1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
[/ Copyright 2005-2008 Daniel James.
/ Distributed under the Boost Software License, Version 1.0. (See accompanying
/ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) ]
[def __multi-index-short__ [@boost:/libs/multi_index/doc/index.html
Boost.MultiIndex]]
[section:tutorial Tutorial]
When using a hash index with __multi-index-short__, you don't need to do
anything to use [classref boost::hash] as it uses it by default.
To find out how to use a user-defined type, read the
[link hash.custom section on extending boost::hash for a custom data type].
If your standard library supplies its own implementation of the unordered
associative containers and you wish to use
[classref boost::hash], just use an extra template parameter:
std::unordered_multiset<int, ``[classref boost::hash]``<int> >
set_of_ints;
std::unordered_set<std::pair<int, int>, ``[classref boost::hash]``<std::pair<int, int> >
set_of_pairs;
std::unordered_map<int, std::string, ``[classref boost::hash]``<int> > map_int_to_string;
To use [classref boost::hash] directly, create an instance and call it as a function:
#include <``[headerref boost/functional/hash.hpp]``>
int main()
{
``[classref boost::hash]``<std::string> string_hash;
std::size_t h = string_hash("Hash me");
}
For an example of generic use, here is a function to generate a vector
containing the hashes of the elements of a container:
template <class Container>
std::vector<std::size_t> get_hashes(Container const& x)
{
std::vector<std::size_t> hashes;
std::transform(x.begin(), x.end(), std::insert_iterator(hashes),
``[classref boost::hash]``<typename Container::value_type>());
return hashes;
}
[endsect]
[section:custom Extending boost::hash for a custom data type]
[classref boost::hash] is implemented by calling the function
[funcref boost::hash_value hash_value].
The namespace isn't specified so that it can detect overloads via argument
dependant lookup. So if there is a free function `hash_value` in the same
namespace as a custom type, it will get called.
If you have a structure `library::book`, where each `book` is uniquely
defined by it's member `id`:
namespace library
{
struct book
{
int id;
std::string author;
std::string title;
// ....
};
bool operator==(book const& a, book const& b)
{
return a.id == b.id;
}
}
Then all you would need to do is write the function `library::hash_value`:
namespace library
{
std::size_t hash_value(book const& b)
{
``[classref boost::hash]``<int> hasher;
return hasher(b.id);
}
}
And you can now use [classref boost::hash] with book:
library::book knife(3458, "Zane Grey", "The Hash Knife Outfit");
library::book dandelion(1354, "Paul J. Shanley",
"Hash & Dandelion Greens");
``[classref boost::hash]``<library::book> book_hasher;
std::size_t knife_hash_value = book_hasher(knife);
// If std::unordered_set is available:
std::unordered_set<library::book, ``[classref boost::hash]``<library::book> > books;
books.insert(knife);
books.insert(library::book(2443, "Lindgren, Torgny", "Hash"));
books.insert(library::book(1953, "Snyder, Bernadette M.",
"Heavenly Hash: A Tasty Mix of a Mother's Meditations"));
assert(books.find(knife) != books.end());
assert(books.find(dandelion) == books.end());
The full example can be found in:
[@boost:/libs/functional/hash/examples/books.hpp /libs/functional/hash/examples/books.hpp]
and
[@boost:/libs/functional/hash/examples/books.cpp /libs/functional/hash/examples/books.cpp].
[tip
When writing a hash function, first look at how the equality function works.
Objects that are equal must generate the same hash value.
When objects are not equal they should generate different hash values.
In this object equality was based just on the id so the hash function
only hashes the id. If it was based on the object's name and author
then the hash function should take them into account
(how to do this is discussed in the next section).
]
[endsect]
[section:combine Combining hash values]
Say you have a point class, representing a two dimensional location:
class point
{
int x;
int y;
public:
point() : x(0), y(0) {}
point(int x, int y) : x(x), y(y) {}
bool operator==(point const& other) const
{
return x == other.x && y == other.y;
}
};
and you wish to use it as the key for an `unordered_map`. You need to
customise the hash for this structure. To do this we need to combine
the hash values for `x` and `y`. The function
[funcref boost::hash_combine] is supplied for this purpose:
class point
{
...
friend std::size_t hash_value(point const& p)
{
std::size_t seed = 0;
``[funcref boost::hash_combine]``(seed, p.x);
``[funcref boost::hash_combine]``(seed, p.y);
return seed;
}
...
};
Calls to hash_combine incrementally build the hash from the different members
of point, it can be repeatedly called for any number of elements. It calls
[funcref boost::hash_value hash_value] on the supplied element, and combines it with the seed.
Full code for this example is at
[@boost:/libs/functional/hash/examples/point.cpp /libs/functional/hash/examples/point.cpp].
[note
When using [funcref boost::hash_combine] the order of the
calls matters.
'''
<programlisting>
std::size_t seed = 0;
boost::hash_combine(seed, 1);
boost::hash_combine(seed, 2);
</programlisting>
results in a different seed to:
<programlisting>
std::size_t seed = 0;
boost::hash_combine(seed, 2);
boost::hash_combine(seed, 1);
</programlisting>
'''
If you are calculating a hash value for data where the order of the data
doesn't matter in comparisons (e.g. a set) you will have to ensure that the
data is always supplied in the same order.
]
To calculate the hash of an iterator range you can use [funcref boost::hash_range]:
std::vector<std::string> some_strings;
std::size_t hash = ``[funcref boost::hash_range]``(some_strings.begin(), some_strings.end());
[endsect]
|