<p>
<code class="computeroutput"><a class="link" href="../boost/proto/context/null_context.html" title="Struct null_context">proto::null_context<></a></code>
is trivially implemented in terms of <code class="computeroutput"><span class="identifier">null_eval</span><span class="special"><></span></code> as follows:
</p>
<pre class="programlisting"><span class="comment">// Definition of null_context
</span><span class="keyword">struct</span> <span class="identifier">null_context</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">null_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">null_context</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_arity</span><span class="special">::</span><span class="identifier">value</span><span class="special">></span>
<span class="special">{};</span>
<span class="special">};</span>
</pre>
<p>
And <code class="computeroutput"><span class="identifier">null_eval</span><span class="special"><></span></code>
is also trivially implemented. Here, for instance is a binary <code class="computeroutput"><span class="identifier">null_eval</span><span class="special"><></span></code>:
</p>
<pre class="programlisting"><span class="comment">// Binary null_eval<>
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Context</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">null_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">Context</span><span class="special">,</span> <span class="number">2</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Context</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">0</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">1</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
When would such classes be useful? Imagine you have an expression tree
with integer terminals, and you would like to increment each integer
in-place. You might define an evaluation context as follows:
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">increment_ints</span>
<span class="special">{</span>
<span class="comment">// By default, just evaluate all children by delegating
</span> <span class="comment">// to the null_eval<>
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">null_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">increment_ints</span> <span class="keyword">const</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Increment integer terminals
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">int</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">increment_ints</span> <span class="keyword">const</span> <span class="special">&)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="special">++</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">child</span><span class="special">(</span><span class="identifier">expr</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="special">};</span>
</pre>
<p>
In the next section on <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>,
we'll see an even simpler way to achieve the same thing.
</p>
</div>
<div class="section" title="callable_context<>">
<div class="titlepage"><div><div><h6 class="title">
<a name="boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.callable_context"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.callable_context" title="callable_context<>">
<code class="literal">callable_context<></code></a>
</h6></div></div></div>
<p>
The <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
is a helper that simplifies the job of writing context classes. Rather
than writing template specializations, with <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
you write a function object with an overloaded function call operator.
Any expressions not handled by an overload are automatically dispatched
to a default evaluation context that you can specify.
</p>
<p>
Rather than an evaluation context in its own right, <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
is more properly thought of as a context adaptor. To use it, you must
define your own context that inherits from <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>.
</p>
<p>
In the <a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_evaluation.canned_contexts.null_context" title="null_context"><code class="literal">null_context</code></a>
section, we saw how to implement an evaluation context that increments
all the integers within an expression tree. Here is how to do the same
thing with the <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>:
</p>
<pre class="programlisting"><span class="comment">// An evaluation context that increments all
</span><span class="comment">// integer terminals in-place.
</span><span class="keyword">struct</span> <span class="identifier">increment_ints</span>
<span class="special">:</span> <span class="identifier">callable_context</span><span class="special"><</span>
<span class="identifier">increment_ints</span> <span class="keyword">const</span> <span class="comment">// derived context
</span> <span class="special">,</span> <span class="identifier">null_context</span> <span class="keyword">const</span> <span class="comment">// fall-back context
</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Handle int terminals here:
</span> <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="special">&</span><span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="special">++</span><span class="identifier">i</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
With such a context, we can do the following:
</p>
<pre class="programlisting"><span class="identifier">literal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">j</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="identifier">i</span> <span class="special">-</span> <span class="identifier">j</span> <span class="special">*</span> <span class="number">3.14</span><span class="special">,</span> <span class="identifier">increment_ints</span><span class="special">()</span> <span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"i = "</span> <span class="special"><<</span> <span class="identifier">i</span><span class="special">.</span><span class="identifier">get</span><span class="special">()</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"j = "</span> <span class="special"><<</span> <span class="identifier">j</span><span class="special">.</span><span class="identifier">get</span><span class="special">()</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
This program outputs the following, which shows that the integers
<code class="computeroutput"><span class="identifier">i</span></code> and <code class="computeroutput"><span class="identifier">j</span></code> have been incremented by <code class="computeroutput"><span class="number">1</span></code>:
</p>
<pre class="programlisting">i = 1
j = 11
</pre>
<p>
In the <code class="computeroutput"><span class="identifier">increment_ints</span></code>
context, we didn't have to define any nested <code class="computeroutput"><span class="identifier">eval</span><span class="special"><></span></code> templates. That's because
<code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
implements them for us. <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
takes two template parameters: the derived context and a fall-back
context. For each node in the expression tree being evaluated, <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code> checks to see if
there is an overloaded <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> in the derived context that accepts
it. Given some expression <code class="computeroutput"><span class="identifier">expr</span></code>
of type <code class="computeroutput"><span class="identifier">Expr</span></code>, and a
context <code class="computeroutput"><span class="identifier">ctx</span></code>, it attempts
to call:
</p>
<pre class="programlisting"><span class="identifier">ctx</span><span class="special">(</span>
<span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_tag</span><span class="special">()</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">0</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="number">1</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">...</span>
<span class="special">);</span>
</pre>
<p>
Using function overloading and metaprogramming tricks, <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
can detect at compile-time whether such a function exists or not. If
so, that function is called. If not, the current expression is passed
to the fall-back evaluation context to be processed.
</p>
<p>
We saw another example of the <code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
when we looked at the simple calculator expression evaluator. There,
we wanted to customize the evaluation of placeholder terminals, and
delegate the handling of all other nodes to the <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>. We did
that as follows:
</p>
<pre class="programlisting"><span class="comment">// An evaluation context for calculator expressions that
</span><span class="comment">// explicitly handles placeholder terminals, but defers the
</span><span class="comment">// processing of all other nodes to the default_context.
</span><span class="keyword">struct</span> <span class="identifier">calculator_context</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">args</span><span class="special">;</span>
<span class="comment">// Define the result type of the calculator.
</span> <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Handle the placeholders:
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">>)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="keyword">this</span><span class="special">-></span><span class="identifier">args</span><span class="special">[</span><span class="identifier">I</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
In this case, we didn't specify a fall-back context. In that case,
<code class="computeroutput"><a class="link" href="../boost/proto/context/callable_context.html" title="Struct template callable_context">proto::callable_context<></a></code>
uses the <code class="computeroutput"><a class="link" href="../boost/proto/context/default_context.html" title="Struct default_context">proto::default_context</a></code>. With
the above <code class="computeroutput"><span class="identifier">calculator_context</span></code>
and a couple of appropriately defined placeholder terminals, we can
evaluate calculator expressions, as demonstrated below:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{};</span>
<span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="comment">// ...
</span>
<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">4</span><span class="special">);</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">5</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">j</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">,</span> <span class="identifier">ctx</span> <span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"j = "</span> <span class="special"><<</span> <span class="identifier">j</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
The above code displays the following:
</p>
<pre class="programlisting">j = 20
</pre>
</div>
</div>
</div>
<div class="section" title="Expression Transformation: Semantic Actions">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation" title="Expression Transformation: Semantic Actions">
Expression Transformation: Semantic Actions</a>
</h4></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.__activating__your_grammars"><span class="quote">“<span class="quote">Activating</span>”</span>
Your Grammars</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.handling_alternation_and_recursion">Handling
Alternation and Recursion</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.callable_transforms">Callable
Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.object_transforms">Object
Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity">Example:
Calculator Arity</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.state">
Transforms With State Accumulation</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.data">
Passing Auxiliary Data to Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms">
Proto's Built-In Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.primitives">
Building Custom Primitive Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.is_callable">
Making Your Transform Callable</a></span></dt>
</dl></div>
<p>
If you have ever built a parser with the help of a tool like Antlr, yacc
or Boost.Spirit, you might be familiar with <span class="emphasis"><em>semantic actions</em></span>.
In addition to allowing you to define the grammar of the language recognized
by the parser, these tools let you embed code within your grammar that
executes when parts of the grammar participate in a parse. Proto has the
equivalent of semantic actions. They are called <span class="emphasis"><em>transforms</em></span>.
This section describes how to embed transforms within your Proto grammars,
turning your grammars into function objects that can manipulate or evaluate
expressions in powerful ways.
</p>
<p>
Proto transforms are an advanced topic. We'll take it slow, using examples
to illustrate the key concepts, starting simple.
</p>
<div class="section" title="“Activating” Your Grammars">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.__activating__your_grammars"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.__activating__your_grammars" title="“Activating” Your Grammars"><span class="quote">“<span class="quote">Activating</span>”</span>
Your Grammars</a>
</h5></div></div></div>
<p>
The Proto grammars we've seen so far are static. You can check at compile-time
to see if an expression type matches a grammar, but that's it. Things
get more interesting when you give them runtime behaviors. A grammar
with embedded transforms is more than just a static grammar. It is a
function object that accepts expressions that match the grammar and does
<span class="emphasis"><em>something</em></span> with them.
</p>
<p>
Below is a very simple grammar. It matches terminal expressions.
</p>
<pre class="programlisting"><span class="comment">// A simple Proto grammar that matches all terminals
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">_</span> <span class="special">></span>
</pre>
<p>
Here is the same grammar with a transform that extracts the value from
the terminal:
</p>
<pre class="programlisting"><span class="comment">// A simple Proto grammar that matches all terminals
</span><span class="comment">// *and* a function object that extracts the value from
</span><span class="comment">// the terminal
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span> <span class="comment">// <-- Look, a transform!
</span><span class="special">></span>
</pre>
<p>
You can read this as follows: when you match a terminal expression, extract
the value. The type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>
is a so-called transform. Later we'll see what makes it a transform,
but for now just think of it as a kind of function object. Note the use
of <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when<></a></code>: the first template
parameter is the grammar to match and the second is the transform to
execute. The result is both a grammar that matches terminal expressions
and a function object that accepts terminal expressions and extracts
their values.
</p>
<p>
As with ordinary grammars, we can define an empty struct that inherits
from a grammar+transform to give us an easy way to refer back to the
thing we're defining, as follows:
</p>
<pre class="programlisting"><span class="comment">// A grammar and a function object, as before
</span><span class="keyword">struct</span> <span class="identifier">Value</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// "Value" is a grammar that matches terminal expressions
</span><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span><span class="special">,</span> <span class="identifier">Value</span> <span class="special">></span> <span class="special">));</span>
<span class="comment">// "Value" also defines a function object that accepts terminals
</span><span class="comment">// and extracts their value.
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">answer</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">};</span>
<span class="identifier">Value</span> <span class="identifier">get_value</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="identifier">get_value</span><span class="special">(</span> <span class="identifier">answer</span> <span class="special">);</span>
</pre>
<p>
As already mentioned, <code class="computeroutput"><span class="identifier">Value</span></code>
is a grammar that matches terminal expressions and a function object
that operates on terminal expressions. It would be an error to pass a
non-terminal expression to the <code class="computeroutput"><span class="identifier">Value</span></code>
function object. This is a general property of grammars with transforms;
when using them as function objects, expressions passed to them must
match the grammar.
</p>
<p>
Proto grammars are valid TR1-style function objects. That means you can
use <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><></span></code>
to ask a grammar what its return type will be, given a particular expression
type. For instance, we can access the <code class="computeroutput"><span class="identifier">Value</span></code>
grammar's return type as follows:
</p>
<pre class="programlisting"><span class="comment">// We can use boost::result_of<> to get the return type
</span><span class="comment">// of a Proto grammar.
</span><span class="keyword">typedef</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><</span><span class="identifier">Value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span><span class="special">)>::</span><span class="identifier">type</span>
<span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Check that we got the type we expected
</span><span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special"><</span><span class="identifier">result_type</span><span class="special">,</span> <span class="keyword">int</span><span class="special">></span> <span class="special">));</span>
</pre>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
A grammar with embedded transforms is both a grammar and a function
object. Calling these things "grammars with transforms" would
get tedious. We could call them something like "active grammars",
but as we'll see <span class="emphasis"><em>every</em></span> grammar that you can define
with Proto is "active"; that is, every grammar has some behavior
when used as a function object. So we'll continue calling these things
plain "grammars". The term "transform" is reserved
for the thing that is used as the second parameter to the <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when<></a></code> template.
</p></td></tr>
</table></div>
</div>
<div class="section" title="Handling Alternation and Recursion">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.handling_alternation_and_recursion"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.handling_alternation_and_recursion" title="Handling Alternation and Recursion">Handling
Alternation and Recursion</a>
</h5></div></div></div>
<p>
Most grammars are a little more complicated than the one in the preceding
section. For the sake of illustration, let's define a rather nonsensical
grammar that matches any expression and recurses to the leftmost terminal
and returns its value. It will demonstrate how two key concepts of Proto
grammars -- alternation and recursion -- interact with transforms. The
grammar is described below.
</p>
<pre class="programlisting"><span class="comment">// A grammar that matches any expression, and a function object
</span><span class="comment">// that returns the value of the leftmost terminal.
</span><span class="keyword">struct</span> <span class="identifier">LeftmostLeaf</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="comment">// If the expression is a terminal, return its value
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
<span class="special">></span>
<span class="comment">// Otherwise, it is a non-terminal. Return the result
</span> <span class="comment">// of invoking LeftmostLeaf on the 0th (leftmost) child.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">_</span>
<span class="special">,</span> <span class="identifier">LeftmostLeaf</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span> <span class="special">)</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// A Proto terminal wrapping std::cout
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">};</span>
<span class="comment">// Create an expression and use LeftmostLeaf to extract the
</span><span class="comment">// value of the leftmost terminal, which will be std::cout.
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="identifier">sout</span> <span class="special">=</span> <span class="identifier">LeftmostLeaf</span><span class="special">()(</span> <span class="identifier">cout_</span> <span class="special"><<</span> <span class="string">"the answer: "</span> <span class="special"><<</span> <span class="number">42</span> <span class="special"><<</span> <span class="char">'\n'</span> <span class="special">);</span>
</pre>
<p>
We've seen <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><></span></code>
before. Here it is serving two roles. First, it is a grammar that matches
any of its alternate sub-grammars; in this case, either a terminal or
a non-terminal. Second, it is also a function object that accepts an
expression, finds the alternate sub-grammar that matches the expression,
and applies its transform. And since <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>
inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><></span></code>,
<code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code> is also
both a grammar and a function object.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
The second alternate uses <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
as its grammar. Recall that <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
is the wildcard grammar that matches any expression. Since alternates
in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><></span></code>
are tried in order, and since the first alternate handles all terminals,
the second alternate handles all (and only) non-terminals. Often enough,
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">_</span><span class="special">,</span>
<em class="replaceable"><code>
some-transform
</code></em>
<span class="special">></span></code> is the last alternate in
a grammar, so for improved readability, you could use the equivalent
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">otherwise</span><span class="special"><</span>
<em class="replaceable"><code>
some-transform
</code></em>
<span class="special">></span></code>.
</p></td></tr>
</table></div>
<p>
The next section describes this grammar further.
</p>
</div>
<div class="section" title="Callable Transforms">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.callable_transforms"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.callable_transforms" title="Callable Transforms">Callable
Transforms</a>
</h5></div></div></div>
<p>
In the grammar defined in the preceding section, the transform associated
with non-terminals is a little strange-looking:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">_</span>
<span class="special">,</span> <span class="bold"><strong>LeftmostLeaf( proto::_child0 )</strong></span> <span class="comment">// <-- a "callable" transform
</span><span class="special">></span>
</pre>
<p>
It has the effect of accepting non-terminal expressions, taking the 0th
(leftmost) child and recursively invoking the <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>
function on it. But <code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span>
<span class="special">)</span></code> is actually a <span class="emphasis"><em>function
type</em></span>. Literally, it is the type of a function that accepts
an object of type <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
and returns an object of type <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>.
So how do we make sense of this transform? Clearly, there is no function
that actually has this signature, nor would such a function be useful.
The key is in understanding how <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><></span></code> <span class="emphasis"><em>interprets</em></span>
its second template parameter.
</p>
<p>
When the second template parameter to <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when<></a></code>
is a function type, <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when<></a></code>
interprets the function type as a transform. In this case, <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code> is treated as the type
of a function object to invoke, and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
is treated as a transform. First, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
is applied to the current expression (the non-terminal that matched this
alternate sub-grammar), and the result (the 0th child) is passed as an
argument to <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code>.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
<span class="bold"><strong>Transforms are a Domain-Specific Language</strong></span>
</p>
<p>
<code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span> <span class="special">)</span></code>
<span class="emphasis"><em>looks</em></span> like an invocation of the <code class="computeroutput"><span class="identifier">LeftmostLeaf</span></code> function object, but
it's not, but then it actually is! Why this confusing subterfuge? Function
types give us a natural and concise syntax for composing more complicated
transforms from simpler ones. The fact that the syntax is suggestive
of a function invocation is on purpose. It is a domain-specific embedded
language for defining expression transformations. If the subterfuge
worked, it may have fooled you into thinking the transform is doing
exactly what it actually does! And that's the point.
</p>
</td></tr>
</table></div>
<p>
The type <code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span>
<span class="special">)</span></code> is an example of a <span class="emphasis"><em>callable
transform</em></span>. It is a function type that represents a function
object to call and its arguments. The types <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span></code>
and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code> are <span class="emphasis"><em>primitive transforms</em></span>.
They are plain structs, not unlike function objects, from which callable
transforms can be composed. There is one other type of transform, <span class="emphasis"><em>object
transforms</em></span>, that we'll encounter next.
</p>
</div>
<div class="section" title="Object Transforms">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.object_transforms"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.object_transforms" title="Object Transforms">Object
Transforms</a>
</h5></div></div></div>
<p>
The very first transform we looked at simply extracted the value of terminals.
Let's do the same thing, but this time we'll promote all ints to longs
first. (Please forgive the contrived-ness of the examples so far; they
get more interesting later.) Here's the grammar:
</p>
<pre class="programlisting"><span class="comment">// A simple Proto grammar that matches all terminals,
</span><span class="comment">// and a function object that extracts the value from
</span><span class="comment">// the terminal, promoting ints to longs:
</span><span class="keyword">struct</span> <span class="identifier">ValueWithPomote</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">int</span> <span class="special">></span>
<span class="special">,</span> <span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span> <span class="comment">// <-- an "object" transform
</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">_</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
You can read the above grammar as follows: when you match an int terminal,
extract the value from the terminal and use it to initialize a long;
otherwise, when you match another kind of terminal, just extract the
value. The type <code class="computeroutput"><span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span></code>
is a so-called <span class="emphasis"><em>object</em></span> transform. It looks like the
creation of a temporary long, but it's really a function type. Just as
a callable transform is a function type that represents a function to
call and its arguments, an object transforms is a function type that
represents an object to construct and the arguments to its constructor.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
<span class="bold"><strong>Object Transforms vs. Callable Transforms</strong></span>
</p>
<p>
When using function types as Proto transforms, they can either represent
an object to construct or a function to call. It is similar to "normal"
C++ where the syntax <code class="computeroutput"><span class="identifier">foo</span><span class="special">(</span><span class="string">"arg"</span><span class="special">)</span></code> can either be interpreted as an object
to construct or a function to call, depending on whether <code class="computeroutput"><span class="identifier">foo</span></code> is a type or a function. But
consider two of the transforms we've seen so far:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">LeftmostLeaf</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span><span class="special">)</span> <span class="comment">// <-- a callable transform
</span><span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span> <span class="comment">// <-- an object transform
</span></pre>
<p>
</p>
<p>
Proto can't know in general which is which, so it uses a trait, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special"><></span></code>,
to differentiate. <code class="computeroutput"><span class="identifier">is_callable</span><span class="special"><</span> <span class="keyword">long</span>
<span class="special">>::</span><span class="identifier">value</span></code>
is false so <code class="computeroutput"><span class="keyword">long</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span></code>
is an object to construct, but <code class="computeroutput"><span class="identifier">is_callable</span><span class="special"><</span> <span class="identifier">LeftmostLeaf</span>
<span class="special">>::</span><span class="identifier">value</span></code>
is true so <code class="computeroutput"><span class="identifier">LeftmostLeaf</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span><span class="special">)</span></code> is a function to call. Later on, we'll
see how Proto recognizes a type as "callable".
</p>
</td></tr>
</table></div>
</div>
<div class="section" title="Example: Calculator Arity">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.example__calculator_arity" title="Example: Calculator Arity">Example:
Calculator Arity</a>
</h5></div></div></div>
<p>
Now that we have the basics of Proto transforms down, let's consider
a slightly more realistic example. We can use transforms to improve the
type-safety of the <a class="link" href="users_guide.html#boost_proto.users_guide.getting_started.hello_calculator" title="Hello Calculator">calculator
DSEL</a>. If you recall, it lets you write infix arithmetic expressions
involving argument placeholders like <code class="computeroutput"><span class="identifier">_1</span></code>
and <code class="computeroutput"><span class="identifier">_2</span></code> and pass them
to STL algorithms as function objects, as follows:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">56</span><span class="special">,</span> <span class="number">84</span><span class="special">,</span> <span class="number">37</span><span class="special">,</span> <span class="number">69</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a2</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">65</span><span class="special">,</span> <span class="number">120</span><span class="special">,</span> <span class="number">60</span><span class="special">,</span> <span class="number">70</span> <span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">a3</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span> <span class="number">0</span> <span class="special">};</span>
<span class="comment">// Use std::transform() and a calculator expression
</span><span class="comment">// to calculate percentages given two input sequences:
</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span><span class="identifier">a1</span><span class="special">,</span> <span class="identifier">a1</span><span class="special">+</span><span class="number">4</span><span class="special">,</span> <span class="identifier">a2</span><span class="special">,</span> <span class="identifier">a3</span><span class="special">,</span> <span class="special">(</span><span class="identifier">_2</span> <span class="special">-</span> <span class="identifier">_1</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">*</span> <span class="number">100</span><span class="special">);</span>
</pre>
<p>
This works because we gave calculator expressions an <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> that evaluates the expression, replacing
the placeholders with the arguments to <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>. The overloaded <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><>::</span><span class="keyword">operator</span><span class="special">()</span></code> looked like this:
</p>
<pre class="programlisting"><span class="comment">// Overload operator() to invoke proto::eval() with
</span><span class="comment">// our calculator_context.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">double</span>
<span class="identifier">calculator</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span> <span class="special">=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a2</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
Although this works, it's not ideal because it doesn't warn users if
they supply too many or too few arguments to a calculator expression.
Consider the following mistakes:
</p>
<pre class="programlisting"><span class="special">(</span><span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_1</span><span class="special">)(</span><span class="number">4</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span> <span class="comment">// Oops, too many arguments!
</span><span class="special">(</span><span class="identifier">_2</span> <span class="special">*</span> <span class="identifier">_2</span><span class="special">)(</span><span class="number">42</span><span class="special">);</span> <span class="comment">// Oops, too few arguments!
</span></pre>
<p>
The expression <code class="computeroutput"><span class="identifier">_1</span> <span class="special">*</span>
<span class="identifier">_1</span></code> defines a unary calculator
expression; it takes one argument and squares it. If we pass more than
one argument, the extra arguments will be silently ignored, which might
be surprising to users. The next expression, <code class="computeroutput"><span class="identifier">_2</span>
<span class="special">*</span> <span class="identifier">_2</span></code>
defines a binary calculator expression; it takes two arguments, ignores
the first and squares the second. If we only pass one argument, the code
silently fills in <code class="computeroutput"><span class="number">0.0</span></code> for
the second argument, which is also probably not what users expect. What
can be done?
</p>
<p>
We can say that the <span class="emphasis"><em>arity</em></span> of a calculator expression
is the number of arguments it expects, and it is equal to the largest
placeholder in the expression. So, the arity of <code class="computeroutput"><span class="identifier">_1</span>
<span class="special">*</span> <span class="identifier">_1</span></code>
is one, and the arity of <code class="computeroutput"><span class="identifier">_2</span>
<span class="special">*</span> <span class="identifier">_2</span></code>
is two. We can increase the type-safety of our calculator DSEL by making
sure the arity of an expression equals the actual number of arguments
supplied. Computing the arity of an expression is simple with the help
of Proto transforms.
</p>
<p>
It's straightforward to describe in words how the arity of an expression
should be calculated. Consider that calculator expressions can be made
of <code class="computeroutput"><span class="identifier">_1</span></code>, <code class="computeroutput"><span class="identifier">_2</span></code>, literals, unary expressions and
binary expressions. The following table shows the arities for each of
these 5 constituents.
</p>
<div class="table">
<a name="id1509481"></a><p class="title"><b>Table 15.7. Calculator Sub-Expression Arities</b></p>
<div class="table-contents"><table class="table" summary="Calculator Sub-Expression Arities">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Sub-Expression
</p>
</th>
<th>
<p>
Arity
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Placeholder 1
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="number">1</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
Placeholder 2
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="number">2</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
Literal
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="number">0</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
Unary Expression
</p>
</td>
<td>
<p>
<span class="emphasis"><em>arity of the operand</em></span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Binary Expression
</p>
</td>
<td>
<p>
<span class="emphasis"><em>max arity of the two operands</em></span>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
Using this information, we can write the grammar for calculator expressions
and attach transforms for computing the arity of each constituent. The
code below computes the expression arity as a compile-time integer, using
integral wrappers and metafunctions from the Boost MPL Library. The grammar
is described below.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">CalcArity</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">>,</span>
<span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">1</span><span class="special">>()</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">>,</span>
<span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">2</span><span class="special">>()</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">>,</span>
<span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">0</span><span class="special">>()</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">CalcArity</span><span class="special">>,</span>
<span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child</span><span class="special">)</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">binary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">CalcArity</span><span class="special">,</span> <span class="identifier">CalcArity</span><span class="special">>,</span>
<span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special"><</span><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span>
<span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)>()</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
</p>
<p>
</p>
<p>
When we find a placeholder terminal or a literal, we use an <span class="emphasis"><em>object
transform</em></span> such as <code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">1</span><span class="special">>()</span></code>
to create a (default-constructed) compile-time integer representing the
arity of that terminal.
</p>
<p>
For unary expressions, we use <code class="computeroutput"><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child</span><span class="special">)</span></code> which is a <span class="emphasis"><em>callable transform</em></span>
that computes the arity of the expression's child.
</p>
<p>
The transform for binary expressions has a few new tricks. Let's look
more closely:
</p>
<pre class="programlisting"><span class="comment">// Compute the left and right arities and
</span><span class="comment">// take the larger of the two.
</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special"><</span><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span>
<span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)>()</span>
</pre>
<p>
This is an object transform; it default-constructs ... what exactly?
The <code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special"><></span></code>
template is an MPL metafunction that accepts two compile-time integers.
It has a nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>
typedef (not shown) that is the maximum of the two. But here, we appear
to be passing it two things that are <span class="emphasis"><em>not</em></span> compile-time
integers; they're Proto callable transforms. Proto is smart enough to
recognize that fact. It first evaluates the two nested callable transforms,
computing the arities of the left and right child expressions. Then it
puts the resulting integers into <code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special"><></span></code> and evaluates the metafunction
by asking for the nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>. That is the type of the object
that gets default-constructed and returned.
</p>
<p>
More generally, when evaluating object transforms, Proto looks at the
object type and checks whether it is a template specialization, like
<code class="computeroutput"><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special"><></span></code>.
If it is, Proto looks for nested transforms that it can evaluate. After
any nested transforms have been evaluated and substituted back into the
template, the new template specialization is the result type, unless
that type has a nested <code class="computeroutput"><span class="special">::</span><span class="identifier">type</span></code>, in which case that becomes the
result.
</p>
<p>
Now that we can calculate the arity of a calculator expression, let's
redefine the <code class="computeroutput"><span class="identifier">calculator</span><span class="special"><></span></code> expression wrapper we wrote in
the Getting Started guide to use the <code class="computeroutput"><span class="identifier">CalcArity</span></code>
grammar and some macros from Boost.MPL to issue compile-time errors when
users specify too many or too few arguments.
</p>
<pre class="programlisting"><span class="comment">// The calculator expression wrapper, as defined in the Hello
</span><span class="comment">// Calculator example in the Getting Started guide. It behaves
</span><span class="comment">// just like the expression it wraps, but with extra operator()
</span><span class="comment">// member functions that evaluate the expression.
</span><span class="comment">// NEW: Use the CalcArity grammar to ensure that the correct
</span><span class="comment">// number of arguments are supplied.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="identifier">base_type</span><span class="special">;</span>
<span class="identifier">calculator</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
<span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Use CalcArity to compute the arity of Expr:
</span> <span class="keyword">static</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="identifier">arity</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><</span><span class="identifier">CalcArity</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">)>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">;</span>
<span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">arity</span><span class="special">);</span>
<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">arity</span><span class="special">);</span>
<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">double</span> <span class="keyword">operator</span><span class="special">()(</span><span class="keyword">double</span> <span class="identifier">a1</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">a2</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">arity</span><span class="special">);</span>
<span class="identifier">calculator_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a1</span><span class="special">);</span>
<span class="identifier">ctx</span><span class="special">.</span><span class="identifier">args</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">a2</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Note the use of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><></span></code> to access the return type of
the <code class="computeroutput"><span class="identifier">CalcArity</span></code> function
object. Since we used compile-time integers in our transforms, the arity
of the expression is encoded in the return type of the <code class="computeroutput"><span class="identifier">CalcArity</span></code> function object. Proto grammars
are valid TR1-style function objects, so you can use <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><></span></code> to figure out their return types.
</p>
<p>
With our compile-time assertions in place, when users provide too many
or too few arguments to a calculator expression, as in:
</p>
<pre class="programlisting"><span class="special">(</span><span class="identifier">_2</span> <span class="special">*</span> <span class="identifier">_2</span><span class="special">)(</span><span class="number">42</span><span class="special">);</span> <span class="comment">// Oops, too few arguments!
</span></pre>
<p>
... they will get a compile-time error message on the line with the assertion
that reads something like this
<sup>[<a name="id1511617" href="#ftn.id1511617" class="footnote">3</a>]</sup>
:
</p>
<pre class="programlisting">c:\boost\org\trunk\libs\proto\scratch\main.cpp(97) : error C2664: 'boost::mpl::asse
rtion_failed' : cannot convert parameter 1 from 'boost::mpl::failed ************boo
st::mpl::assert_relation<x,y,__formal>::************' to 'boost::mpl::assert<false>
::type'
with
[
x=1,
y=2,
__formal=bool boost::mpl::operator==(boost::mpl::failed,boost::mpl::failed)
]
</pre>
<p>
The point of this exercise was to show that we can write a fairly simple
Proto grammar with embedded transforms that is declarative and readable
and can compute interesting properties of arbitrarily complicated expressions.
But transforms can do more than that. Boost.Xpressive uses transforms
to turn expressions into finite state automata for matching regular expressions,
and Boost.Spirit uses transforms to build recursive descent parser generators.
Proto comes with a collection of built-in transforms that you can use
to perform very sophisticated expression manipulations like these. In
the next few sections we'll see some of them in action.
</p>
</div>
<div class="section" title="Transforms With State Accumulation">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.state"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.state" title="Transforms With State Accumulation">
Transforms With State Accumulation</a>
</h5></div></div></div>
<p>
So far, we've only seen examples of grammars with transforms that accept
one argument: the expression to transform. But consider for a moment
how, in ordinary procedural code, you would turn a binary tree into a
linked list. You would start with an empty list. Then, you would recursively
convert the right branch to a list, and use the result as the initial
state while converting the left branch to a list. That is, you would
need a function that takes two parameters: the current node and the list
so far. These sorts of <span class="emphasis"><em>accumulation</em></span> problems are
quite common when processing trees. The linked list is an example of
an accumulation variable or <span class="emphasis"><em>state</em></span>. Each iteration
of the algorithm takes the current element and state, applies some binary
function to the two and creates a new state. In the STL, this algorithm
is called <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">accumulate</span><span class="special">()</span></code>.
In many other languages, it is called <span class="emphasis"><em>fold</em></span>. Let's
see how to implement a fold algorithm with Proto transforms.
</p>
<p>
All Proto grammars can optionally accept a state parameter in addition
to the expression to transform. If you want to fold a tree to a list,
you'll need to make use of the state parameter to pass around the list
you've built so far. As for the list, the Boost.Fusion library provides
a <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special"><></span></code>
type from which you can build heterogeneous lists. The type <code class="computeroutput"><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span></code> represents an empty list.
</p>
<p>
Below is a grammar that recognizes output expressions like <code class="computeroutput"><span class="identifier">cout_</span> <span class="special"><<</span>
<span class="number">42</span> <span class="special"><<</span>
<span class="char">'\n'</span></code> and puts the arguments into
a Fusion list. It is explained below.
</p>
<pre class="programlisting"><span class="comment">// Fold the terminals in output statements like
</span><span class="comment">// "cout_ << 42 << '\n'" into a Fusion cons-list.
</span><span class="keyword">struct</span> <span class="identifier">FoldToList</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="comment">// Don't add the ostream terminal to the list
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span>
<span class="special">></span>
<span class="comment">// Put all other terminals at the head of the
</span> <span class="comment">// list that we're building in the "state" parameter
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">>(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span>
<span class="special">)</span>
<span class="special">></span>
<span class="comment">// For left-shift operations, first fold the right
</span> <span class="comment">// child to a list using the current state. Use
</span> <span class="comment">// the result as the state parameter when folding
</span> <span class="comment">// the left child to a list.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><</span><span class="identifier">FoldToList</span><span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
<span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)</span>
<span class="special">)</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Before reading on, see if you can apply what you know already about object,
callable and primitive transforms to figure out how this grammar works.
</p>
<p>
When you use the <code class="computeroutput"><span class="identifier">FoldToList</span></code>
function, you'll need to pass two arguments: the expression to fold,
and the initial state: an empty list. Those two arguments get passed
around to each transform. We learned previously that <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span></code>
is a primitive transform that accepts a terminal expression and extracts
its value. What we didn't know until now was that it also accepts the
current state <span class="emphasis"><em>and ignores it</em></span>. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span></code>
is also a primitive transform. It accepts the current expression, which
it ignores, and the current state, which it returns.
</p>
<p>
When we find a terminal, we stick it at the head of the cons list, using
the current state as the tail of the list. (The first alternate causes
the <code class="computeroutput"><span class="identifier">ostream</span></code> to be skipped.
We don't want <code class="computeroutput"><span class="identifier">cout</span></code> in
the list.) When we find a shift-left node, we apply the following transform:
</p>
<pre class="programlisting"><span class="comment">// Fold the right child and use the result as
</span><span class="comment">// state while folding the right.
</span><span class="identifier">FoldToList</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
<span class="special">,</span> <span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)</span>
<span class="special">)</span>
</pre>
<p>
You can read this transform as follows: using the current state, fold
the right child to a list. Use the new list as the state while folding
the left child to a list.
</p>
<div class="tip" title="Tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../doc/html/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top">
<p>
If your compiler is Microsoft Visual C++, you'll find that the above
transform does not compile. The compiler has bugs with its handling
of nested function types. You can work around the bug by wrapping the
inner transform in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special"><></span></code> as follows:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">FoldToList</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special"><</span><span class="identifier">FoldToList</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)></span>
<span class="special">)</span>
</pre>
<p>
</p>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special"><></span></code>
turns a callable transform into a primitive transform, but more on
that later.
</p>
</td></tr>
</table></div>
<p>
Now that we have defined the <code class="computeroutput"><span class="identifier">FoldToList</span></code>
function object, we can use it to turn output expressions into lists
as follows:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">};</span>
<span class="comment">// This is the type of the list we build below
</span><span class="keyword">typedef</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special"><</span>
<span class="keyword">int</span>
<span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special"><</span>
<span class="keyword">double</span>
<span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">cons</span><span class="special"><</span>
<span class="keyword">char</span>
<span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">></span>
<span class="identifier">result_type</span><span class="special">;</span>
<span class="comment">// Fold an output expression into a Fusion list, using
</span><span class="comment">// fusion::nil as the initial state of the transformation.
</span><span class="identifier">FoldToList</span> <span class="identifier">to_list</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="identifier">args</span> <span class="special">=</span> <span class="identifier">to_list</span><span class="special">(</span><span class="identifier">cout_</span> <span class="special"><<</span> <span class="number">1</span> <span class="special"><<</span> <span class="number">3.14</span> <span class="special"><<</span> <span class="char">'\n'</span><span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">nil</span><span class="special">());</span>
<span class="comment">// Now "args" is the list: {1, 3.14, '\n'}
</span></pre>
<p>
When writing transforms, "fold" is such a basic operation that
Proto provides a number of built-in fold transforms. We'll get to them
later. For now, rest assured that you won't always have to stretch your
brain so far to do such basic things.
</p>
</div>
<div class="section" title="Passing Auxiliary Data to Transforms">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.data"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.data" title="Passing Auxiliary Data to Transforms">
Passing Auxiliary Data to Transforms</a>
</h5></div></div></div>
<p>
In the last section, we saw that we can pass a second parameter to grammars
with transforms: an accumulation variable or <span class="emphasis"><em>state</em></span>
that gets updated as your transform executes. There are times when your
transforms will need to access auxiliary data that does <span class="emphasis"><em>not</em></span>
accumulate, so bundling it with the state parameter is impractical. Instead,
you can pass auxiliary data as a third parameter, known as the <span class="emphasis"><em>data</em></span>
parameter. Below we show an example involving string processing where
the data parameter is essential.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
All Proto grammars are function objects that take one, two or three
arguments: the expression, the state, and the data. There are no additional
arguments to know about, we promise. In Haskell, there is set of tree
traversal technologies known collectively as <a class="link" href="users_guide.html#boost_proto.users_guide.resources.SYB"><span class="quote">“<span class="quote">Scrap
Your Boilerplate</span>”</span></a>. In that framework, there are also
three parameters: the term, the accumulator, and the context. These
are Proto's expression, state and data parameters under different names.
</p></td></tr>
</table></div>
<p>
Expression templates are often used as an optimization to eliminate temporary
objects. Consider the problem of string concatenation: a series of concatenations
would result in the needless creation of temporary strings. We can use
Proto to make string concatenation very efficient. To make the problem
more interesting, we can apply a locale-sensitive transformation to each
character during the concatenation. The locale information will be passed
as the data parameter.
</p>
<p>
Consider the following expression template:
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span> <span class="special">+</span> <span class="string">" "</span> <span class="special">+</span> <span class="string">"world"</span><span class="special">;</span>
</pre>
<p>
We would like to concatenate this string into a statically allocated
wide character buffer, widening each character in turn using the specified
locale. The first step is to write a grammar that describes this expression,
with transforms that calculate the total string length. Here it is:
</p>
<pre class="programlisting"><span class="comment">// A grammar that matches string concatenation expressions, and
</span><span class="comment">// a transform that calculates the total string length.
</span><span class="keyword">struct</span> <span class="identifier">StringLength</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="comment">// When you find a character array ...
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">char</span><span class="special">[</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">N</span><span class="special">]></span>
<span class="comment">// ... the length is the size of the array minus 1.
</span> <span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">prior</span><span class="special"><</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">sizeof_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">></span> <span class="special">>()</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="comment">// The length of a concatenated string is ...
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">StringLength</span><span class="special">,</span> <span class="identifier">StringLength</span><span class="special">></span>
<span class="comment">// ... the sum of the lengths of each sub-string.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special"><</span>
<span class="identifier">_</span>
<span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">size_t</span><span class="special"><</span><span class="number">0</span><span class="special">>()</span>
<span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">StringLength</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">>()</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Notice the use of <code class="computeroutput"><a class="link" href="../boost/proto/fold.html" title="Struct template fold">proto::fold<></a></code>. It is a primitive
transform that takes a sequence, a state, and function, just like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">accumulate</span><span class="special">()</span></code>.
The three template parameters are transforms. The first yields the sequence
of expressions over which to fold, the second yields the initial state
of the fold, and the third is the function to apply at each iteration.
The use of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code> as the first parameter might have
you confused. In addition to being Proto's wildcard, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>
is also a primitive transform that returns the current expression, which
(if it is a non-terminal) is a sequence of its child expressions.
</p>
<p>
Next, we need a function object that accepts a narrow string, a wide
character buffer, and a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ctype</span><span class="special"><></span></code> facet for doing the locale-specific
stuff. It's fairly straightforward.
</p>
<pre class="programlisting"><span class="comment">// A function object that writes a narrow string
</span><span class="comment">// into a wide buffer.
</span><span class="keyword">struct</span> <span class="identifier">WidenCopy</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">wchar_t</span> <span class="special">*</span><span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">wchar_t</span> <span class="special">*</span>
<span class="keyword">operator</span><span class="special">()(</span><span class="keyword">char</span> <span class="keyword">const</span> <span class="special">*</span><span class="identifier">str</span><span class="special">,</span> <span class="keyword">wchar_t</span> <span class="special">*</span><span class="identifier">buf</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ctype</span><span class="special"><</span><span class="keyword">char</span><span class="special">></span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">ct</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">for</span><span class="special">(;</span> <span class="special">*</span><span class="identifier">str</span><span class="special">;</span> <span class="special">++</span><span class="identifier">str</span><span class="special">,</span> <span class="special">++</span><span class="identifier">buf</span><span class="special">)</span>
<span class="special">*</span><span class="identifier">buf</span> <span class="special">=</span> <span class="identifier">ct</span><span class="special">.</span><span class="identifier">widen</span><span class="special">(*</span><span class="identifier">str</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">buf</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Finally, we need some transforms that actually walk the concatenated
string expression, widens the characters and writes them to a buffer.
We will pass a <code class="computeroutput"><span class="keyword">wchar_t</span><span class="special">*</span></code>
as the state parameter and update it as we go. We'll also pass the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ctype</span><span class="special"><></span></code>
facet as the data parameter. It looks like this:
</p>
<pre class="programlisting"><span class="comment">// Write concatenated strings into a buffer, widening
</span><span class="comment">// them as we go.
</span><span class="keyword">struct</span> <span class="identifier">StringCopy</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">char</span><span class="special">[</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">N</span><span class="special">]></span>
<span class="special">,</span> <span class="identifier">WidenCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">StringCopy</span><span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span>
<span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
<span class="special">)</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Let's look more closely at the transform associated with non-terminals:
</p>
<pre class="programlisting"><span class="identifier">StringCopy</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span>
<span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
<span class="special">)</span>
</pre>
<p>
This bears a resemblance to the transform in the previous section that
folded an expression tree into a list. First we recurse on the left child,
writing its strings into the <code class="computeroutput"><span class="keyword">wchar_t</span><span class="special">*</span></code> passed in as the state parameter. That
returns the new value of the <code class="computeroutput"><span class="keyword">wchar_t</span><span class="special">*</span></code>, which is passed as state while transforming
the right child. Both invocations receive the same <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">ctype</span><span class="special"><></span></code>, which is passed in as the data
parameter.
</p>
<p>
With these pieces in our pocket, we can implement our concatenate-and-widen
function as follows:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">void</span> <span class="identifier">widen</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="comment">// Make sure the expression conforms to our grammar
</span> <span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">StringLength</span><span class="special">></span> <span class="special">));</span>
<span class="comment">// Calculate the length of the string and allocate a buffer statically
</span> <span class="keyword">static</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="keyword">const</span> <span class="identifier">length</span> <span class="special">=</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><</span><span class="identifier">StringLength</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">)>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">;</span>
<span class="keyword">wchar_t</span> <span class="identifier">buffer</span><span class="special">[</span> <span class="identifier">length</span> <span class="special">+</span> <span class="number">1</span> <span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">L</span><span class="char">'\0'</span><span class="special">};</span>
<span class="comment">// Get the current ctype facet
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">locale</span> <span class="identifier">loc</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ctype</span><span class="special"><</span><span class="keyword">char</span><span class="special">></span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">ct</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">use_facet</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ctype</span><span class="special"><</span><span class="keyword">char</span><span class="special">></span> <span class="special">>(</span><span class="identifier">loc</span><span class="special">));</span>
<span class="comment">// Concatenate and widen the string expression
</span> <span class="identifier">StringCopy</span><span class="special">()(</span><span class="identifier">expr</span><span class="special">,</span> <span class="special">&</span><span class="identifier">buffer</span><span class="special">[</span><span class="number">0</span><span class="special">],</span> <span class="identifier">ct</span><span class="special">);</span>
<span class="comment">// Write out the buffer.
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">wcout</span> <span class="special"><<</span> <span class="identifier">buffer</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">widen</span><span class="special">(</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">lit</span><span class="special">(</span><span class="string">"hello"</span><span class="special">)</span> <span class="special">+</span> <span class="string">" "</span> <span class="special">+</span> <span class="string">"world"</span> <span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
The above code displays:
</p>
<pre class="programlisting">hello world
</pre>
<p>
This is a rather round-about way of demonstrating that you can pass extra
data to a transform as a third parameter. There are no restrictions on
what this parameter can be, and (unlike the state parameter) Proto will
never mess with it.
</p>
<a name="boost_proto.users_guide.back_end.expression_transformation.data.implicit_parameters_to_primitive_transforms"></a><h6>
<a name="id1515314"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.data.implicit_parameters_to_primitive_transforms">Implicit
Parameters to Primitive Transforms</a>
</h6>
<p>
Let's use the above example to illustrate some other niceties of Proto
transforms. We've seen that grammars, when used as function objects,
can accept up to 3 parameters, and that when using these grammars in
callable transforms, you can also specify up to 3 parameters. Let's take
another look at the transform associated with non-terminals above:
</p>
<pre class="programlisting"><span class="identifier">StringCopy</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span>
<span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
<span class="special">)</span>
</pre>
<p>
Here we specify all three parameters to both invocations of the <code class="computeroutput"><span class="identifier">StringCopy</span></code> grammar. But we don't have
to specify all three. If we don't specify a third parameter, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span></code> is assumed. Likewise for the
second parameter and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span></code>.
So the above transform could have been written more simply as:
</p>
<pre class="programlisting"><span class="identifier">StringCopy</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span>
<span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">)</span>
<span class="special">)</span>
</pre>
<p>
The same is true for any primitive transform. The following are all equivalent:
</p>
<div class="table">
<a name="id1515589"></a><p class="title"><b>Table 15.8. Implicit Parameters to Primitive Transforms</b></p>
<div class="table-contents"><table class="table" summary="Implicit Parameters to Primitive Transforms">
<colgroup><col></colgroup>
<thead><tr><th>
<p>
Equivalent Transforms
</p>
</th></tr></thead>
<tbody>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span>
<span class="identifier">StringCopy</span><span class="special">></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span>
<span class="identifier">StringCopy</span><span class="special">()></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span>
<span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">_</span><span class="special">)></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span>
<span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">_</span><span class="special">,</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span>
<span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">_</span><span class="special">,</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)></span></code>
</p>
</td></tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
<span class="bold"><strong>Grammars Are Primitive Transforms Are Function
Objects</strong></span>
</p>
<p>
So far, we've said that all Proto grammars are function objects. But
it's more accurate to say that Proto grammars are primitive transforms
-- a special kind of function object that takes between 1 and 3 arguments,
and that Proto knows to treat specially when used in a callable transform,
as in the table above.
</p>
</td></tr>
</table></div>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top">
<p>
<span class="bold"><strong>Not All Function Objects Are Primitive Transforms</strong></span>
</p>
<p>
You might be tempted now to drop the <code class="computeroutput"><span class="identifier">_state</span></code>
and <code class="computeroutput"><span class="identifier">_data</span></code> parameters
to <code class="computeroutput"><span class="identifier">WidenCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">,</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span></code>.
That would be an error. <code class="computeroutput"><span class="identifier">WidenCopy</span></code>
is just a plain function object, not a primitive transform, so you
must specify all its arguments. We'll see later how to write your own
primitive transforms.
</p>
</td></tr>
</table></div>
<p>
Once you know that primitive transforms will always receive all three
parameters -- expression, state, and data -- it makes things possible
that wouldn't be otherwise. For instance, consider that for binary expressions,
these two transforms are equivalent. Can you see why?
</p>
<div class="table">
<a name="id1516102"></a><p class="title"><b>Table 15.9. Two Equivalent Transforms</b></p>
<div class="table-contents"><table class="table" summary="Two Equivalent Transforms">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Without <code class="literal">proto::fold<></code>
</p>
</th>
<th>
<p>
With <code class="literal">proto::fold<></code>
</p>
</th>
</tr></thead>
<tbody><tr>
<td>
<p>
</p>
<pre class="programlisting"><span class="identifier">StringCopy</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span>
<span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
<span class="special">)</span></pre>
<p>
</p>
</td>
<td>
<p>
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">,</span> <span class="identifier">StringCopy</span><span class="special">></span></pre>
<p>
</p>
</td>
</tr></tbody>
</table></div>
</div>
<br class="table-break">
</div>
<div class="section" title="Proto's Built-In Transforms">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms" title="Proto's Built-In Transforms">
Proto's Built-In Transforms</a>
</h5></div></div></div>
<p>
Primitive transforms are the building blocks for more interesting composite
transforms. Proto defines a bunch of generally useful primitive transforms.
They are summarized below.
</p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_value.html" title="Struct _value">proto::_value</a></code></span></dt>
<dd><p>
Given a terminal expression, return the value of the terminal.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_child_c.html" title="Struct template _child_c">proto::_child_c<></a></code></span></dt>
<dd><p>
Given a non-terminal expression, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special"><</span>
<em class="replaceable"><code>
N
</code></em>
<span class="special">></span></code> returns the
<em class="replaceable"><code>
N
</code></em>
-th child.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="reference.html#boost.proto._child">proto::_child</a></code></span></dt>
<dd><p>
A synonym for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special"><</span><span class="number">0</span><span class="special">></span></code>.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="reference.html#boost.proto._left">proto::_left</a></code></span></dt>
<dd><p>
A synonym for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special"><</span><span class="number">0</span><span class="special">></span></code>.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="reference.html#boost.proto._right">proto::_right</a></code></span></dt>
<dd><p>
A synonym for <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child_c</span><span class="special"><</span><span class="number">1</span><span class="special">></span></code>.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_expr.html" title="Struct _expr">proto::_expr</a></code></span></dt>
<dd><p>
Returns the current expression unmodified.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_state.html" title="Struct _state">proto::_state</a></code></span></dt>
<dd><p>
Returns the current state unmodified.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_data.html" title="Struct _data">proto::_data</a></code></span></dt>
<dd><p>
Returns the current data unmodified.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/call.html" title="Struct template call">proto::call<></a></code></span></dt>
<dd><p>
For a given callable transform <code class="computeroutput">
<em class="replaceable"><code>
CT
</code></em>
</code>, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special"><</span>
<em class="replaceable"><code>
CT
</code></em>
<span class="special">></span></code> turns the callable transform
into a primitive transform. This is useful for disambiguating callable
transforms from object transforms, and also for working around compiler
bugs with nested function types.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/make.html" title="Struct template make">proto::make<></a></code></span></dt>
<dd><p>
For a given object transform <code class="computeroutput">
<em class="replaceable"><code>
OT
</code></em>
</code>, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">make</span><span class="special"><</span>
<em class="replaceable"><code>
OT
</code></em>
<span class="special">></span></code> turns the object transform
into a primitive transform. This is useful for disambiguating object
transforms from callable transforms, and also for working around
compiler bugs with nested function types.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_default.html" title="Struct template _default">proto::_default<></a></code></span></dt>
<dd><p>
Given a grammar
<em class="replaceable"><code>
G
</code></em>
, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_default</span><span class="special"><</span>
<em class="replaceable"><code>
G
</code></em>
<span class="special">></span></code> evaluates the current
node according to the standard C++ meaning of the operation the node
represents. For instance, if the current node is a binary plus node,
the two children will both be evaluated according to <code class="computeroutput">
<em class="replaceable"><code>
G
</code></em>
</code> and the results will be added and returned. The return type
is deduced with the help of the Boost.Typeof library.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/fold.html" title="Struct template fold">proto::fold<></a></code></span></dt>
<dd><p>
Given three transforms <code class="computeroutput">
<em class="replaceable"><code>
ET
</code></em>
</code>, <code class="computeroutput">
<em class="replaceable"><code>
ST
</code></em>
</code>, and <code class="computeroutput">
<em class="replaceable"><code>
FT
</code></em>
</code>, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special"><</span>
<em class="replaceable"><code>
ET
</code></em>
<span class="special">,</span>
<em class="replaceable"><code>
ST
</code></em>
<span class="special">,</span>
<em class="replaceable"><code>
FT
</code></em>
<span class="special">></span></code> first evaluates <code class="computeroutput">
<em class="replaceable"><code>
ET
</code></em>
</code> to obtain a Fusion sequence and <code class="computeroutput">
<em class="replaceable"><code>
ST
</code></em>
</code> to obtain an initial state for the fold, and then evaluates
<code class="computeroutput">
<em class="replaceable"><code>
FT
</code></em>
</code> for each element in the sequence to generate the next state
from the previous.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/reverse_fold.html" title="Struct template reverse_fold">proto::reverse_fold<></a></code></span></dt>
<dd><p>
Like <code class="computeroutput"><a class="link" href="../boost/proto/fold.html" title="Struct template fold">proto::fold<></a></code>, except the elements
in the Fusion sequence are iterated in reverse order.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/fold_tree.html" title="Struct template fold_tree">proto::fold_tree<></a></code></span></dt>
<dd><p>
Like <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special"><</span>
<em class="replaceable"><code>
ET
</code></em>
<span class="special">,</span>
<em class="replaceable"><code>
ST
</code></em>
<span class="special">,</span>
<em class="replaceable"><code>
FT
</code></em>
<span class="special">></span></code>, except that the result
of the <code class="computeroutput">
<em class="replaceable"><code>
ET
</code></em>
</code> transform is treated as an expression tree that is <span class="emphasis"><em>flattened</em></span>
to generate the sequence to be folded. Flattening an expression tree
causes child nodes with the same tag type as the parent to be put
into sequence. For instance, <code class="computeroutput"><span class="identifier">a</span>
<span class="special">>></span> <span class="identifier">b</span>
<span class="special">>></span> <span class="identifier">c</span></code>
would be flattened to the sequence [<code class="computeroutput"><span class="identifier">a</span></code>,
<code class="computeroutput"><span class="identifier">b</span></code>, <code class="computeroutput"><span class="identifier">c</span></code>], and this is the sequence that
would be folded.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/reverse_fold_tree.html" title="Struct template reverse_fold_tree">proto::reverse_fold_tree<></a></code></span></dt>
<dd><p>
Like <code class="computeroutput"><a class="link" href="../boost/proto/fold_tree.html" title="Struct template fold_tree">proto::fold_tree<></a></code>, except that
the flattened sequence is iterated in reverse order.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/lazy.html" title="Struct template lazy">proto::lazy<></a></code></span></dt>
<dd><p>
A combination of <code class="computeroutput"><a class="link" href="../boost/proto/make.html" title="Struct template make">proto::make<></a></code>
and <code class="computeroutput"><a class="link" href="../boost/proto/call.html" title="Struct template call">proto::call<></a></code> that is useful
when the nature of the transform depends on the expression, state
and/or data parameters. <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">lazy</span><span class="special"><</span><span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">...</span><span class="identifier">An</span><span class="special">)></span></code> first evaluates <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">make</span><span class="special"><</span><span class="identifier">R</span><span class="special">()></span></code>
to compute a callable type <code class="computeroutput"><span class="identifier">R2</span></code>.
Then, it evaluates <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special"><</span><span class="identifier">R2</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">...</span><span class="identifier">An</span><span class="special">)></span></code>.
</p></dd>
</dl>
</div>
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.all_grammars_are_primitive_transforms"></a><h6>
<a name="id1517485"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms.all_grammars_are_primitive_transforms">All
Grammars Are Primitive Transforms</a>
</h6>
<p>
In addition to the above primitive transforms, all of Proto's grammar
elements are also primitive transforms. Their behaviors are described
below.
</p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/_.html" title="Struct _">proto::_</a></code></span></dt>
<dd><p>
Return the current expression unmodified.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code></span></dt>
<dd><p>
For the specified set of alternate sub-grammars, find the one that
matches the given expression and apply its associated transform.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/and_.html" title="Struct template and_">proto::and_<></a></code></span></dt>
<dd><p>
For the given set of sub-grammars, take the <span class="emphasis"><em>last</em></span>
sub-grammar and apply its associated transform.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/not_.html" title="Struct template not_">proto::not_<></a></code></span></dt>
<dd><p>
Return the current expression unmodified.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/if_.html" title="Struct template if_">proto::if_<></a></code></span></dt>
<dd><p>
Given three transforms, evaluate the first and treat the result as
a compile-time Boolean value. If it is true, evaluate the second
transform. Otherwise, evaluate the third.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/switch_.html" title="Struct template switch_">proto::switch_<></a></code></span></dt>
<dd><p>
As with <code class="computeroutput"><a class="link" href="../boost/proto/or_.html" title="Struct template or_">proto::or_<></a></code>, find the sub-grammar
that matches the given expression and apply its associated transform.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal<></a></code></span></dt>
<dd><p>
Return the current terminal expression unmodified.
</p></dd>
<dt><span class="term"> <code class="computeroutput"><a class="link" href="../boost/proto/plus.html" title="Struct template plus">proto::plus<></a></code>,
<code class="computeroutput"><a class="link" href="../boost/proto/nary_expr.html" title="Struct template nary_expr">proto::nary_expr<></a></code>, et. al.</span></dt>
<dd><p>
A Proto grammar that matches a non-terminal such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span>
<em class="replaceable"><code>
G0
</code></em>
<span class="special">,</span>
<em class="replaceable"><code>
G1
</code></em>
<span class="special">></span></code>, when used as a primitive
transform, creates a new plus node where the left child is transformed
according to <code class="computeroutput">
<em class="replaceable"><code>
G0
</code></em>
</code> and the right child with <code class="computeroutput">
<em class="replaceable"><code>
G1
</code></em>
</code>.
</p></dd>
</dl>
</div>
<a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_pass_through_transform"></a><h6>
<a name="id1517801"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_pass_through_transform">The
Pass-Through Transform</a>
</h6>
<p>
Note the primitive transform associated with grammar elements such as
<code class="computeroutput"><a class="link" href="../boost/proto/plus.html" title="Struct template plus">proto::plus<></a></code> described above.
They possess a so-called <span class="emphasis"><em>pass-through</em></span> transform.
The pass-through transform accepts an expression of a certain tag type
(say, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span></code>) and creates a new expression
of the same tag type, where each child expression is transformed according
to the corresponding child grammar of the pass-through transform. So
for instance this grammar ...
</p>
<pre class="programlisting"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span> <span class="identifier">X</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span><span class="identifier">Y</span><span class="special">></span> <span class="special">></span>
</pre>
<p>
... matches function expressions where the first child matches the <code class="computeroutput"><span class="identifier">X</span></code> grammar and the rest match the <code class="computeroutput"><span class="identifier">Y</span></code> grammar. When used as a transform,
the above grammar will create a new function expression where the first
child is transformed according to <code class="computeroutput"><span class="identifier">X</span></code>
and the rest are transformed according to <code class="computeroutput"><span class="identifier">Y</span></code>.
</p>
<p>
The following class templates in Proto can be used as grammars with pass-through
transforms:
</p>
<div class="table">
<a name="id1517984"></a><p class="title"><b>Table 15.10. Class Templates With Pass-Through Transforms</b></p>
<div class="table-contents"><table class="table" summary="Class Templates With Pass-Through Transforms">
<colgroup><col></colgroup>
<thead><tr><th>
<p>
Templates with Pass-Through Transforms
</p>
</th></tr></thead>
<tbody>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">negate</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">dereference</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">complement</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">address_of</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_not</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_inc</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pre_dec</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_inc</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">post_dec</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">less_equal</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">greater_equal</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">equal_to</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_equal_to</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_or</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_and</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">comma</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">mem_ptr</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">subscript</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">if_else_</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_expr</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">binary_expr</span><span class="special"><></span></code>
</p>
</td></tr>
<tr><td>
<p>
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><></span></code>
</p>
</td></tr>
</tbody>
</table></div>
</div>
<br class="table-break"><a name="boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_many_roles_of_proto_operator_metafunctions"></a><h6>
<a name="id1519521"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.canned_transforms.the_many_roles_of_proto_operator_metafunctions">The
Many Roles of Proto Operator Metafunctions</a>
</h6>
<p>
We've seen templates such as <code class="computeroutput"><a class="link" href="../boost/proto/terminal.html" title="Struct template terminal">proto::terminal<></a></code>,
<code class="computeroutput"><a class="link" href="../boost/proto/plus.html" title="Struct template plus">proto::plus<></a></code> and <code class="computeroutput"><a class="link" href="../boost/proto/nary_expr.html" title="Struct template nary_expr">proto::nary_expr<></a></code>
fill many roles. They are metafunction that generate expression types.
They are grammars that match expression types. And they are primitive
transforms. The following code samples show examples of each.
</p>
<p>
<span class="bold"><strong>As Metafunctions ...</strong></span>
</p>
<pre class="programlisting"><span class="comment">// proto::terminal<> and proto::plus<> are metafunctions
</span><span class="comment">// that generate expression types:
</span><span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">int_</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">int_</span><span class="special">,</span> <span class="identifier">int_</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">plus_</span><span class="special">;</span>
<span class="identifier">int_</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">{</span><span class="number">42</span><span class="special">},</span> <span class="identifier">j</span> <span class="special">=</span> <span class="special">{</span><span class="number">24</span><span class="special">};</span>
<span class="identifier">plus_</span> <span class="identifier">p</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">i</span><span class="special">,</span> <span class="identifier">j</span><span class="special">};</span>
</pre>
<p>
<span class="bold"><strong>As Grammars ...</strong></span>
</p>
<pre class="programlisting"><span class="comment">// proto::terminal<> and proto::plus<> are grammars that
</span><span class="comment">// match expression types
</span><span class="keyword">struct</span> <span class="identifier">Int</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Plus</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Int</span><span class="special">,</span> <span class="identifier">Int</span><span class="special">></span> <span class="special">{};</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">int_</span><span class="special">,</span> <span class="identifier">Int</span> <span class="special">></span> <span class="special">));</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span> <span class="identifier">plus_</span><span class="special">,</span> <span class="identifier">Plus</span> <span class="special">></span> <span class="special">));</span>
</pre>
<p>
<span class="bold"><strong>As Primitive Transforms ...</strong></span>
</p>
<pre class="programlisting"><span class="comment">// A transform that removes all unary_plus nodes in an expression
</span><span class="keyword">struct</span> <span class="identifier">RemoveUnaryPlus</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">unary_plus</span><span class="special"><</span><span class="identifier">RemoveUnaryPlus</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">RemoveUnaryPlus</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child</span><span class="special">)</span>
<span class="special">></span>
<span class="comment">// Use proto::terminal<> and proto::nary_expr<>
</span> <span class="comment">// both as grammars and as primitive transforms.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span><span class="identifier">RemoveUnaryPlus</span><span class="special">></span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">literal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">i</span><span class="special">(</span><span class="number">0</span><span class="special">);</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
<span class="special">+</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+(</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">);</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">display_expr</span><span class="special">(</span>
<span class="identifier">RemoveUnaryPlus</span><span class="special">()(</span> <span class="special">+</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+(</span><span class="identifier">i</span> <span class="special">-</span> <span class="special">+</span><span class="identifier">i</span><span class="special">)</span> <span class="special">)</span>
<span class="special">);</span>
<span class="special">}</span>
</pre>
<p>
The above code displays the following, which shows that unary plus nodes
have been stripped from the expression:
</p>
<pre class="programlisting">minus(
unary_plus(
terminal(0)
)
, unary_plus(
minus(
terminal(0)
, unary_plus(
terminal(0)
)
)
)
)
minus(
terminal(0)
, minus(
terminal(0)
, terminal(0)
)
)
</pre>
</div>
<div class="section" title="Building Custom Primitive Transforms">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.primitives"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.primitives" title="Building Custom Primitive Transforms">
Building Custom Primitive Transforms</a>
</h5></div></div></div>
<p>
In previous sections, we've seen how to compose larger transforms out
of smaller transforms using function types. The smaller transforms from
which larger transforms are composed are <span class="emphasis"><em>primitive transforms</em></span>,
and Proto provides a bunch of common ones such as <code class="computeroutput"><span class="identifier">_child0</span></code>
and <code class="computeroutput"><span class="identifier">_value</span></code>. In this section
we'll see how to author your own primitive transforms.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
There are a few reasons why you might want to write your own primitive
transforms. For instance, your transform may be complicated, and composing
it out of primitives becomes unwieldy. You might also need to work
around compiler bugs on legacy compilers that make composing transforms
using function types problematic. Finally, you might also decide to
define your own primitive transforms to improve compile times. Since
Proto can simply invoke a primitive transform directly without having
to process arguments or differentiate callable transforms from object
transforms, primitive transforms are more efficient.
</p></td></tr>
</table></div>
<p>
Primitive transforms inherit from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform</span><span class="special"><></span></code> and have a nested <code class="computeroutput"><span class="identifier">impl</span><span class="special"><></span></code>
template that inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform_impl</span><span class="special"><></span></code>. For example, this is how Proto
defines the <code class="computeroutput"><span class="identifier">_child_c</span><span class="special"><</span>
<em class="replaceable"><code>
N
</code></em>
<span class="special">></span></code> transform, which returns
the
<em class="replaceable"><code>
N
</code></em>
-th child of the current expression:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">proto</span>
<span class="special">{</span>
<span class="comment">// A primitive transform that returns N-th child
</span> <span class="comment">// of the current expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">N</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">_child_c</span> <span class="special">:</span> <span class="identifier">transform</span><span class="special"><</span><span class="identifier">_child_c</span><span class="special"><</span><span class="identifier">N</span><span class="special">></span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">State</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Data</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">impl</span> <span class="special">:</span> <span class="identifier">transform_impl</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">State</span><span class="special">,</span> <span class="identifier">Data</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="keyword">typename</span> <span class="identifier">result_of</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">N</span><span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span>
<span class="keyword">typename</span> <span class="identifier">impl</span><span class="special">::</span><span class="identifier">expr_param</span> <span class="identifier">expr</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">impl</span><span class="special">::</span><span class="identifier">state_param</span> <span class="identifier">state</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">impl</span><span class="special">::</span><span class="identifier">data_param</span> <span class="identifier">data</span>
<span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">child_c</span><span class="special"><</span><span class="identifier">N</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="special">};</span>
<span class="comment">// Note that _child_c<N> is callable, so that
</span> <span class="comment">// it can be used in callable transforms, as:
</span> <span class="comment">// _child_c<0>(_child_c<1>)
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">N</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">is_callable</span><span class="special"><</span><span class="identifier">_child_c</span><span class="special"><</span><span class="identifier">N</span><span class="special">></span> <span class="special">></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
<span class="special">}}</span>
</pre>
<p>
The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform</span><span class="special"><></span></code>
base class provides the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code> overloads and the nested <code class="computeroutput"><span class="identifier">result</span><span class="special"><></span></code>
template that make your transform a valid function object. These are
implemented in terms of the nested <code class="computeroutput"><span class="identifier">impl</span><span class="special"><></span></code> template you define.
</p>
<p>
The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">transform_impl</span><span class="special"><></span></code>
base class is a convenience. It provides some nested typedefs that are
generally useful. They are specified in the table below:
</p>
<div class="table">
<a name="id1521670"></a><p class="title"><b>Table 15.11. proto::transform_impl<Expr, State, Data>
typedefs</b></p>
<div class="table-contents"><table class="table" summary="proto::transform_impl<Expr, State, Data>
typedefs">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
typedef
</p>
</th>
<th>
<p>
Equivalent To
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">expr</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">remove_reference</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">state</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">remove_reference</span><span class="special"><</span><span class="identifier">State</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">data</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">remove_reference</span><span class="special"><</span><span class="identifier">Data</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">expr_param</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">add_reference</span><span class="special"><</span><span class="keyword">typename</span>
<span class="identifier">add_const</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">state_param</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">add_reference</span><span class="special"><</span><span class="keyword">typename</span>
<span class="identifier">add_const</span><span class="special"><</span><span class="identifier">State</span><span class="special">>::</span><span class="identifier">type</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">data_param</span></code>
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="keyword">typename</span> <span class="identifier">add_reference</span><span class="special"><</span><span class="keyword">typename</span>
<span class="identifier">add_const</span><span class="special"><</span><span class="identifier">Data</span><span class="special">>::</span><span class="identifier">type</span><span class="special">>::</span><span class="identifier">type</span></code>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
You'll notice that <code class="computeroutput"><span class="identifier">_child_c</span><span class="special">::</span><span class="identifier">impl</span><span class="special">::</span><span class="keyword">operator</span><span class="special">()</span></code> takes arguments of types <code class="computeroutput"><span class="identifier">expr_param</span></code>, <code class="computeroutput"><span class="identifier">state_param</span></code>,
and <code class="computeroutput"><span class="identifier">data_param</span></code>. The typedefs
make it easy to accept arguments by reference or const reference accordingly.
</p>
<p>
The only other interesting bit is the <code class="computeroutput"><span class="identifier">is_callable</span><span class="special"><></span></code> specialization, which will be
described in the <a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.is_callable" title="Making Your Transform Callable">next
section</a>.
</p>
</div>
<div class="section" title="Making Your Transform Callable">
<div class="titlepage"><div><div><h5 class="title">
<a name="boost_proto.users_guide.back_end.expression_transformation.is_callable"></a><a class="link" href="users_guide.html#boost_proto.users_guide.back_end.expression_transformation.is_callable" title="Making Your Transform Callable">
Making Your Transform Callable</a>
</h5></div></div></div>
<p>
Transforms are typically of the form <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">Something</span><span class="special">,</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">,...)</span> <span class="special">></span></code>.
The question is whether <code class="computeroutput"><span class="identifier">R</span></code>
represents a function to call or an object to construct, and the answer
determines how <code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when<></a></code> evaluates the transform.
<code class="computeroutput"><a class="link" href="../boost/proto/when.html" title="Struct template when">proto::when<></a></code> uses the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special"><></span></code>
trait to disambiguate between the two. Proto does its best to guess whether
a type is callable or not, but it doesn't always get it right. It's best
to know the rules Proto uses, so that you know when you need to be more
explicit.
</p>
<p>
For most types <code class="computeroutput"><span class="identifier">R</span></code>, <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special"><</span><span class="identifier">R</span><span class="special">></span></code>
checks for inheritance from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>.
However, if the type <code class="computeroutput"><span class="identifier">R</span></code>
is a template specialization, Proto assumes that it is <span class="emphasis"><em>not</em></span>
callable <span class="emphasis"><em>even if the template inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code></em></span>.
We'll see why in a minute. Consider the following erroneous callable
object:
</p>
<pre class="programlisting"><span class="comment">// Proto can't tell this defines something callable!
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">times2</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">i</span> <span class="special">*</span> <span class="number">2</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// ERROR! This is not going to multiply the int by 2:
</span><span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">>(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
The problem is that Proto doesn't know that <code class="computeroutput"><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code> is callable, so rather that invoking
the <code class="computeroutput"><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code>
function object, Proto will try to construct a <code class="computeroutput"><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code> object and initialize it will an
<code class="computeroutput"><span class="keyword">int</span></code>. That will not compile.
</p>
<div class="note" title="Note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../doc/html/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
Why can't Proto tell that <code class="computeroutput"><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code> is callable? After all, it inherits
from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>, and that is detectable,
right? The problem is that merely asking whether some type <code class="computeroutput"><span class="identifier">X</span><span class="special"><</span><span class="identifier">Y</span><span class="special">></span></code>
inherits from <code class="computeroutput"><span class="identifier">callable</span></code>
will cause the template <code class="computeroutput"><span class="identifier">X</span><span class="special"><</span><span class="identifier">Y</span><span class="special">></span></code> to be instantiated. That's a problem
for a type like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">_child1</span><span class="special">)></span></code>. <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><></span></code> will not suffer to be instantiated
with <code class="computeroutput"><span class="identifier">_value</span><span class="special">(</span><span class="identifier">_child1</span><span class="special">)</span></code>
as a template parameter. Since merely asking the question will sometimes
result in a hard error, Proto can't ask; it has to assume that <code class="computeroutput"><span class="identifier">X</span><span class="special"><</span><span class="identifier">Y</span><span class="special">></span></code>
represents an object to construct and not a function to call.
</p></td></tr>
</table></div>
<p>
There are a couple of solutions to the <code class="computeroutput"><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code> problem. One solution is to wrap
the transform in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special"><></span></code>. This forces Proto to treat
<code class="computeroutput"><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code>
as callable:
</p>
<pre class="programlisting"><span class="comment">// OK, calls times2<int>
</span><span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">call</span><span class="special"><</span><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">>(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)></span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
This can be a bit of a pain, because we need to wrap every use of <code class="computeroutput"><span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span></code>,
which can be tedious and error prone, and makes our grammar cluttered
and harder to read.
</p>
<p>
Another solution is to specialize <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special"><></span></code> on our <code class="computeroutput"><span class="identifier">times2</span><span class="special"><></span></code> template:
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">proto</span>
<span class="special">{</span>
<span class="comment">// Tell Proto that times2<> is callable
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">is_callable</span><span class="special"><</span><span class="identifier">times2</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
<span class="special">}}</span>
<span class="comment">// OK, times2<> is callable
</span><span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">>(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
This is better, but still a pain because of the need to open Proto's
namespace.
</p>
<p>
You could simply make sure that the callable type is not a template specialization.
Consider the following:
</p>
<pre class="programlisting"><span class="comment">// No longer a template specialization!
</span><span class="keyword">struct</span> <span class="identifier">times2int</span> <span class="special">:</span> <span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="special">{};</span>
<span class="comment">// OK, times2int is callable
</span><span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">times2int</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
This works because now Proto can tell that <code class="computeroutput"><span class="identifier">times2int</span></code>
inherits (indirectly) from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>.
Any non-template types can be safely checked for inheritance because,
as they are not templates, there is no worry about instantiation errors.
</p>
<p>
There is one last way to tell Proto that <code class="computeroutput"><span class="identifier">times2</span><span class="special"><></span></code> is callable. You could add an
extra dummy template parameter that defaults to <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>:
</p>
<pre class="programlisting"><span class="comment">// Proto will recognize this as callable
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Callable</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">times2</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">i</span> <span class="special">*</span> <span class="number">2</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// OK, this works!
</span><span class="keyword">struct</span> <span class="identifier">IntTimes2</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">times2</span><span class="special"><</span><span class="keyword">int</span><span class="special">>(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
<span class="special">></span>
<span class="special">{};</span>
</pre>
<p>
Note that in addition to the extra template parameter, <code class="computeroutput"><span class="identifier">times2</span><span class="special"><></span></code>
still inherits from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span></code>.
That's not necessary in this example but it is good style because any
types derived from <code class="computeroutput"><span class="identifier">times2</span><span class="special"><></span></code> (as <code class="computeroutput"><span class="identifier">times2int</span></code>
defined above) will still be considered callable.
</p>
</div>
</div>
</div>
<div class="section" title="Examples">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.examples"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples" title="Examples">Examples</a>
</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.hello_world"> Hello
World: Building an Expression Template and Evaluating It</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.calc1"> Calc1: Defining
an Evaluation Context</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.calc2"> Calc2: Adding
Members Using <code class="literal">proto::extends<></code></a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.calc3"> Calc3: Defining
a Simple Transform</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.lazy_vector"> Lazy
Vector: Controlling Operator Overloads</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.rgb"> RGB: Type Manipulations
with Proto Transforms</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.tarray"> TArray: A
Simple Linear Algebra Library</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.vec3"> Vec3: Computing
With Transforms and Contexts</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.vector"> Vector: Adapting
a Non-Proto Terminal Type</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.mixed"> Mixed: Adapting
Several Non-Proto Terminal Types</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.map_assign"> Map Assign:
An Intermediate Transform</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.future_group"> Future
Group: A More Advanced Transform</a></span></dt>
<dt><span class="section"><a href="users_guide.html#boost_proto.users_guide.examples.lambda"> Lambda: A
Simple Lambda Library with Proto</a></span></dt>
</dl></div>
<p>
A code example is worth a thousand words ...
</p>
<div class="section" title="Hello World: Building an Expression Template and Evaluating It">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.hello_world"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.hello_world" title="Hello World: Building an Expression Template and Evaluating It"> Hello
World: Building an Expression Template and Evaluating It</a>
</h4></div></div></div>
<p>
A trivial example which builds and expression template and evaluates it.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">cout_</span> <span class="special">=</span> <span class="special">{</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_context</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">cout_</span> <span class="special"><<</span> <span class="string">"hello"</span> <span class="special"><<</span> <span class="char">','</span> <span class="special"><<</span> <span class="string">" world"</span> <span class="special">);</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Calc1: Defining an Evaluation Context">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.calc1"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.calc1" title="Calc1: Defining an Evaluation Context"> Calc1: Defining
an Evaluation Context</a>
</h4></div></div></div>
<p>
A simple example that builds a miniature domain-specific embedded language
for lazy arithmetic expressions, with TR1 bind-style argument placeholders.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This is a simple example of how to build an arithmetic expression
</span><span class="comment">// evaluator with placeholders.
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">{};</span>
<span class="comment">// Define some placeholders
</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span> <span class="number">1</span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span> <span class="number">2</span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="comment">// Define a calculator context, for evaluating arithmetic expressions
</span><span class="keyword">struct</span> <span class="identifier">calculator_context</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="comment">// The values bound to the placeholders
</span> <span class="keyword">double</span> <span class="identifier">d</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
<span class="comment">// The result of evaluating arithmetic expressions
</span> <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">explicit</span> <span class="identifier">calculator_context</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">d</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d1</span><span class="special">;</span>
<span class="identifier">d</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d2</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Handle the evaluation of the placeholder terminals
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">>)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">d</span><span class="special">[</span> <span class="identifier">I</span> <span class="special">-</span> <span class="number">1</span> <span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">double</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span> <span class="special">)</span>
<span class="special">{</span>
<span class="comment">// Create a calculator context with d1 and d2 substituted for _1 and _2
</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">,</span> <span class="identifier">d2</span><span class="special">);</span>
<span class="comment">// Evaluate the calculator expression with the calculator_context
</span> <span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Displays "5"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">_1</span> <span class="special">+</span> <span class="number">2.0</span><span class="special">,</span> <span class="number">3.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Displays "6"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_2</span><span class="special">,</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Displays "0.5"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">evaluate</span><span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span><span class="special">,</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Calc2: Adding Members Using proto::extends<>">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.calc2"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.calc2" title="Calc2: Adding Members Using proto::extends<>"> Calc2: Adding
Members Using <code class="literal">proto::extends<></code></a>
</h4></div></div></div>
<p>
An extension of the Calc1 example that uses <code class="computeroutput"><a class="link" href="../boost/proto/extends.html" title="Struct template extends">proto::extends<></a></code>
to make calculator expressions valid function objects that can be used
with STL algorithms.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This example enhances the simple arithmetic expression evaluator
</span><span class="comment">// in calc1.cpp by using proto::extends to make arithmetic
</span><span class="comment">// expressions immediately evaluable with operator (), a-la a
</span><span class="comment">// function object
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="comment">// Will be used to define the placeholders _1 and _2
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">{};</span>
<span class="comment">// For expressions in the calculator domain, operator ()
</span><span class="comment">// will be special; it will evaluate the expression.
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span><span class="special">;</span>
<span class="comment">// Define a calculator context, for evaluating arithmetic expressions
</span><span class="comment">// (This is as before, in calc1.cpp)
</span><span class="keyword">struct</span> <span class="identifier">calculator_context</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="comment">// The values bound to the placeholders
</span> <span class="keyword">double</span> <span class="identifier">d</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
<span class="comment">// The result of evaluating arithmetic expressions
</span> <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">explicit</span> <span class="identifier">calculator_context</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">d</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d1</span><span class="special">;</span>
<span class="identifier">d</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d2</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Handle the evaluation of the placeholder terminals
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">>)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">d</span><span class="special">[</span> <span class="identifier">I</span> <span class="special">-</span> <span class="number">1</span> <span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Wrap all calculator expressions in this type, which defines
</span><span class="comment">// operator () to evaluate the expression.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator_expression</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="identifier">base_type</span><span class="special">;</span>
<span class="keyword">explicit</span> <span class="identifier">calculator_expression</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
<span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">using</span> <span class="identifier">base_type</span><span class="special">::</span><span class="keyword">operator</span> <span class="special">=;</span>
<span class="comment">// Override operator () to evaluate the expression
</span> <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">,</span> <span class="identifier">d2</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Tell proto how to generate expressions in the calculator_domain
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">calculator_expression</span><span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Define some placeholders (notice they're wrapped in calculator_expression<>)
</span><span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span> <span class="number">1</span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span> <span class="number">2</span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>
<span class="comment">// Now, our arithmetic expressions are immediately executable function objects:
</span><span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Displays "5"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2.0</span><span class="special">)(</span> <span class="number">3.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Displays "6"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="special">(</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Displays "0.5"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Calc3: Defining a Simple Transform">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.calc3"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.calc3" title="Calc3: Defining a Simple Transform"> Calc3: Defining
a Simple Transform</a>
</h4></div></div></div>
<p>
An extension of the Calc2 example that uses a Proto transform to calculate
the arity of a calculator expression and statically assert that the correct
number of arguments are passed.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This example enhances the arithmetic expression evaluator
</span><span class="comment">// in calc2.cpp by using a proto transform to calculate the
</span><span class="comment">// number of arguments an expression requires and using a
</span><span class="comment">// compile-time assert to guarantee that the right number of
</span><span class="comment">// arguments are actually specified.
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">min_max</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="comment">// Will be used to define the placeholders _1 and _2
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">placeholder</span> <span class="special">:</span> <span class="identifier">I</span> <span class="special">{};</span>
<span class="comment">// This grammar basically says that a calculator expression is one of:
</span><span class="comment">// - A placeholder terminal
</span><span class="comment">// - Some other terminal
</span><span class="comment">// - Some non-terminal whose children are calculator expressions
</span><span class="comment">// In addition, it has transforms that say how to calculate the
</span><span class="comment">// expression arity for each of the three cases.
</span><span class="keyword">struct</span> <span class="identifier">CalculatorGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="comment">// placeholders have a non-zero arity ...
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span> <span class="special">></span>
<span class="comment">// Any other terminals have arity 0 ...
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">>,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">0</span><span class="special">>()</span> <span class="special">></span>
<span class="comment">// For any non-terminals, find the arity of the children and
</span> <span class="comment">// take the maximum. This is recursive.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">0</span><span class="special">>(),</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special"><</span><span class="identifier">CalculatorGrammar</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">>()</span> <span class="special">></span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Simple wrapper for calculating a calculator expression's arity.
</span><span class="comment">// It specifies mpl::int_<0> as the initial state. The data, which
</span><span class="comment">// is not used, is mpl::void_.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator_arity</span>
<span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><</span><span class="identifier">CalculatorGrammar</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">0</span><span class="special">>,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">void_</span><span class="special">)></span>
<span class="special">{};</span>
<span class="comment">// For expressions in the calculator domain, operator ()
</span><span class="comment">// will be special; it will evaluate the expression.
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span><span class="special">;</span>
<span class="comment">// Define a calculator context, for evaluating arithmetic expressions
</span><span class="comment">// (This is as before, in calc1.cpp and calc2.cpp)
</span><span class="keyword">struct</span> <span class="identifier">calculator_context</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="comment">// The values bound to the placeholders
</span> <span class="keyword">double</span> <span class="identifier">d</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
<span class="comment">// The result of evaluating arithmetic expressions
</span> <span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">explicit</span> <span class="identifier">calculator_context</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="number">0.</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span> <span class="special">=</span> <span class="number">0.</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">d</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d1</span><span class="special">;</span>
<span class="identifier">d</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">d2</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Handle the evaluation of the placeholder terminals
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">>)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">d</span><span class="special">[</span> <span class="identifier">I</span><span class="special">()</span> <span class="special">-</span> <span class="number">1</span> <span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Wrap all calculator expressions in this type, which defines
</span><span class="comment">// operator () to evaluate the expression.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">calculator_expression</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">calculator_domain</span><span class="special">></span>
<span class="identifier">base_type</span><span class="special">;</span>
<span class="keyword">explicit</span> <span class="identifier">calculator_expression</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">())</span>
<span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">using</span> <span class="identifier">base_type</span><span class="special">::</span><span class="keyword">operator</span> <span class="special">=;</span>
<span class="comment">// Override operator () to evaluate the expression
</span> <span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="comment">// Assert that the expression has arity 0
</span> <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">0</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">calculator_arity</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">);</span>
<span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="comment">// Assert that the expression has arity 1
</span> <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">calculator_arity</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">);</span>
<span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">double</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="keyword">double</span> <span class="identifier">d1</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">d2</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="comment">// Assert that the expression has arity 2
</span> <span class="identifier">BOOST_MPL_ASSERT_RELATION</span><span class="special">(</span><span class="number">2</span><span class="special">,</span> <span class="special">==,</span> <span class="identifier">calculator_arity</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">);</span>
<span class="identifier">calculator_context</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">d1</span><span class="special">,</span> <span class="identifier">d2</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Tell proto how to generate expressions in the calculator_domain
</span><span class="keyword">struct</span> <span class="identifier">calculator_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">calculator_expression</span><span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Define some placeholders (notice they're wrapped in calculator_expression<>)
</span><span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_1</span><span class="special">;</span>
<span class="identifier">calculator_expression</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">2</span><span class="special">></span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_2</span><span class="special">;</span>
<span class="comment">// Now, our arithmetic expressions are immediately executable function objects:
</span><span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Displays "5"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2.0</span><span class="special">)(</span> <span class="number">3.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Displays "6"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="special">(</span> <span class="identifier">_1</span> <span class="special">*</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Displays "0.5"
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">_2</span> <span class="special">)(</span> <span class="number">3.0</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// This won't compile because the arity of the
</span> <span class="comment">// expression doesn't match the number of arguments
</span> <span class="comment">// ( (_1 - _2) / _2 )( 3.0 );
</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Lazy Vector: Controlling Operator Overloads">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.lazy_vector"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.lazy_vector" title="Lazy Vector: Controlling Operator Overloads"> Lazy
Vector: Controlling Operator Overloads</a>
</h4></div></div></div>
<p>
This example constructs a mini-library for linear algebra, using expression
templates to eliminate the need for temporaries when adding vectors of
numbers.
</p>
<p>
This example uses a domain with a grammar to prune the set of overloaded
operators. Only those operators that produce valid lazy vector expressions
are allowed.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This example constructs a mini-library for linear algebra, using
</span><span class="comment">// expression templates to eliminate the need for temporaries when
</span><span class="comment">// adding vectors of numbers.
</span><span class="comment">//
</span><span class="comment">// This example uses a domain with a grammar to prune the set
</span><span class="comment">// of overloaded operators. Only those operators that produce
</span><span class="comment">// valid lazy vector expressions are allowed.
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">vector</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="comment">// This grammar describes which lazy vector expressions
</span><span class="comment">// are allowed; namely, vector terminals and addition
</span><span class="comment">// and subtraction of lazy vector expressions.
</span><span class="keyword">struct</span> <span class="identifier">LazyVectorGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span> <span class="identifier">LazyVectorGrammar</span><span class="special">,</span> <span class="identifier">LazyVectorGrammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><</span> <span class="identifier">LazyVectorGrammar</span><span class="special">,</span> <span class="identifier">LazyVectorGrammar</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Expressions in the lazy vector domain must conform
</span><span class="comment">// to the lazy vector grammar
</span><span class="keyword">struct</span> <span class="identifier">lazy_vector_domain</span><span class="special">;</span>
<span class="comment">// Here is an evaluation context that indexes into a lazy vector
</span><span class="comment">// expression, and combines the result.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Size</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">lazy_subscript_context</span>
<span class="special">{</span>
<span class="identifier">lazy_subscript_context</span><span class="special">(</span><span class="identifier">Size</span> <span class="identifier">subscript</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">subscript_</span><span class="special">(</span><span class="identifier">subscript</span><span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Use default_eval for all the operations ...
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Tag</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">::</span><span class="identifier">proto_tag</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">lazy_subscript_context</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// ... except for terminals, which we index with our subscript
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span><span class="special">,</span> <span class="identifier">lazy_subscript_context</span> <span class="special">&</span> <span class="identifier">ctx</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)[</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">subscript_</span> <span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="identifier">Size</span> <span class="identifier">subscript_</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// Here is the domain-specific expression wrapper, which overrides
</span><span class="comment">// operator [] to evaluate the expression using the lazy_subscript_context.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">lazy_vector_expr</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">lazy_vector_expr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">lazy_vector_domain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">lazy_vector_expr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">lazy_vector_domain</span><span class="special">></span> <span class="identifier">base_type</span><span class="special">;</span>
<span class="identifier">lazy_vector_expr</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">()</span> <span class="special">)</span>
<span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Use the lazy_subscript_context<> to implement subscripting
</span> <span class="comment">// of a lazy vector expression tree.
</span> <span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Size</span> <span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">lazy_subscript_context</span><span class="special"><</span><span class="identifier">Size</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">[](</span> <span class="identifier">Size</span> <span class="identifier">subscript</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">lazy_subscript_context</span><span class="special"><</span><span class="identifier">Size</span><span class="special">></span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">subscript</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Here is our lazy_vector terminal, implemented in terms of lazy_vector_expr
</span><span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">T</span> <span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">lazy_vector</span>
<span class="special">:</span> <span class="identifier">lazy_vector_expr</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">>::</span><span class="identifier">type</span> <span class="identifier">expr_type</span><span class="special">;</span>
<span class="identifier">lazy_vector</span><span class="special">(</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">value</span> <span class="special">=</span> <span class="identifier">T</span><span class="special">()</span> <span class="special">)</span>
<span class="special">:</span> <span class="identifier">lazy_vector_expr</span><span class="special"><</span><span class="identifier">expr_type</span><span class="special">>(</span> <span class="identifier">expr_type</span><span class="special">::</span><span class="identifier">make</span><span class="special">(</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">>(</span> <span class="identifier">size</span><span class="special">,</span> <span class="identifier">value</span> <span class="special">)</span> <span class="special">)</span> <span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Here we define a += operator for lazy vector terminals that
</span> <span class="comment">// takes a lazy vector expression and indexes it. expr[i] here
</span> <span class="comment">// uses lazy_subscript_context<> under the covers.
</span> <span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="identifier">lazy_vector</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">+=</span> <span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">).</span><span class="identifier">size</span><span class="special">();</span>
<span class="keyword">for</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special"><</span> <span class="identifier">size</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">+=</span> <span class="identifier">expr</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Tell proto that in the lazy_vector_domain, all
</span><span class="comment">// expressions should be wrapped in laxy_vector_expr<>
</span><span class="keyword">struct</span> <span class="identifier">lazy_vector_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">lazy_vector_expr</span><span class="special">>,</span> <span class="identifier">LazyVectorGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// lazy_vectors with 4 elements each.
</span> <span class="identifier">lazy_vector</span><span class="special"><</span> <span class="keyword">double</span> <span class="special">></span> <span class="identifier">v1</span><span class="special">(</span> <span class="number">4</span><span class="special">,</span> <span class="number">1.0</span> <span class="special">),</span> <span class="identifier">v2</span><span class="special">(</span> <span class="number">4</span><span class="special">,</span> <span class="number">2.0</span> <span class="special">),</span> <span class="identifier">v3</span><span class="special">(</span> <span class="number">4</span><span class="special">,</span> <span class="number">3.0</span> <span class="special">);</span>
<span class="comment">// Add two vectors lazily and get the 2nd element.
</span> <span class="keyword">double</span> <span class="identifier">d1</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">v2</span> <span class="special">+</span> <span class="identifier">v3</span> <span class="special">)[</span> <span class="number">2</span> <span class="special">];</span> <span class="comment">// Look ma, no temporaries!
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">d1</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Subtract two vectors and add the result to a third vector.
</span> <span class="identifier">v1</span> <span class="special">+=</span> <span class="identifier">v2</span> <span class="special">-</span> <span class="identifier">v3</span><span class="special">;</span> <span class="comment">// Still no temporaries!
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="char">'{'</span> <span class="special"><<</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special"><<</span> <span class="char">','</span> <span class="special"><<</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">1</span><span class="special">]</span>
<span class="special"><<</span> <span class="char">','</span> <span class="special"><<</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special"><<</span> <span class="char">','</span> <span class="special"><<</span> <span class="identifier">v1</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special"><<</span> <span class="char">'}'</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// This expression is disallowed because it does not conform
</span> <span class="comment">// to the LazyVectorGrammar
</span> <span class="comment">//(v2 + v3) += v1;
</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="RGB: Type Manipulations with Proto Transforms">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.rgb"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.rgb" title="RGB: Type Manipulations with Proto Transforms"> RGB: Type Manipulations
with Proto Transforms</a>
</h4></div></div></div>
<p>
This is a simple example of doing arbitrary type manipulations with Proto
transforms. It takes some expression involving primary colors and combines
the colors according to arbitrary rules. It is a port of the RGB example
from <a href="http://www.codesourcery.com/pooma/download.html" target="_top">PETE</a>.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This is a simple example of doing arbitrary type manipulations with proto
</span><span class="comment">// transforms. It takes some expression involving primary colors and combines
</span><span class="comment">// the colors according to arbitrary rules. It is a port of the RGB example
</span><span class="comment">// from PETE (http://www.codesourcery.com/pooma/download.html).
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">RedTag</span>
<span class="special">{</span>
<span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special"><<(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">RedTag</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">sout</span> <span class="special"><<</span> <span class="string">"This expression is red."</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">BlueTag</span>
<span class="special">{</span>
<span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special"><<(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">BlueTag</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">sout</span> <span class="special"><<</span> <span class="string">"This expression is blue."</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">GreenTag</span>
<span class="special">{</span>
<span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special"><<(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">GreenTag</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">sout</span> <span class="special"><<</span> <span class="string">"This expression is green."</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">RedTag</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">RedT</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">BlueTag</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">BlueT</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">GreenTag</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">GreenT</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">Red</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">Blue</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">Green</span><span class="special">;</span>
<span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// A transform that produces new colors according to some arbitrary rules:
</span><span class="comment">// red & green give blue, red & blue give green, blue and green give red.
</span><span class="keyword">struct</span> <span class="identifier">Red</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Green</span><span class="special">,</span> <span class="identifier">Blue</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">Green</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Red</span><span class="special">,</span> <span class="identifier">Red</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">RedTag</span><span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Green</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Red</span><span class="special">,</span> <span class="identifier">Blue</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">Red</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Green</span><span class="special">,</span> <span class="identifier">Green</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">GreenTag</span><span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">Blue</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Red</span><span class="special">,</span> <span class="identifier">Green</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Green</span><span class="special">,</span> <span class="identifier">Red</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">Blue</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">BlueTag</span><span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">RGB</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">Red</span><span class="special">,</span> <span class="identifier">RedTag</span><span class="special">()</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">Blue</span><span class="special">,</span> <span class="identifier">BlueTag</span><span class="special">()</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">Green</span><span class="special">,</span> <span class="identifier">GreenTag</span><span class="special">()</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">void</span> <span class="identifier">printColor</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="comment">// dummy state and data parameter, not used
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">RGB</span><span class="special">()(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">i</span><span class="special">,</span> <span class="identifier">i</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">printColor</span><span class="special">(</span><span class="identifier">RedT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">GreenT</span><span class="special">());</span>
<span class="identifier">printColor</span><span class="special">(</span><span class="identifier">RedT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">GreenT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">BlueT</span><span class="special">());</span>
<span class="identifier">printColor</span><span class="special">(</span><span class="identifier">RedT</span><span class="special">()</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">GreenT</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">BlueT</span><span class="special">()));</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="TArray: A Simple Linear Algebra Library">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.tarray"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.tarray" title="TArray: A Simple Linear Algebra Library"> TArray: A
Simple Linear Algebra Library</a>
</h4></div></div></div>
<p>
This example constructs a mini-library for linear algebra, using expression
templates to eliminate the need for temporaries when adding arrays of numbers.
It duplicates the TArray example from <a href="http://www.codesourcery.com/pooma/download.html" target="_top">PETE</a>.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This example constructs a mini-library for linear algebra, using
</span><span class="comment">// expression templates to eliminate the need for temporaries when
</span><span class="comment">// adding arrays of numbers. It duplicates the TArray example from
</span><span class="comment">// PETE (http://www.codesourcery.com/pooma/download.html)
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="comment">// This grammar describes which TArray expressions
</span><span class="comment">// are allowed; namely, int and array terminals
</span><span class="comment">// plus, minus, multiplies and divides of TArray expressions.
</span><span class="keyword">struct</span> <span class="identifier">TArrayGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">int</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">minus</span><span class="special"><</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special"><</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">divides</span><span class="special"><</span> <span class="identifier">TArrayGrammar</span><span class="special">,</span> <span class="identifier">TArrayGrammar</span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">TArrayExpr</span><span class="special">;</span>
<span class="comment">// Tell proto that in the TArrayDomain, all
</span><span class="comment">// expressions should be wrapped in TArrayExpr<> and
</span><span class="comment">// must conform to the TArrayGrammar
</span><span class="keyword">struct</span> <span class="identifier">TArrayDomain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">TArrayExpr</span><span class="special">>,</span> <span class="identifier">TArrayGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Here is an evaluation context that indexes into a TArray
</span><span class="comment">// expression, and combines the result.
</span><span class="keyword">struct</span> <span class="identifier">TArraySubscriptCtx</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">TArraySubscriptCtx</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">int</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">TArraySubscriptCtx</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">i_</span><span class="special">(</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Index array terminals with our subscript. Everything
</span> <span class="comment">// else will be handled by the default evaluation context.
</span> <span class="keyword">int</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">(&</span><span class="identifier">data</span><span class="special">)[</span><span class="number">3</span><span class="special">])</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">data</span><span class="special">[</span><span class="keyword">this</span><span class="special">-></span><span class="identifier">i_</span><span class="special">];</span>
<span class="special">}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i_</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// Here is an evaluation context that prints a TArray expression.
</span><span class="keyword">struct</span> <span class="identifier">TArrayPrintCtx</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">TArrayPrintCtx</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">TArrayPrintCtx</span><span class="special">()</span> <span class="special">{}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">i</span><span class="special">;</span>
<span class="special">}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">(&</span><span class="identifier">arr</span><span class="special">)[</span><span class="number">3</span><span class="special">])</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="char">'{'</span> <span class="special"><<</span> <span class="identifier">arr</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special"><<</span> <span class="string">", "</span> <span class="special"><<</span> <span class="identifier">arr</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special"><<</span> <span class="string">", "</span> <span class="special"><<</span> <span class="identifier">arr</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special"><<</span> <span class="char">'}'</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="char">'('</span> <span class="special"><<</span> <span class="identifier">l</span> <span class="special"><<</span> <span class="string">" + "</span> <span class="special"><<</span> <span class="identifier">r</span> <span class="special"><<</span> <span class="char">')'</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="char">'('</span> <span class="special"><<</span> <span class="identifier">l</span> <span class="special"><<</span> <span class="string">" - "</span> <span class="special"><<</span> <span class="identifier">r</span> <span class="special"><<</span> <span class="char">')'</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">l</span> <span class="special"><<</span> <span class="string">" * "</span> <span class="special"><<</span> <span class="identifier">r</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">L</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">R</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides</span><span class="special">,</span> <span class="identifier">L</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">l</span><span class="special">,</span> <span class="identifier">R</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">r</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">l</span> <span class="special"><<</span> <span class="string">" / "</span> <span class="special"><<</span> <span class="identifier">r</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Here is the domain-specific expression wrapper, which overrides
</span><span class="comment">// operator [] to evaluate the expression using the TArraySubscriptCtx.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">TArrayExpr</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">TArrayExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">TArrayDomain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">TArrayExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">TArrayDomain</span><span class="special">></span> <span class="identifier">base_type</span><span class="special">;</span>
<span class="identifier">TArrayExpr</span><span class="special">(</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span> <span class="special">=</span> <span class="identifier">Expr</span><span class="special">()</span> <span class="special">)</span>
<span class="special">:</span> <span class="identifier">base_type</span><span class="special">(</span> <span class="identifier">expr</span> <span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Use the TArraySubscriptCtx to implement subscripting
</span> <span class="comment">// of a TArray expression tree.
</span> <span class="keyword">int</span> <span class="keyword">operator</span> <span class="special">[](</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">TArraySubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="comment">// Use the TArrayPrintCtx to display a TArray expression tree.
</span> <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special"><<(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span> <span class="special">&</span><span class="identifier">sout</span><span class="special">,</span> <span class="identifier">TArrayExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">></span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">TArrayPrintCtx</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Here is our TArray terminal, implemented in terms of TArrayExpr
</span><span class="comment">// It is basically just an array of 3 integers.
</span><span class="keyword">struct</span> <span class="identifier">TArray</span>
<span class="special">:</span> <span class="identifier">TArrayExpr</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">>::</span><span class="identifier">type</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">explicit</span> <span class="identifier">TArray</span><span class="special">(</span> <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">j</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">k</span> <span class="special">=</span> <span class="number">0</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">i</span><span class="special">;</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">j</span><span class="special">;</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">k</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Here we override operator [] to give read/write access to
</span> <span class="comment">// the elements of the array. (We could use the TArrayExpr
</span> <span class="comment">// operator [] if we made the subscript context smarter about
</span> <span class="comment">// returning non-const reference when appropriate.)
</span> <span class="keyword">int</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">[](</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="keyword">const</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">[](</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ptrdiff_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="comment">// Here we define a operator = for TArray terminals that
</span> <span class="comment">// takes a TArray expression.
</span> <span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="identifier">TArray</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">=(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// proto::as_expr<TArrayDomain>(expr) is the same as
</span> <span class="comment">// expr unless expr is an integer, in which case it
</span> <span class="comment">// is made into a TArrayExpr terminal first.
</span> <span class="keyword">return</span> <span class="keyword">this</span><span class="special">-></span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">TArrayDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">));</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="identifier">TArray</span> <span class="special">&</span><span class="identifier">printAssign</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="special">*</span><span class="keyword">this</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="special">*</span><span class="keyword">this</span> <span class="special"><<</span> <span class="string">" = "</span> <span class="special"><<</span> <span class="identifier">expr</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="identifier">TArray</span> <span class="special">&</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// expr[i] here uses TArraySubscriptCtx under the covers.
</span> <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">expr</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
<span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">TArray</span> <span class="identifier">a</span><span class="special">(</span><span class="number">3</span><span class="special">,</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">);</span>
<span class="identifier">TArray</span> <span class="identifier">b</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">a</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">b</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">b</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">7</span><span class="special">;</span> <span class="identifier">b</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="number">33</span><span class="special">;</span> <span class="identifier">b</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">99</span><span class="special">;</span>
<span class="identifier">TArray</span> <span class="identifier">c</span><span class="special">(</span><span class="identifier">a</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">c</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">a</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">a</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">b</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">c</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">a</span> <span class="special">=</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">a</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">a</span><span class="special">.</span><span class="identifier">printAssign</span><span class="special">(</span><span class="identifier">b</span><span class="special">+</span><span class="identifier">c</span><span class="special">*(</span><span class="identifier">b</span> <span class="special">+</span> <span class="number">3</span><span class="special">*</span><span class="identifier">c</span><span class="special">));</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Vec3: Computing With Transforms and Contexts">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.vec3"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.vec3" title="Vec3: Computing With Transforms and Contexts"> Vec3: Computing
With Transforms and Contexts</a>
</h4></div></div></div>
<p>
This is a simple example using <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><></span></code> to extend a terminal type with
additional behaviors, and using custom contexts and <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code> for evaluating expressions. It is a port
of the Vec3 example from <a href="http://www.codesourcery.com/pooma/download.html" target="_top">PETE</a>.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This is a simple example using proto::extends to extend a terminal type with
</span><span class="comment">// additional behaviors, and using custom contexts and proto::eval for
</span><span class="comment">// evaluating expressions. It is a port of the Vec3 example
</span><span class="comment">// from PETE (http://www.codesourcery.com/pooma/download.html).
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">functional</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">assert</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">proto_typeof</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="comment">// Here is an evaluation context that indexes into a Vec3
</span><span class="comment">// expression, and combines the result.
</span><span class="keyword">struct</span> <span class="identifier">Vec3SubscriptCtx</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">Vec3SubscriptCtx</span> <span class="keyword">const</span> <span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">int</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">Vec3SubscriptCtx</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">i_</span><span class="special">(</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Index array terminals with our subscript. Everything
</span> <span class="comment">// else will be handled by the default evaluation context.
</span> <span class="keyword">int</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="special">(&</span><span class="identifier">arr</span><span class="special">)[</span><span class="number">3</span><span class="special">])</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">[</span><span class="keyword">this</span><span class="special">-></span><span class="identifier">i_</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">i_</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// Here is an evaluation context that counts the number
</span><span class="comment">// of Vec3 terminals in an expression.
</span><span class="keyword">struct</span> <span class="identifier">CountLeavesCtx</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span> <span class="identifier">CountLeavesCtx</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">null_context</span> <span class="special">></span>
<span class="special">{</span>
<span class="identifier">CountLeavesCtx</span><span class="special">()</span>
<span class="special">:</span> <span class="identifier">count</span><span class="special">(</span><span class="number">0</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="keyword">int</span> <span class="keyword">const</span><span class="special">(&)[</span><span class="number">3</span><span class="special">])</span>
<span class="special">{</span>
<span class="special">++</span><span class="keyword">this</span><span class="special">-></span><span class="identifier">count</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">count</span><span class="special">;</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">iplus</span> <span class="special">:</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><</span><span class="keyword">int</span><span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span> <span class="special">{};</span>
<span class="comment">// Here is a transform that does the same thing as the above context.
</span><span class="comment">// It demonstrates the use of the std::plus<> function object
</span><span class="comment">// with the fold transform. With minor modifications, this
</span><span class="comment">// transform could be used to calculate the leaf count at compile
</span><span class="comment">// time, rather than at runtime.
</span><span class="keyword">struct</span> <span class="identifier">CountLeaves</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="comment">// match a Vec3 terminal, return 1
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]>,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">1</span><span class="special">>()</span> <span class="special">></span>
<span class="comment">// match a terminal, return int() (which is 0)
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">>,</span> <span class="keyword">int</span><span class="special">()</span> <span class="special">></span>
<span class="comment">// fold everything else, using std::plus<> to add
</span> <span class="comment">// the leaf count of each child to the accumulated state.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">otherwise</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="keyword">int</span><span class="special">(),</span> <span class="identifier">iplus</span><span class="special">(</span><span class="identifier">CountLeaves</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">)</span> <span class="special">></span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Here is the Vec3 struct, which is a vector of 3 integers.
</span><span class="keyword">struct</span> <span class="identifier">Vec3</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="keyword">int</span><span class="special">[</span><span class="number">3</span><span class="special">]>::</span><span class="identifier">type</span><span class="special">,</span> <span class="identifier">Vec3</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">explicit</span> <span class="identifier">Vec3</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">=</span><span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">j</span><span class="special">=</span><span class="number">0</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">k</span><span class="special">=</span><span class="number">0</span><span class="special">)</span>
<span class="special">{</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">i</span><span class="special">;</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">j</span><span class="special">;</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">k</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">[](</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="keyword">const</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">[](</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="comment">// Here we define a operator = for Vec3 terminals that
</span> <span class="comment">// takes a Vec3 expression.
</span> <span class="keyword">template</span><span class="special"><</span> <span class="keyword">typename</span> <span class="identifier">Expr</span> <span class="special">></span>
<span class="identifier">Vec3</span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">=(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">Vec3SubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">;</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">(</span><span class="number">0</span><span class="special">));</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">(</span><span class="number">1</span><span class="special">));</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">CVec3SubscriptCtx</span><span class="special">(</span><span class="number">2</span><span class="special">));</span>
<span class="keyword">return</span> <span class="special">*</span><span class="keyword">this</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">void</span> <span class="identifier">print</span><span class="special">()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="char">'{'</span> <span class="special"><<</span> <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">", "</span> <span class="special"><<</span> <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">", "</span> <span class="special"><<</span> <span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span>
<span class="special"><<</span> <span class="char">'}'</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// The count_leaves() function uses the CountLeaves transform and
</span><span class="comment">// to count the number of leaves in an expression.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">int</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// Count the number of Vec3 terminals using the
</span> <span class="comment">// CountLeavesCtx evaluation context.
</span> <span class="identifier">CountLeavesCtx</span> <span class="identifier">ctx</span><span class="special">;</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="comment">// This is another way to count the leaves using a transform.
</span> <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="identifier">BOOST_ASSERT</span><span class="special">(</span> <span class="identifier">CountLeaves</span><span class="special">()(</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">i</span><span class="special">,</span> <span class="identifier">i</span><span class="special">)</span> <span class="special">==</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">count</span> <span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">ctx</span><span class="special">.</span><span class="identifier">count</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="identifier">Vec3</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">c</span><span class="special">;</span>
<span class="identifier">c</span> <span class="special">=</span> <span class="number">4</span><span class="special">;</span>
<span class="identifier">b</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">1</span><span class="special">;</span>
<span class="identifier">b</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">2</span><span class="special">;</span>
<span class="identifier">b</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">3</span><span class="special">;</span>
<span class="identifier">a</span> <span class="special">=</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">;</span>
<span class="identifier">a</span><span class="special">.</span><span class="identifier">print</span><span class="special">();</span>
<span class="identifier">Vec3</span> <span class="identifier">d</span><span class="special">;</span>
<span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span><span class="identifier">expr1</span><span class="special">,</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">d</span> <span class="special">=</span> <span class="identifier">expr1</span><span class="special">;</span>
<span class="identifier">d</span><span class="special">.</span><span class="identifier">print</span><span class="special">();</span>
<span class="keyword">int</span> <span class="identifier">num</span> <span class="special">=</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">expr1</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">num</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">,</span> <span class="identifier">b</span> <span class="special">+</span> <span class="number">3</span> <span class="special">*</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">num</span> <span class="special">=</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">num</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">BOOST_PROTO_AUTO</span><span class="special">(</span><span class="identifier">expr3</span><span class="special">,</span> <span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span> <span class="special">*</span> <span class="identifier">d</span><span class="special">);</span>
<span class="identifier">num</span> <span class="special">=</span> <span class="identifier">count_leaves</span><span class="special">(</span><span class="identifier">expr3</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">num</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Vector: Adapting a Non-Proto Terminal Type">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.vector"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.vector" title="Vector: Adapting a Non-Proto Terminal Type"> Vector: Adapting
a Non-Proto Terminal Type</a>
</h4></div></div></div>
<p>
This is an example of using <code class="computeroutput"><span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">()</span></code> to Protofy expressions using <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><></span></code>,
a non-Proto type. It is a port of the Vector example from <a href="http://www.codesourcery.com/pooma/download.html" target="_top">PETE</a>.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This is an example of using BOOST_PROTO_DEFINE_OPERATORS to Protofy
</span><span class="comment">// expressions using std::vector<>, a non-proto type. It is a port of the
</span><span class="comment">// Vector example from PETE (http://www.codesourcery.com/pooma/download.html).
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">vector</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">stdexcept</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">bool</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">debug</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">utility</span><span class="special">/</span><span class="identifier">enable_if</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">VectorExpr</span><span class="special">;</span>
<span class="comment">// Here is an evaluation context that indexes into a std::vector
</span><span class="comment">// expression and combines the result.
</span><span class="keyword">struct</span> <span class="identifier">VectorSubscriptCtx</span>
<span class="special">{</span>
<span class="identifier">VectorSubscriptCtx</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">i_</span><span class="special">(</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Unless this is a vector terminal, use the
</span> <span class="comment">// default evaluation context
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Index vector terminals with our subscript.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span>
<span class="identifier">Expr</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">>::</span><span class="identifier">type</span>
<span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">)[</span><span class="identifier">ctx</span><span class="special">.</span><span class="identifier">i_</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i_</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// Here is an evaluation context that verifies that all the
</span><span class="comment">// vectors in an expression have the same size.
</span><span class="keyword">struct</span> <span class="identifier">VectorSizeCtx</span>
<span class="special">{</span>
<span class="identifier">VectorSizeCtx</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">size_</span><span class="special">(</span><span class="identifier">size</span><span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Unless this is a vector terminal, use the
</span> <span class="comment">// null evaluation context
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">null_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Index array terminals with our subscript. Everything
</span> <span class="comment">// else will be handled by the default evaluation context.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span>
<span class="identifier">Expr</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">>::</span><span class="identifier">type</span>
<span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">ctx</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">if</span><span class="special">(</span><span class="identifier">ctx</span><span class="special">.</span><span class="identifier">size_</span> <span class="special">!=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">).</span><span class="identifier">size</span><span class="special">())</span>
<span class="special">{</span>
<span class="keyword">throw</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">runtime_error</span><span class="special">(</span><span class="string">"LHS and RHS are not compatible"</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">size_</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// A grammar which matches all the assignment operators,
</span><span class="comment">// so we can easily disable them.
</span><span class="keyword">struct</span> <span class="identifier">AssignOps</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special"><</span><span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Here are the cases used by the switch_ above.
</span><span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span> <span class="special">=</span> <span class="number">0</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="special">};</span>
<span class="comment">// A vector grammar is a terminal or some op that is not an
</span><span class="comment">// assignment op. (Assignment will be handled specially.)
</span><span class="keyword">struct</span> <span class="identifier">VectorGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span><span class="identifier">VectorGrammar</span><span class="special">></span> <span class="special">>,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">AssignOps</span><span class="special">></span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Expressions in the vector domain will be wrapped in VectorExpr<>
</span><span class="comment">// and must conform to the VectorGrammar
</span><span class="keyword">struct</span> <span class="identifier">VectorDomain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">VectorExpr</span><span class="special">>,</span> <span class="identifier">VectorGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Here is VectorExpr, which extends a proto expr type by
</span><span class="comment">// giving it an operator [] which uses the VectorSubscriptCtx
</span><span class="comment">// to evaluate an expression with a given index.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">VectorExpr</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">VectorDomain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">explicit</span> <span class="identifier">VectorExpr</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">VectorExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">VectorDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{}</span>
<span class="comment">// Use the VectorSubscriptCtx to implement subscripting
</span> <span class="comment">// of a Vector expression tree.
</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">Expr</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span><span class="special">>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">[](</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Define a trait type for detecting vector terminals, to
</span><span class="comment">// be used by the BOOST_PROTO_DEFINE_OPERATORS macro below.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">IsVector</span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">IsVector</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
<span class="keyword">namespace</span> <span class="identifier">VectorOps</span>
<span class="special">{</span>
<span class="comment">// This defines all the overloads to make expressions involving
</span> <span class="comment">// std::vector to build expression templates.
</span> <span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">(</span><span class="identifier">IsVector</span><span class="special">,</span> <span class="identifier">VectorDomain</span><span class="special">)</span>
<span class="keyword">typedef</span> <span class="identifier">VectorSubscriptCtx</span> <span class="keyword">const</span> <span class="identifier">CVectorSubscriptCtx</span><span class="special">;</span>
<span class="comment">// Assign to a vector from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span> <span class="identifier">size</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">());</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">VectorDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">size</span><span class="special">);</span> <span class="comment">// will throw if the sizes don't match
</span> <span class="keyword">for</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special"><</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">();</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">arr</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">VectorDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Add-assign to a vector from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">+=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">VectorSizeCtx</span> <span class="keyword">const</span> <span class="identifier">size</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">());</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">VectorDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">size</span><span class="special">);</span> <span class="comment">// will throw if the sizes don't match
</span> <span class="keyword">for</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special"><</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">size</span><span class="special">();</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">arr</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">+=</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">VectorDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">)[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">VectorOps</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
<span class="keyword">const</span> <span class="keyword">int</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">,</span><span class="identifier">d</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">e</span><span class="special">(</span><span class="identifier">n</span><span class="special">);</span>
<span class="keyword">for</span> <span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special"><</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">a</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
<span class="identifier">b</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">2</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
<span class="identifier">c</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">3</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
<span class="identifier">d</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
<span class="special">}</span>
<span class="identifier">VectorOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">b</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span>
<span class="identifier">VectorOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">d</span><span class="special">,</span> <span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">a</span> <span class="special">+=</span> <span class="identifier">if_else</span><span class="special">(</span><span class="identifier">d</span> <span class="special"><</span> <span class="number">30</span><span class="special">,</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">VectorOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">e</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">e</span> <span class="special">+=</span> <span class="identifier">e</span> <span class="special">-</span> <span class="number">4</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">c</span> <span class="special">+</span> <span class="number">1</span><span class="special">);</span>
<span class="keyword">for</span> <span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special"><</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span>
<span class="special"><<</span> <span class="string">" a("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">a</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" b("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">b</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" c("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">c</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" d("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">d</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" e("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">e</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Mixed: Adapting Several Non-Proto Terminal Types">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.mixed"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.mixed" title="Mixed: Adapting Several Non-Proto Terminal Types"> Mixed: Adapting
Several Non-Proto Terminal Types</a>
</h4></div></div></div>
<p>
This is an example of using <code class="computeroutput"><span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">()</span></code> to Protofy expressions using <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><></span></code>
and <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><></span></code>,
non-Proto types. It is a port of the Mixed example from <a href="http://www.codesourcery.com/pooma/download.html" target="_top">PETE</a>.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This is an example of using BOOST_PROTO_DEFINE_OPERATORS to Protofy
</span><span class="comment">// expressions using std::vector<> and std::list, non-proto types. It is a port
</span><span class="comment">// of the Mixed example from PETE.
</span><span class="comment">// (http://www.codesourcery.com/pooma/download.html).
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">list</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">cmath</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">vector</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">complex</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">stdexcept</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">debug</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">utility</span><span class="special">/</span><span class="identifier">enable_if</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">list</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">complex</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">type_traits</span><span class="special">/</span><span class="identifier">remove_reference</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">MixedExpr</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Iter</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">iterator_wrapper</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">Iter</span> <span class="identifier">iterator</span><span class="special">;</span>
<span class="keyword">explicit</span> <span class="identifier">iterator_wrapper</span><span class="special">(</span><span class="identifier">Iter</span> <span class="identifier">iter</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">it</span><span class="special">(</span><span class="identifier">iter</span><span class="special">)</span>
<span class="special">{}</span>
<span class="identifier">Iter</span> <span class="identifier">it</span><span class="special">;</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">begin</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Sig</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Cont</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">Cont</span><span class="special">)></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span>
<span class="identifier">iterator_wrapper</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special"><</span><span class="identifier">Cont</span><span class="special">>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">const_iterator</span><span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Cont</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">begin</span><span class="special">(</span><span class="identifier">Cont</span> <span class="keyword">const</span> <span class="special">&)>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Cont</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">cont</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">iterator_wrapper</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Cont</span><span class="special">::</span><span class="identifier">const_iterator</span><span class="special">></span> <span class="identifier">it</span><span class="special">(</span><span class="identifier">cont</span><span class="special">.</span><span class="identifier">begin</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special">(</span><span class="identifier">it</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Here is a grammar that replaces vector and list terminals with their
</span><span class="comment">// begin iterators
</span><span class="keyword">struct</span> <span class="identifier">Begin</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">></span> <span class="special">>,</span> <span class="identifier">begin</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">_</span><span class="special">></span> <span class="special">>,</span> <span class="identifier">begin</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span><span class="identifier">Begin</span><span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Here is an evaluation context that dereferences iterator
</span><span class="comment">// terminals.
</span><span class="keyword">struct</span> <span class="identifier">DereferenceCtx</span>
<span class="special">{</span>
<span class="comment">// Unless this is an iterator terminal, use the
</span> <span class="comment">// default evaluation context
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">default_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">DereferenceCtx</span> <span class="keyword">const</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Dereference iterator terminals.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span>
<span class="identifier">Expr</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">iterator_wrapper</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">>::</span><span class="identifier">type</span>
<span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">value</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>::</span><span class="identifier">type</span> <span class="identifier">IteratorWrapper</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">IteratorWrapper</span><span class="special">::</span><span class="identifier">iterator</span> <span class="identifier">iterator</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">iterator_traits</span><span class="special"><</span><span class="identifier">iterator</span><span class="special">>::</span><span class="identifier">reference</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">DereferenceCtx</span> <span class="keyword">const</span> <span class="special">&)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="special">*</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">).</span><span class="identifier">it</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="special">};</span>
<span class="comment">// Here is an evaluation context that increments iterator
</span><span class="comment">// terminals.
</span><span class="keyword">struct</span> <span class="identifier">IncrementCtx</span>
<span class="special">{</span>
<span class="comment">// Unless this is an iterator terminal, use the
</span> <span class="comment">// default evaluation context
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">EnableIf</span> <span class="special">=</span> <span class="keyword">void</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">null_eval</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">IncrementCtx</span> <span class="keyword">const</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// advance iterator terminals.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">eval</span><span class="special"><</span>
<span class="identifier">Expr</span>
<span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">enable_if</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">iterator_wrapper</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">>::</span><span class="identifier">type</span>
<span class="special">></span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">void</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Expr</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">IncrementCtx</span> <span class="keyword">const</span> <span class="special">&)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="special">++</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(</span><span class="identifier">expr</span><span class="special">).</span><span class="identifier">it</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="special">};</span>
<span class="comment">// A grammar which matches all the assignment operators,
</span><span class="comment">// so we can easily disable them.
</span><span class="keyword">struct</span> <span class="identifier">AssignOps</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">switch_</span><span class="special"><</span><span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Here are the cases used by the switch_ above.
</span><span class="keyword">struct</span> <span class="identifier">AssignOpsCases</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Tag</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">D</span> <span class="special">=</span> <span class="number">0</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span> <span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">minus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">multiplies_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">divides_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">modulus_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_left_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">shift_right_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_and_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_or_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">int</span> <span class="identifier">D</span><span class="special">></span> <span class="keyword">struct</span> <span class="identifier">case_</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">bitwise_xor_assign</span><span class="special">,</span> <span class="identifier">D</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">_</span> <span class="special">{};</span>
<span class="special">};</span>
<span class="comment">// An expression conforms to the MixedGrammar if it is a terminal or some
</span><span class="comment">// op that is not an assignment op. (Assignment will be handled specially.)
</span><span class="keyword">struct</span> <span class="identifier">MixedGrammar</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">and_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span><span class="identifier">MixedGrammar</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">not_</span><span class="special"><</span><span class="identifier">AssignOps</span><span class="special">></span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Expressions in the MixedDomain will be wrapped in MixedExpr<>
</span><span class="comment">// and must conform to the MixedGrammar
</span><span class="keyword">struct</span> <span class="identifier">MixedDomain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">MixedExpr</span><span class="special">>,</span> <span class="identifier">MixedGrammar</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Here is MixedExpr, a wrapper for expression types in the MixedDomain.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">MixedExpr</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">MixedExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">MixedDomain</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">explicit</span> <span class="identifier">MixedExpr</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">MixedExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="comment">// hide this:
</span> <span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">MixedExpr</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">>,</span> <span class="identifier">MixedDomain</span><span class="special">>::</span><span class="keyword">operator</span> <span class="special">[];</span>
<span class="special">};</span>
<span class="comment">// Define a trait type for detecting vector and list terminals, to
</span><span class="comment">// be used by the BOOST_PROTO_DEFINE_OPERATORS macro below.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">IsMixed</span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">false_</span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">IsMixed</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">IsMixed</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">true_</span>
<span class="special">{};</span>
<span class="keyword">namespace</span> <span class="identifier">MixedOps</span>
<span class="special">{</span>
<span class="comment">// This defines all the overloads to make expressions involving
</span> <span class="comment">// std::vector to build expression templates.
</span> <span class="identifier">BOOST_PROTO_DEFINE_OPERATORS</span><span class="special">(</span><span class="identifier">IsMixed</span><span class="special">,</span> <span class="identifier">MixedDomain</span><span class="special">)</span>
<span class="keyword">struct</span> <span class="identifier">assign_op</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">U</span><span class="special">></span>
<span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">T</span> <span class="special">&</span><span class="identifier">t</span><span class="special">,</span> <span class="identifier">U</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">u</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">t</span> <span class="special">=</span> <span class="identifier">u</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">plus_assign_op</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">U</span><span class="special">></span>
<span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">T</span> <span class="special">&</span><span class="identifier">t</span><span class="special">,</span> <span class="identifier">U</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">u</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">t</span> <span class="special">+=</span> <span class="identifier">u</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">minus_assign_op</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">U</span><span class="special">></span>
<span class="keyword">void</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">T</span> <span class="special">&</span><span class="identifier">t</span><span class="special">,</span> <span class="identifier">U</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">u</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">t</span> <span class="special">-=</span> <span class="identifier">u</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">sin_</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">Arg</span><span class="special">)></span>
<span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_const</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special"><</span><span class="identifier">Arg</span><span class="special">>::</span><span class="identifier">type</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Arg</span><span class="special">></span>
<span class="identifier">Arg</span> <span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">Arg</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">a</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">(</span><span class="identifier">a</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">A</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span>
<span class="special">,</span> <span class="identifier">MixedDomain</span>
<span class="special">,</span> <span class="identifier">sin_</span> <span class="keyword">const</span>
<span class="special">,</span> <span class="identifier">A</span> <span class="keyword">const</span> <span class="special">&</span>
<span class="special">>::</span><span class="identifier">type</span> <span class="identifier">sin</span><span class="special">(</span><span class="identifier">A</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">a</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span><span class="special">,</span> <span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">sin_</span><span class="special">(),</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span><span class="identifier">a</span><span class="special">));</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">FwdIter</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Op</span><span class="special">></span>
<span class="keyword">void</span> <span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">FwdIter</span> <span class="identifier">begin</span><span class="special">,</span> <span class="identifier">FwdIter</span> <span class="identifier">end</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">,</span> <span class="identifier">Op</span> <span class="identifier">op</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">IncrementCtx</span> <span class="keyword">const</span> <span class="identifier">inc</span> <span class="special">=</span> <span class="special">{};</span>
<span class="identifier">DereferenceCtx</span> <span class="keyword">const</span> <span class="identifier">deref</span> <span class="special">=</span> <span class="special">{};</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><</span><span class="identifier">Begin</span><span class="special">(</span><span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&)>::</span><span class="identifier">type</span> <span class="identifier">expr2</span> <span class="special">=</span> <span class="identifier">Begin</span><span class="special">()(</span><span class="identifier">expr</span><span class="special">);</span>
<span class="keyword">for</span><span class="special">(;</span> <span class="identifier">begin</span> <span class="special">!=</span> <span class="identifier">end</span><span class="special">;</span> <span class="special">++</span><span class="identifier">begin</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">op</span><span class="special">(*</span><span class="identifier">begin</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">,</span> <span class="identifier">deref</span><span class="special">));</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(</span><span class="identifier">expr2</span><span class="special">,</span> <span class="identifier">inc</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">}</span>
<span class="comment">// Add-assign to a vector from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">assign_op</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Add-assign to a list from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">assign_op</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Add-assign to a vector from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">+=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">plus_assign_op</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Add-assign to a list from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">+=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">plus_assign_op</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Minus-assign to a vector from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">-=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">minus_assign_op</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="comment">// Minus-assign to a list from some expression.
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="keyword">operator</span> <span class="special">-=(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">A</span><span class="special">></span> <span class="special">&</span><span class="identifier">arr</span><span class="special">,</span> <span class="identifier">Expr</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">expr</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">evaluate</span><span class="special">(</span><span class="identifier">arr</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">arr</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">as_expr</span><span class="special"><</span><span class="identifier">MixedDomain</span><span class="special">>(</span><span class="identifier">expr</span><span class="special">),</span> <span class="identifier">minus_assign_op</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">arr</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">}</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">MixedOps</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">10</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">int</span><span class="special">></span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">,</span><span class="identifier">d</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">e</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="special">></span> <span class="identifier">f</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
<span class="keyword">for</span><span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span><span class="identifier">i</span> <span class="special"><</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">a</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
<span class="identifier">b</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">2</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
<span class="identifier">c</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">3</span><span class="special">*</span><span class="identifier">i</span><span class="special">);</span>
<span class="identifier">d</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">i</span><span class="special">);</span>
<span class="identifier">e</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="number">0.0</span><span class="special">);</span>
<span class="identifier">f</span><span class="special">.</span><span class="identifier">push_back</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="number">1.0</span><span class="special">,</span> <span class="number">1.0</span><span class="special">));</span>
<span class="special">}</span>
<span class="identifier">MixedOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">b</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span>
<span class="identifier">MixedOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">d</span><span class="special">,</span> <span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">a</span> <span class="special">+=</span> <span class="identifier">if_else</span><span class="special">(</span><span class="identifier">d</span> <span class="special"><</span> <span class="number">30</span><span class="special">,</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">MixedOps</span><span class="special">::</span><span class="identifier">assign</span><span class="special">(</span><span class="identifier">e</span><span class="special">,</span> <span class="identifier">c</span><span class="special">);</span>
<span class="identifier">e</span> <span class="special">+=</span> <span class="identifier">e</span> <span class="special">-</span> <span class="number">4</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">c</span> <span class="special">+</span> <span class="number">1</span><span class="special">);</span>
<span class="identifier">f</span> <span class="special">-=</span> <span class="identifier">sin</span><span class="special">(</span><span class="number">0.1</span> <span class="special">*</span> <span class="identifier">e</span> <span class="special">*</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="number">0.2</span><span class="special">,</span> <span class="number">1.2</span><span class="special">));</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">const_iterator</span> <span class="identifier">ei</span> <span class="special">=</span> <span class="identifier">e</span><span class="special">.</span><span class="identifier">begin</span><span class="special">();</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">list</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="special">>::</span><span class="identifier">const_iterator</span> <span class="identifier">fi</span> <span class="special">=</span> <span class="identifier">f</span><span class="special">.</span><span class="identifier">begin</span><span class="special">();</span>
<span class="keyword">for</span> <span class="special">(</span><span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span> <span class="identifier">i</span> <span class="special"><</span> <span class="identifier">n</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span>
<span class="special"><<</span> <span class="string">"a("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">a</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" b("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">b</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" c("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">c</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" d("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">d</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span>
<span class="special"><<</span> <span class="string">" e("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="special">*</span><span class="identifier">ei</span><span class="special">++</span>
<span class="special"><<</span> <span class="string">" f("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="special">*</span><span class="identifier">fi</span><span class="special">++</span>
<span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Map Assign: An Intermediate Transform">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.map_assign"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.map_assign" title="Map Assign: An Intermediate Transform"> Map Assign:
An Intermediate Transform</a>
</h4></div></div></div>
<p>
A demonstration of how to implement <code class="computeroutput"><span class="identifier">map_list_of</span><span class="special">()</span></code> from the Boost.Assign library using Proto.
<code class="computeroutput"><span class="identifier">map_list_assign</span><span class="special">()</span></code>
is used to conveniently initialize a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special"><></span></code>. By using Proto, we can avoid any
dynamic allocation while building the intermediate representation.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This is a port of map_list_of() from the Boost.Assign library.
</span><span class="comment">// It has the advantage of being more efficient at runtime by not
</span><span class="comment">// building any temporary container that requires dynamic allocation.
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">map</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">string</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">type_traits</span><span class="special">/</span><span class="identifier">add_reference</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">map_list_of_tag</span>
<span class="special">{};</span>
<span class="comment">// A simple callable function object that inserts a
</span><span class="comment">// (key,value) pair into a map.
</span><span class="keyword">struct</span> <span class="identifier">insert</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable</span>
<span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Map</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Key</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Value</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">Map</span><span class="special">,</span> <span class="identifier">Key</span><span class="special">,</span> <span class="identifier">Value</span><span class="special">)></span>
<span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_reference</span><span class="special"><</span><span class="identifier">Map</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Map</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Key</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Value</span><span class="special">></span>
<span class="identifier">Map</span> <span class="special">&</span><span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Map</span> <span class="special">&</span><span class="identifier">map</span><span class="special">,</span> <span class="identifier">Key</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">key</span><span class="special">,</span> <span class="identifier">Value</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">value</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">map</span><span class="special">.</span><span class="identifier">insert</span><span class="special">(</span><span class="keyword">typename</span> <span class="identifier">Map</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">(</span><span class="identifier">key</span><span class="special">,</span> <span class="identifier">value</span><span class="special">));</span>
<span class="keyword">return</span> <span class="identifier">map</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// The grammar for valid map-list expressions, and a
</span><span class="comment">// transform that populates the map.
</span><span class="keyword">struct</span> <span class="identifier">MapListOf</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">map_list_of_tag</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">insert</span><span class="special">(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">_data</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child1</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child2</span><span class="special">)</span>
<span class="special">)</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">function</span><span class="special"><</span>
<span class="identifier">MapListOf</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">insert</span><span class="special">(</span>
<span class="identifier">MapListOf</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child0</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child1</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_child2</span><span class="special">)</span>
<span class="special">)</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">map_list_of_expr</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">map_list_of_dom</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special"><</span><span class="identifier">map_list_of_expr</span><span class="special">>,</span> <span class="identifier">MapListOf</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// An expression wrapper that provides a conversion to a
</span><span class="comment">// map that uses the MapListOf
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Expr</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">map_list_of_expr</span>
<span class="special">{</span>
<span class="identifier">BOOST_PROTO_BASIC_EXTENDS</span><span class="special">(</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">map_list_of_expr</span><span class="special">,</span> <span class="identifier">map_list_of_dom</span><span class="special">)</span>
<span class="identifier">BOOST_PROTO_EXTENDS_FUNCTION</span><span class="special">()</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Key</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Value</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Cmp</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Al</span><span class="special">></span>
<span class="keyword">operator</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special"><</span><span class="identifier">Key</span><span class="special">,</span> <span class="identifier">Value</span><span class="special">,</span> <span class="identifier">Cmp</span><span class="special">,</span> <span class="identifier">Al</span><span class="special">></span> <span class="special">()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><</span><span class="identifier">Expr</span><span class="special">,</span> <span class="identifier">MapListOf</span><span class="special">>));</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special"><</span><span class="identifier">Key</span><span class="special">,</span> <span class="identifier">Value</span><span class="special">,</span> <span class="identifier">Cmp</span><span class="special">,</span> <span class="identifier">Al</span><span class="special">></span> <span class="identifier">map</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">MapListOf</span><span class="special">()(*</span><span class="keyword">this</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">map</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="identifier">map_list_of_expr</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">map_list_of_tag</span><span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">map_list_of</span> <span class="special">=</span> <span class="special">{{{}}};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Initialize a map:
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">string</span><span class="special">,</span> <span class="keyword">int</span><span class="special">></span> <span class="identifier">op</span> <span class="special">=</span>
<span class="identifier">map_list_of</span>
<span class="special">(</span><span class="string">"<"</span><span class="special">,</span> <span class="number">1</span><span class="special">)</span>
<span class="special">(</span><span class="string">"<="</span><span class="special">,</span><span class="number">2</span><span class="special">)</span>
<span class="special">(</span><span class="string">">"</span><span class="special">,</span> <span class="number">3</span><span class="special">)</span>
<span class="special">(</span><span class="string">">="</span><span class="special">,</span><span class="number">4</span><span class="special">)</span>
<span class="special">(</span><span class="string">"="</span><span class="special">,</span> <span class="number">5</span><span class="special">)</span>
<span class="special">(</span><span class="string">"<>"</span><span class="special">,</span><span class="number">6</span><span class="special">)</span>
<span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"\"<\" --> "</span> <span class="special"><<</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"<"</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"\"<=\" --> "</span> <span class="special"><<</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"<="</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"\">\" --> "</span> <span class="special"><<</span> <span class="identifier">op</span><span class="special">[</span><span class="string">">"</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"\">=\" --> "</span> <span class="special"><<</span> <span class="identifier">op</span><span class="special">[</span><span class="string">">="</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"\"=\" --> "</span> <span class="special"><<</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"="</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"\"<>\" --> "</span> <span class="special"><<</span> <span class="identifier">op</span><span class="special">[</span><span class="string">"<>"</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Future Group: A More Advanced Transform">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.future_group"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.future_group" title="Future Group: A More Advanced Transform"> Future
Group: A More Advanced Transform</a>
</h4></div></div></div>
<p>
An advanced example of a Proto transform that implements Howard Hinnant's
design for <span class="emphasis"><em>future groups</em></span> that block for all or some
asynchronous operations to complete and returns their results in a tuple
of the appropriate type.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This is an example of using Proto transforms to implement
</span><span class="comment">// Howard Hinnant's future group proposal.
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">as_vector</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">joint_view</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">include</span><span class="special">/</span><span class="identifier">single_view</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">fusion</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">fusion</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">L</span><span class="special">,</span><span class="keyword">class</span> <span class="identifier">R</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">pick_left</span>
<span class="special">{</span>
<span class="identifier">BOOST_MPL_ASSERT</span><span class="special">((</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">is_same</span><span class="special"><</span><span class="identifier">L</span><span class="special">,</span> <span class="identifier">R</span><span class="special">>));</span>
<span class="keyword">typedef</span> <span class="identifier">L</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// Define the grammar of future group expression, as well as a
</span><span class="comment">// transform to turn them into a Fusion sequence of the correct
</span><span class="comment">// type.
</span><span class="keyword">struct</span> <span class="identifier">FutureGroup</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="comment">// terminals become a single-element Fusion sequence
</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">single_view</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">>(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">)</span>
<span class="special">></span>
<span class="comment">// (a && b) becomes a concatenation of the sequence
</span> <span class="comment">// from 'a' and the one from 'b':
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_and</span><span class="special"><</span><span class="identifier">FutureGroup</span><span class="special">,</span> <span class="identifier">FutureGroup</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">joint_view</span><span class="special"><</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special"><</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">)></span>
<span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">add_const</span><span class="special"><</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)></span>
<span class="special">>(</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">),</span> <span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">))</span>
<span class="special">></span>
<span class="comment">// (a || b) becomes the sequence for 'a', so long
</span> <span class="comment">// as it is the same as the sequence for 'b'.
</span> <span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">logical_or</span><span class="special"><</span><span class="identifier">FutureGroup</span><span class="special">,</span> <span class="identifier">FutureGroup</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">pick_left</span><span class="special"><</span>
<span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">)</span>
<span class="special">,</span> <span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_right</span><span class="special">)</span>
<span class="special">>(</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_left</span><span class="special">))</span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">E</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">future_expr</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">future_dom</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">generator</span><span class="special"><</span><span class="identifier">future_expr</span><span class="special">>,</span> <span class="identifier">FutureGroup</span><span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Expressions in the future group domain have a .get()
</span><span class="comment">// member function that (ostensibly) blocks for the futures
</span><span class="comment">// to complete and returns the results in an appropriate
</span><span class="comment">// tuple.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">E</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">future_expr</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">E</span><span class="special">,</span> <span class="identifier">future_expr</span><span class="special"><</span><span class="identifier">E</span><span class="special">>,</span> <span class="identifier">future_dom</span><span class="special">></span>
<span class="special">{</span>
<span class="keyword">explicit</span> <span class="identifier">future_expr</span><span class="special">(</span><span class="identifier">E</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">e</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><</span><span class="identifier">E</span><span class="special">,</span> <span class="identifier">future_expr</span><span class="special"><</span><span class="identifier">E</span><span class="special">>,</span> <span class="identifier">future_dom</span><span class="special">>(</span><span class="identifier">e</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">typename</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">as_vector</span><span class="special"><</span>
<span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><</span><span class="identifier">FutureGroup</span><span class="special">(</span><span class="identifier">E</span><span class="special">,</span><span class="keyword">int</span><span class="special">,</span><span class="keyword">int</span><span class="special">)>::</span><span class="identifier">type</span>
<span class="special">>::</span><span class="identifier">type</span>
<span class="identifier">get</span><span class="special">()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">as_vector</span><span class="special">(</span><span class="identifier">FutureGroup</span><span class="special">()(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">i</span><span class="special">,</span> <span class="identifier">i</span><span class="special">));</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// The future<> type has an even simpler .get()
</span><span class="comment">// member function.
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">future</span>
<span class="special">:</span> <span class="identifier">future_expr</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span><span class="special">></span>
<span class="special">{</span>
<span class="identifier">future</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">t</span> <span class="special">=</span> <span class="identifier">T</span><span class="special">())</span>
<span class="special">:</span> <span class="identifier">future_expr</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span><span class="special">>(</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">make</span><span class="special">(</span><span class="identifier">t</span><span class="special">)</span>
<span class="special">)</span>
<span class="special">{}</span>
<span class="identifier">T</span> <span class="identifier">get</span><span class="special">()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">value</span><span class="special">(*</span><span class="keyword">this</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// TEST CASES
</span><span class="keyword">struct</span> <span class="identifier">A</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">B</span> <span class="special">{};</span>
<span class="keyword">struct</span> <span class="identifier">C</span> <span class="special">{};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="keyword">using</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">vector</span><span class="special">;</span>
<span class="identifier">future</span><span class="special"><</span><span class="identifier">A</span><span class="special">></span> <span class="identifier">a</span><span class="special">;</span>
<span class="identifier">future</span><span class="special"><</span><span class="identifier">B</span><span class="special">></span> <span class="identifier">b</span><span class="special">;</span>
<span class="identifier">future</span><span class="special"><</span><span class="identifier">C</span><span class="special">></span> <span class="identifier">c</span><span class="special">;</span>
<span class="identifier">future</span><span class="special"><</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">A</span><span class="special">,</span><span class="identifier">B</span><span class="special">></span> <span class="special">></span> <span class="identifier">ab</span><span class="special">;</span>
<span class="comment">// Verify that various future groups have the
</span> <span class="comment">// correct return types.
</span> <span class="identifier">A</span> <span class="identifier">t0</span> <span class="special">=</span> <span class="identifier">a</span><span class="special">.</span><span class="identifier">get</span><span class="special">();</span>
<span class="identifier">vector</span><span class="special"><</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">B</span><span class="special">,</span> <span class="identifier">C</span><span class="special">></span> <span class="identifier">t1</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&&</span> <span class="identifier">b</span> <span class="special">&&</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>
<span class="identifier">vector</span><span class="special"><</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">C</span><span class="special">></span> <span class="identifier">t2</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">a</span> <span class="special">||</span> <span class="identifier">a</span><span class="special">)</span> <span class="special">&&</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>
<span class="identifier">vector</span><span class="special"><</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">B</span><span class="special">,</span> <span class="identifier">C</span><span class="special">></span> <span class="identifier">t3</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">a</span> <span class="special">&&</span> <span class="identifier">b</span> <span class="special">||</span> <span class="identifier">a</span> <span class="special">&&</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">&&</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>
<span class="identifier">vector</span><span class="special"><</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">A</span><span class="special">,</span> <span class="identifier">B</span><span class="special">>,</span> <span class="identifier">C</span><span class="special">></span> <span class="identifier">t4</span> <span class="special">=</span> <span class="special">((</span><span class="identifier">ab</span> <span class="special">||</span> <span class="identifier">ab</span><span class="special">)</span> <span class="special">&&</span> <span class="identifier">c</span><span class="special">).</span><span class="identifier">get</span><span class="special">();</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
<div class="section" title="Lambda: A Simple Lambda Library with Proto">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_proto.users_guide.examples.lambda"></a><a class="link" href="users_guide.html#boost_proto.users_guide.examples.lambda" title="Lambda: A Simple Lambda Library with Proto"> Lambda: A
Simple Lambda Library with Proto</a>
</h4></div></div></div>
<p>
This is an advanced example that shows how to implement a simple lambda
DSEL with Proto, like the Boost.Lambda_library. It uses contexts, transforms
and expression extension.
</p>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="comment">///////////////////////////////////////////////////////////////////////////////
</span><span class="comment">// Copyright 2008 Eric Niebler. Distributed under the Boost
</span><span class="comment">// Software License, Version 1.0. (See accompanying file
</span><span class="comment">// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
</span><span class="comment">//
</span><span class="comment">// This example builds a simple but functional lambda library using Proto.
</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">iostream</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">algorithm</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="keyword">int</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">min_max</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">eval_if</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">identity</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">mpl</span><span class="special">/</span><span class="identifier">next_prior</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">fusion</span><span class="special">/</span><span class="identifier">tuple</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">ostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">typeof</span><span class="special">/</span><span class="identifier">std</span><span class="special">/</span><span class="identifier">iostream</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">core</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">context</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">proto</span><span class="special">/</span><span class="identifier">transform</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">mpl</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mpl</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">proto</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">;</span>
<span class="keyword">namespace</span> <span class="identifier">fusion</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">fusion</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">;</span>
<span class="comment">// Forward declaration of the lambda expression wrapper
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">lambda</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">lambda_domain</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">pod_generator</span><span class="special"><</span><span class="identifier">lambda</span><span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">placeholder</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">I</span> <span class="identifier">arity</span><span class="special">;</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">placeholder_arity</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">T</span><span class="special">::</span><span class="identifier">arity</span> <span class="identifier">type</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// The lambda grammar, with the transforms for calculating the max arity
</span><span class="keyword">struct</span> <span class="identifier">lambda_arity</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">next</span><span class="special"><</span><span class="identifier">placeholder_arity</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_value</span><span class="special">></span> <span class="special">>()</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span>
<span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">0</span><span class="special">>()</span>
<span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">nary_expr</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">vararg</span><span class="special"><</span><span class="identifier">_</span><span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">fold</span><span class="special"><</span><span class="identifier">_</span><span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">0</span><span class="special">>(),</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">max</span><span class="special"><</span><span class="identifier">lambda_arity</span><span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">_state</span><span class="special">>()></span>
<span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="comment">// The lambda context is the same as the default context
</span><span class="comment">// with the addition of special handling for lambda placeholders
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Tuple</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">lambda_context</span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">callable_context</span><span class="special"><</span><span class="identifier">lambda_context</span><span class="special"><</span><span class="identifier">Tuple</span><span class="special">></span> <span class="keyword">const</span><span class="special">></span>
<span class="special">{</span>
<span class="identifier">lambda_context</span><span class="special">(</span><span class="identifier">Tuple</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">args</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">args_</span><span class="special">(</span><span class="identifier">args</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">></span> <span class="keyword">const</span> <span class="special">&)></span>
<span class="special">:</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">at</span><span class="special"><</span><span class="identifier">Tuple</span><span class="special">,</span> <span class="identifier">I</span><span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">I</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">at</span><span class="special"><</span><span class="identifier">Tuple</span><span class="special">,</span> <span class="identifier">I</span><span class="special">>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">terminal</span><span class="special">,</span> <span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">I</span><span class="special">></span> <span class="keyword">const</span> <span class="special">&)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">fusion</span><span class="special">::</span><span class="identifier">at</span><span class="special"><</span><span class="identifier">I</span><span class="special">>(</span><span class="keyword">this</span><span class="special">-></span><span class="identifier">args_</span><span class="special">);</span>
<span class="special">}</span>
<span class="identifier">Tuple</span> <span class="identifier">args_</span><span class="special">;</span>
<span class="special">};</span>
<span class="comment">// The lambda<> expression wrapper makes expressions polymorphic
</span><span class="comment">// function objects
</span><span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">lambda</span>
<span class="special">{</span>
<span class="identifier">BOOST_PROTO_BASIC_EXTENDS</span><span class="special">(</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">lambda</span><span class="special"><</span><span class="identifier">T</span><span class="special">>,</span> <span class="identifier">lambda_domain</span><span class="special">)</span>
<span class="identifier">BOOST_PROTO_EXTENDS_ASSIGN</span><span class="special">()</span>
<span class="identifier">BOOST_PROTO_EXTENDS_SUBSCRIPT</span><span class="special">()</span>
<span class="comment">// Calculate the arity of this lambda expression
</span> <span class="keyword">static</span> <span class="keyword">int</span> <span class="keyword">const</span> <span class="identifier">arity</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">result_of</span><span class="special"><</span><span class="identifier">lambda_arity</span><span class="special">(</span><span class="identifier">T</span><span class="special">)>::</span><span class="identifier">type</span><span class="special">::</span><span class="identifier">value</span><span class="special">;</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">Sig</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special">;</span>
<span class="comment">// Define nested result<> specializations to calculate the return
</span> <span class="comment">// type of this lambda expression. But be careful not to evaluate
</span> <span class="comment">// the return type of the nullary function unless we have a nullary
</span> <span class="comment">// lambda!
</span> <span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">This</span><span class="special">()></span>
<span class="special">:</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">eval_if_c</span><span class="special"><</span>
<span class="number">0</span> <span class="special">==</span> <span class="identifier">arity</span>
<span class="special">,</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">lambda_context</span><span class="special"><</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><></span> <span class="special">></span> <span class="special">></span>
<span class="special">,</span> <span class="identifier">mpl</span><span class="special">::</span><span class="identifier">identity</span><span class="special"><</span><span class="keyword">void</span><span class="special">></span>
<span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">A0</span><span class="special">)></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">lambda_context</span><span class="special"><</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><</span><span class="identifier">A0</span><span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">This</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">This</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span> <span class="identifier">A1</span><span class="special">)></span>
<span class="special">:</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">eval</span><span class="special"><</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">,</span> <span class="identifier">lambda_context</span><span class="special"><</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><</span><span class="identifier">A0</span><span class="special">,</span> <span class="identifier">A1</span><span class="special">></span> <span class="special">></span> <span class="special">></span>
<span class="special">{};</span>
<span class="comment">// Define our operator () that evaluates the lambda expression.
</span> <span class="keyword">typename</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">lambda</span><span class="special">()>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">()()</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><></span> <span class="identifier">args</span><span class="special">;</span>
<span class="identifier">lambda_context</span><span class="special"><</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><></span> <span class="special">></span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">args</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">lambda</span><span class="special">(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&)>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">a0</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&></span> <span class="identifier">args</span><span class="special">(</span><span class="identifier">a0</span><span class="special">);</span>
<span class="identifier">lambda_context</span><span class="special"><</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&></span> <span class="special">></span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">args</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">A0</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">A1</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">result</span><span class="special"><</span><span class="identifier">lambda</span><span class="special">(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&)>::</span><span class="identifier">type</span>
<span class="keyword">operator</span> <span class="special">()(</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">a0</span><span class="special">,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">a1</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&></span> <span class="identifier">args</span><span class="special">(</span><span class="identifier">a0</span><span class="special">,</span> <span class="identifier">a1</span><span class="special">);</span>
<span class="identifier">lambda_context</span><span class="special"><</span><span class="identifier">fusion</span><span class="special">::</span><span class="identifier">tuple</span><span class="special"><</span><span class="identifier">A0</span> <span class="keyword">const</span> <span class="special">&,</span> <span class="identifier">A1</span> <span class="keyword">const</span> <span class="special">&></span> <span class="special">></span> <span class="identifier">ctx</span><span class="special">(</span><span class="identifier">args</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">(*</span><span class="keyword">this</span><span class="special">,</span> <span class="identifier">ctx</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="comment">// Define some lambda placeholders
</span><span class="identifier">lambda</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">0</span><span class="special">></span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_1</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="identifier">lambda</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">placeholder</span><span class="special"><</span><span class="identifier">mpl</span><span class="special">::</span><span class="identifier">int_</span><span class="special"><</span><span class="number">1</span><span class="special">></span> <span class="special">></span> <span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">_2</span> <span class="special">=</span> <span class="special">{{}};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">lambda</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">val</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span> <span class="special">&</span><span class="identifier">t</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">lambda</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">type</span><span class="special">></span> <span class="identifier">that</span> <span class="special">=</span> <span class="special">{{</span><span class="identifier">t</span><span class="special">}};</span>
<span class="keyword">return</span> <span class="identifier">that</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">lambda</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">T</span> <span class="special">&>::</span><span class="identifier">type</span><span class="special">></span> <span class="keyword">const</span> <span class="identifier">var</span><span class="special">(</span><span class="identifier">T</span> <span class="special">&</span><span class="identifier">t</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">lambda</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">terminal</span><span class="special"><</span><span class="identifier">T</span> <span class="special">&>::</span><span class="identifier">type</span><span class="special">></span> <span class="identifier">that</span> <span class="special">=</span> <span class="special">{{</span><span class="identifier">t</span><span class="special">}};</span>
<span class="keyword">return</span> <span class="identifier">that</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">construct_helper</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span> <span class="comment">// for TR1 result_of
</span>
<span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()()</span> <span class="keyword">const</span>
<span class="special">{</span> <span class="keyword">return</span> <span class="identifier">T</span><span class="special">();</span> <span class="special">}</span>
<span class="comment">// Generate BOOST_PROTO_MAX_ARITY overloads of the
</span> <span class="comment">// followig function call operator.
</span><span class="preprocessor">#define</span> <span class="identifier">BOOST_PROTO_LOCAL_MACRO</span><span class="special">(</span><span class="identifier">N</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">,</span> <span class="identifier">A_const_ref_a</span><span class="special">,</span> <span class="identifier">a</span><span class="special">)\</span>
<span class="keyword">template</span><span class="special"><</span><span class="identifier">typename_A</span><span class="special">(</span><span class="identifier">N</span><span class="special">)></span> <span class="special">\</span>
<span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">A_const_ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">))</span> <span class="keyword">const</span> <span class="special">\</span>
<span class="special">{</span> <span class="keyword">return</span> <span class="identifier">T</span><span class="special">(</span><span class="identifier">a</span><span class="special">(</span><span class="identifier">N</span><span class="special">));</span> <span class="special">}</span>
<span class="preprocessor">#define</span> <span class="identifier">BOOST_PROTO_LOCAL_a</span> <span class="identifier">BOOST_PROTO_a</span>
<span class="preprocessor">#include</span> <span class="identifier">BOOST_PROTO_LOCAL_ITERATE</span><span class="special">()</span>
<span class="special">};</span>
<span class="comment">// Generate BOOST_PROTO_MAX_ARITY-1 overloads of the
</span><span class="comment">// following construct() function template.
</span><span class="preprocessor">#define</span> <span class="identifier">M0</span><span class="special">(</span><span class="identifier">N</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">,</span> <span class="identifier">A_const_ref_a</span><span class="special">,</span> <span class="identifier">ref_a</span><span class="special">)</span> <span class="special">\</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">,</span> <span class="identifier">typename_A</span><span class="special">(</span><span class="identifier">N</span><span class="special">)></span> <span class="special">\</span>
<span class="keyword">typename</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span> <span class="special">\</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">lambda_domain</span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">construct_helper</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">A_const_ref</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span> <span class="special">\</span>
<span class="special">>::</span><span class="identifier">type</span> <span class="keyword">const</span> <span class="special">\</span>
<span class="identifier">construct</span><span class="special">(</span><span class="identifier">A_const_ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">))</span> <span class="special">\</span>
<span class="special">{</span> <span class="special">\</span>
<span class="keyword">return</span> <span class="identifier">proto</span><span class="special">::</span><span class="identifier">make_expr</span><span class="special"><</span> <span class="special">\</span>
<span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">function</span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">lambda_domain</span> <span class="special">\</span>
<span class="special">>(</span> <span class="special">\</span>
<span class="identifier">construct_helper</span><span class="special"><</span><span class="identifier">T</span><span class="special">>()</span> <span class="special">\</span>
<span class="special">,</span> <span class="identifier">ref_a</span><span class="special">(</span><span class="identifier">N</span><span class="special">)</span> <span class="special">\</span>
<span class="special">);</span> <span class="special">\</span>
<span class="special">}</span>
<span class="identifier">BOOST_PROTO_REPEAT_FROM_TO</span><span class="special">(</span><span class="number">1</span><span class="special">,</span> <span class="identifier">BOOST_PROTO_MAX_ARITY</span><span class="special">,</span> <span class="identifier">M0</span><span class="special">)</span>
<span class="preprocessor">#undef</span> <span class="identifier">M0</span>
<span class="keyword">struct</span> <span class="identifier">S</span>
<span class="special">{</span>
<span class="identifier">S</span><span class="special">()</span> <span class="special">{}</span>
<span class="identifier">S</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">char</span> <span class="identifier">c</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"S("</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="string">","</span> <span class="special"><<</span> <span class="identifier">c</span> <span class="special"><<</span> <span class="string">")\n"</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// Create some lambda objects and immediately
</span> <span class="comment">// invoke them by applying their operator():
</span> <span class="keyword">int</span> <span class="identifier">i</span> <span class="special">=</span> <span class="special">(</span> <span class="special">(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span><span class="special">)</span> <span class="special">/</span> <span class="number">4</span> <span class="special">)(</span><span class="number">42</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">i</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 11
</span>
<span class="keyword">int</span> <span class="identifier">j</span> <span class="special">=</span> <span class="special">(</span> <span class="special">(-(</span><span class="identifier">_1</span> <span class="special">+</span> <span class="number">2</span><span class="special">))</span> <span class="special">/</span> <span class="number">4</span> <span class="special">)(</span><span class="number">42</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">j</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints -11
</span>
<span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="special">(</span> <span class="special">(</span><span class="number">4</span> <span class="special">-</span> <span class="identifier">_2</span><span class="special">)</span> <span class="special">*</span> <span class="number">3</span> <span class="special">)(</span><span class="number">42</span><span class="special">,</span> <span class="number">3.14</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">d</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 2.58
</span>
<span class="comment">// check non-const ref terminals
</span> <span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">_1</span> <span class="special"><<</span> <span class="string">" -- "</span> <span class="special"><<</span> <span class="identifier">_2</span> <span class="special"><<</span> <span class="char">'\n'</span><span class="special">)(</span><span class="number">42</span><span class="special">,</span> <span class="string">"Life, the Universe and Everything!"</span><span class="special">);</span>
<span class="comment">// prints "42 -- Life, the Universe and Everything!"
</span>
<span class="comment">// "Nullary" lambdas work too
</span> <span class="keyword">int</span> <span class="identifier">k</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">val</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">val</span><span class="special">(</span><span class="number">2</span><span class="special">))();</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">k</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 3
</span>
<span class="comment">// check array indexing for kicks
</span> <span class="keyword">int</span> <span class="identifier">integers</span><span class="special">[</span><span class="number">5</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">};</span>
<span class="special">(</span><span class="identifier">var</span><span class="special">(</span><span class="identifier">integers</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="number">2</span><span class="special">)();</span>
<span class="special">(</span><span class="identifier">var</span><span class="special">(</span><span class="identifier">integers</span><span class="special">)[</span><span class="identifier">_1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">_1</span><span class="special">)(</span><span class="number">3</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">integers</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 2
</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">integers</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// prints 3
</span>
<span class="comment">// Now use a lambda with an STL algorithm!
</span> <span class="keyword">int</span> <span class="identifier">rgi</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">};</span>
<span class="keyword">char</span> <span class="identifier">rgc</span><span class="special">[</span><span class="number">4</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="char">'a'</span><span class="special">,</span><span class="char">'b'</span><span class="special">,</span><span class="char">'c'</span><span class="special">,</span><span class="char">'d'</span><span class="special">};</span>
<span class="identifier">S</span> <span class="identifier">rgs</span><span class="special">[</span><span class="number">4</span><span class="special">];</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">transform</span><span class="special">(</span><span class="identifier">rgi</span><span class="special">,</span> <span class="identifier">rgi</span><span class="special">+</span><span class="number">4</span><span class="special">,</span> <span class="identifier">rgc</span><span class="special">,</span> <span class="identifier">rgs</span><span class="special">,</span> <span class="identifier">construct</span><span class="special"><</span><span class="identifier">S</span><span class="special">>(</span><span class="identifier">_1</span><span class="special">,</span> <span class="identifier">_2</span><span class="special">));</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
</p>
</div>
</div>
<div class="section" title="Background and Resources">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.resources"></a><a class="link" href="users_guide.html#boost_proto.users_guide.resources" title="Background and Resources"> Background and Resources</a>
</h3></div></div></div>
<p>
Proto was initially developed as part of <a href="../../../libs/xpressive/index.html" target="_top">Boost.Xpressive</a>
to simplify the job of transforming an expression template into an executable
finite state machine capable of matching a regular expression. Since then,
Proto has found application in the redesigned and improved Spirit-2 and the
related Karma library. As a result of these efforts, Proto evolved into a
generic and abstract grammar and tree transformation framework applicable
in a wide variety of DSEL scenarios.
</p>
<p>
The grammar and tree transformation framework is modeled on Spirit's grammar
and semantic action framework. The expression tree data structure is similar
to Fusion data structures in many respects, and is interoperable with Fusion's
iterators and algorithms.
</p>
<p>
The syntax for the grammar-matching features of <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><></span></code> is inspired by MPL's lambda expressions.
</p>
<p>
The idea for using function types for Proto's composite transforms is inspired
by Aleksey Gurtovoy's <a href="http://lists.boost.org/Archives/boost/2002/11/39718.php" target="_top">"round"
lambda</a> notation.
</p>
<a name="boost_proto.users_guide.resources.references"></a><h5>
<a name="id1574615"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.resources.references">References</a>
</h5>
<a name="boost_proto.users_guide.resources.SYB"></a><div class="blockquote"><blockquote class="blockquote">
<p>
</p>
<p>
Ren, D. and Erwig, M. 2006. A generic recursion toolbox for Haskell or:
scrap your boilerplate systematically. In <span class="emphasis"><em>Proceedings of the
2006 ACM SIGPLAN Workshop on Haskell</em></span> (Portland, Oregon, USA,
September 17 - 17, 2006). Haskell '06. ACM, New York, NY, 13-24. DOI=<a href="http://doi.acm.org/10.1145/1159842.1159845" target="_top">http://doi.acm.org/10.1145/1159842.1159845</a>
</p>
<p>
</p>
</blockquote></div>
<a name="boost_proto.users_guide.resources.further_reading"></a><h5>
<a name="id1574668"></a>
<a class="link" href="users_guide.html#boost_proto.users_guide.resources.further_reading">Further
Reading</a>
</h5>
<p>
A technical paper about an earlier version of Proto was accepted into the
<a href="http://lcsd.cs.tamu.edu/2007/" target="_top">ACM SIGPLAN Symposium on Library-Centric
Software Design LCSD'07</a>, and can be found at <a href="http://lcsd.cs.tamu.edu/2007/final/1/1_Paper.pdf" target="_top">http://lcsd.cs.tamu.edu/2007/final/1/1_Paper.pdf</a>.
The tree transforms described in that paper differ from what exists today.
</p>
</div>
<div class="section" title="Glossary">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_proto.users_guide.glossary"></a><a class="link" href="users_guide.html#boost_proto.users_guide.glossary" title="Glossary">Glossary</a>
</h3></div></div></div>
<div class="variablelist">
<p class="title"><b></b></p>
<dl>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.callable_transform"></a> callable transform</span></dt>
<dd><p>
A transform of the form <code class="computeroutput"><span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">,...)</span></code> (i.e., a function type) where <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special"><</span><span class="identifier">R</span><span class="special">>::</span><span class="identifier">value</span></code> is <code class="computeroutput"><span class="keyword">true</span></code>.
<code class="computeroutput"><span class="identifier">R</span></code> is treated as a polymorphic
function object and the arguments are treated as transforms that yield
the arguments to the function object.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.context"></a> context</span></dt>
<dd><p>
In Proto, the term <span class="emphasis"><em>context</em></span> refers to an object that
can be passed, along with an expression to evaluate, to the <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">eval</span><span class="special">()</span></code>
function. The context determines how the expression is evaluated. All
context structs define a nested <code class="computeroutput"><span class="identifier">eval</span><span class="special"><></span></code> template that, when instantiated
with a node tag type (e.g., <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">tag</span><span class="special">::</span><span class="identifier">plus</span></code>),
is a binary polymorphic function object that accepts an expression of
that type and the context object. In this way, contexts associate behaviors
with expression nodes.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.domain"></a> domain</span></dt>
<dd><p>
In Proto, the term <span class="emphasis"><em>domain</em></span> refers to a type that
associates expressions within that domain with a <span class="emphasis"><em>generator</em></span>
for that domain and optionally a <span class="emphasis"><em>grammar</em></span> for the
domain. Domains are used primarily to imbue expressions within that domain
with additional members and to restrict Proto's operator overloads such
that expressions not conforming to the domain's grammar are never created.
Domains are empty structs that inherit from <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">domain</span><span class="special"><></span></code>.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.dsel"></a> domain-specific embedded language</span></dt>
<dd><p>
A domain-specific language implemented as a library. The language in
which the library is written is called the "host" language,
and the language implemented by the library is called the "embedded"
language.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.dsl"></a> domain-specific language</span></dt>
<dd><p>
A programming language that targets a particular problem space by providing
programming idioms, abstractions and constructs that match the constructs
within that problem space.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.expression"></a> expression</span></dt>
<dd><p>
In Proto, an <span class="emphasis"><em>expression</em></span> is a heterogeneous tree
where each node is either an instantiation of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">expr</span><span class="special"><></span></code> or some type that is an extension
(via <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">extends</span><span class="special"><></span></code>
or <code class="computeroutput"><span class="identifier">BOOST_PROTO_EXTENDS</span><span class="special">()</span></code>) of such an instantiation.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.expression_template"></a> expression template</span></dt>
<dd><p>
A C++ technique using templates and operator overloading to cause expressions
to build trees that represent the expression for lazy evaluation later,
rather than evaluating the expression eagerly. Some C++ libraries use
expression templates to build domain-specific embedded languages.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.generator"></a> generator</span></dt>
<dd><p>
In Proto, a <span class="emphasis"><em>generator</em></span> is a unary polymorphic function
object that you specify when defining a <span class="emphasis"><em>domain</em></span>.
After constructing a new expression, Proto passes the expression to your
domain's generator for further processing. Often, the generator wraps
the expression in an extension wrapper that adds additional members to
it.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.grammar"></a> grammar</span></dt>
<dd><p>
In Proto, a <span class="emphasis"><em>grammar</em></span> is a type that describes a subset
of Proto expression types. Expressions in a domain must conform to that
domain's grammar. The <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">matches</span><span class="special"><></span></code> metafunction evaluates whether
an expression type matches a grammar. Grammars are either primitives
such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span></code>, composites such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">plus</span><span class="special"><></span></code>,
control structures such as <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">or_</span><span class="special"><></span></code>, or some type derived from a
grammar.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.object_transform"></a> object transform</span></dt>
<dd><p>
A transform of the form <code class="computeroutput"><span class="identifier">R</span><span class="special">(</span><span class="identifier">A0</span><span class="special">,</span><span class="identifier">A1</span><span class="special">,...)</span></code> (i.e., a function type) where <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">is_callable</span><span class="special"><</span><span class="identifier">R</span><span class="special">>::</span><span class="identifier">value</span></code> is <code class="computeroutput"><span class="keyword">false</span></code>.
<code class="computeroutput"><span class="identifier">R</span></code> is treated as the type
of an object to construct and the arguments are treated as transforms
that yield the parameters to the constructor.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.polymorphic_function_object"></a> polymorphic
function object</span></dt>
<dd><p>
An instance of a class type with an overloaded function call operator
and a nested <code class="computeroutput"><span class="identifier">result_type</span></code>
typedef or <code class="computeroutput"><span class="identifier">result</span><span class="special"><></span></code>
template for calculating the return type of the function call operator.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.primitive_transform"></a> primitive transform</span></dt>
<dd><p>
A type that defines a kind of polymorphic function object that takes
three arguments: expression, state, and data. Primitive transforms can
be used to compose callable transforms and object transforms.
</p></dd>
<dt><span class="term"> <a name="boost_proto.users_guide.glossary.transform"></a> transform</span></dt>
<dd><p>
Transforms are used to manipulate expression trees. They come in three
flavors: primitive transforms, callable transforms, or object transforms.
A transform <code class="computeroutput">
<em class="replaceable"><code>
T
</code></em>
</code> can be made into a ternary polymorphic function object with
<code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><></span></code>,
as in <code class="computeroutput"><span class="identifier">proto</span><span class="special">::</span><span class="identifier">when</span><span class="special"><</span><span class="identifier">proto</span><span class="special">::</span><span class="identifier">_</span><span class="special">,</span>
<em class="replaceable"><code>
T
</code></em>
<span class="special">></span></code>. Such a function object accepts
<span class="emphasis"><em>expression</em></span>, <span class="emphasis"><em>state</em></span>, and <span class="emphasis"><em>data</em></span>
parameters, and computes a result from them.
</p></dd>
</dl>
</div>
</div>
<div class="footnotes">
<br><hr width="100" align="left">
<div class="footnote"><p><sup>[<a name="ftn.id1511617" href="#id1511617" class="para">3</a>] </sup>
This error message was generated with Microsoft Visual C++ 9.0. Different
compilers will emit different messages with varying degrees of readability.
</p></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2008 Eric Niebler<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../proto.html"><img src="../../../doc/html/images/prev.png" alt="Prev"></a><a accesskey="u" href="../proto.html"><img src="../../../doc/html/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/html/images/home.png" alt="Home"></a><a accesskey="n" href="reference.html"><img src="../../../doc/html/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|