1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
// test_nc_t.cpp
// Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#ifdef _MSC_VER
#pragma warning (disable:4127 4512)
#endif
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
# define TEST_FLOAT
# define TEST_DOUBLE
# define TEST_LDOUBLE
# define TEST_REAL_CONCEPT
#endif
#include <boost/math/concepts/real_concept.hpp> // for real_concept
#include <boost/math/distributions/non_central_t.hpp> // for chi_squared_distribution
#include <boost/test/test_exec_monitor.hpp> // for test_main
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
#include "functor.hpp"
#include "handle_test_result.hpp"
#include <iostream>
using std::cout;
using std::endl;
#include <limits>
using std::numeric_limits;
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
#define BOOST_CHECK_EX(a, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK(a); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
}\
}
void expected_results()
{
//
// Define the max and mean errors expected for
// various compilers and platforms.
//
const char* largest_type;
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
{
largest_type = "(long\\s+)?double|real_concept";
}
else
{
largest_type = "long double|real_concept";
}
#else
largest_type = "(long\\s+)?double|real_concept";
#endif
//
// Catch all cases come last:
//
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
"real_concept", // test type(s)
"[^|]*", // test data group
"[^|]*", 300000, 100000); // test function
add_expected_result(
"[^|]*", // compiler
"[^|]*", // stdlib
"[^|]*", // platform
largest_type, // test type(s)
"[^|]*", // test data group
"[^|]*", 250, 50); // test function
//
// Finish off by printing out the compiler/stdlib/platform names,
// we do this to make it easier to mark up expected error rates.
//
std::cout << "Tests run with " << BOOST_COMPILER << ", "
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
}
template <class RealType>
RealType naive_pdf(RealType v, RealType delta, RealType x)
{
}
template <class RealType>
RealType naive_mean(RealType v, RealType delta)
{
using boost::math::tgamma;
return delta * sqrt(v / 2) * tgamma((v-1)/2) / tgamma(v/2);
}
float naive_mean(float v, float delta)
{
return (float)naive_mean((double)v, (double)delta);
}
template <class RealType>
RealType naive_variance(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType r = tgamma((v-1)/2) / tgamma(v/2);
r *= r;
r *= -delta * delta * v / 2;
r += (1 + delta * delta) * v / (v - 2);
return r;
}
float naive_variance(float v, float delta)
{
return (float)naive_variance((double)v, (double)delta);
}
template <class RealType>
RealType naive_skewness(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType tgr = tgamma((v-1)/2) / tgamma(v / 2);
RealType r = delta * sqrt(v) * tgamma((v-1)/2)
* (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v))
- 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2));
r /= boost::math::constants::root_two<RealType>()
* pow(((1+delta*delta) * v / (-2+v) - delta*delta*v*tgr*tgr/2), RealType(1.5f))
* tgamma(v/2);
return r;
}
float naive_skewness(float v, float delta)
{
return (float)naive_skewness((double)v, (double)delta);
}
template <class RealType>
RealType naive_kurtosis_excess(RealType v, RealType delta)
{
using boost::math::tgamma;
RealType tgr = tgamma((v-1)/2) / tgamma(v / 2);
RealType r = -delta * delta * v * tgr * tgr / 2;
r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2+v))
- 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2);
r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v
/ ((-4+v) * (-2+v));
r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2;
r /= (1+delta*delta)*v / (-2+v) - delta*delta*v *tgr*tgr/2;
return r;
}
float naive_kurtosis_excess(float v, float delta)
{
return (float)naive_kurtosis_excess((double)v, (double)delta);
}
template <class RealType>
void test_spot(
RealType df, // Degrees of freedom
RealType ncp, // non-centrality param
RealType t, // T statistic
RealType P, // CDF
RealType Q, // Complement of CDF
RealType tol) // Test tolerance
{
boost::math::non_central_t_distribution<RealType> dist(df, ncp);
BOOST_CHECK_CLOSE(
cdf(dist, t), P, tol);
try{
BOOST_CHECK_CLOSE(
mean(dist), naive_mean(df, ncp), tol);
BOOST_CHECK_CLOSE(
variance(dist), naive_variance(df, ncp), tol);
BOOST_CHECK_CLOSE(
skewness(dist), naive_skewness(df, ncp), tol * 10);
BOOST_CHECK_CLOSE(
kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 50);
BOOST_CHECK_CLOSE(
kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50);
}
catch(const std::domain_error&)
{
}
/*
BOOST_CHECK_CLOSE(
pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50);
*/
if((P < 0.99) && (Q < 0.99))
{
//
// We can only check this if P is not too close to 1,
// so that we can guarentee Q is reasonably free of error:
//
BOOST_CHECK_CLOSE(
cdf(complement(dist, t)), Q, tol);
BOOST_CHECK_CLOSE(
quantile(dist, P), t, tol * 10);
BOOST_CHECK_CLOSE(
quantile(complement(dist, Q)), t, tol * 10);
/*
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(df, t, P), ncp, tol * 10);
BOOST_CHECK_CLOSE(
dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10);
*/
}
}
template <class RealType> // Any floating-point type RealType.
void test_spots(RealType)
{
//
// Approx limit of test data is 12 digits expressed here as a persentage:
//
RealType tolerance = (std::max)(
boost::math::tools::epsilon<RealType>(),
(RealType)5e-12f) * 100;
//
// At float precision we need to up the tolerance, since
// the input values are rounded off to inexact quantities
// the results get thrown off by a noticeable amount.
//
if(boost::math::tools::digits<RealType>() < 50)
tolerance *= 50;
if(boost::is_floating_point<RealType>::value != 1)
tolerance *= 20; // real_concept special functions are less accurate
cout << "Tolerance = " << tolerance << "%." << endl;
//
// Test data is taken from:
//
// Computing discrete mixtures of continuous
// distributions: noncentral chisquare, noncentral t
// and the distribution of the square of the sample
// multiple correlation coeficient.
// Denise Benton, K. Krishnamoorthy.
// Computational Statistics & Data Analysis 43 (2003) 249 - 267
//
test_spot(
static_cast<RealType>(3), // degrees of freedom
static_cast<RealType>(1), // non centrality
static_cast<RealType>(2.34), // T
static_cast<RealType>(0.801888999613917), // Probability of result (CDF), P
static_cast<RealType>(1-0.801888999613917), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(126), // degrees of freedom
static_cast<RealType>(-2), // non centrality
static_cast<RealType>(-4.33), // T
static_cast<RealType>(1.252846196792878e-2), // Probability of result (CDF), P
static_cast<RealType>(1-1.252846196792878e-2), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(20), // degrees of freedom
static_cast<RealType>(23), // non centrality
static_cast<RealType>(23), // T
static_cast<RealType>(0.460134400391924), // Probability of result (CDF), P
static_cast<RealType>(1-0.460134400391924), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(20), // degrees of freedom
static_cast<RealType>(33), // non centrality
static_cast<RealType>(34), // T
static_cast<RealType>(0.532008386378725), // Probability of result (CDF), P
static_cast<RealType>(1-0.532008386378725), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(12), // degrees of freedom
static_cast<RealType>(38), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.495868184917805), // Probability of result (CDF), P
static_cast<RealType>(1-0.495868184917805), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(12), // degrees of freedom
static_cast<RealType>(39), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.446304024668836), // Probability of result (CDF), P
static_cast<RealType>(1-0.446304024668836), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(200), // degrees of freedom
static_cast<RealType>(38), // non centrality
static_cast<RealType>(39), // T
static_cast<RealType>(0.666194209961795), // Probability of result (CDF), P
static_cast<RealType>(1-0.666194209961795), // Q = 1 - P
tolerance);
test_spot(
static_cast<RealType>(200), // degrees of freedom
static_cast<RealType>(42), // non centrality
static_cast<RealType>(40), // T
static_cast<RealType>(0.179292265426085), // Probability of result (CDF), P
static_cast<RealType>(1-0.179292265426085), // Q = 1 - P
tolerance);
boost::math::non_central_t_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast<RealType>(1.235329715425894935157684607751972713457e-1L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, -2), -4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 4), static_cast<RealType>(5.797932289365814702402873546466798025787e-2L), tolerance);
BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution<RealType>(126, 2), 0), static_cast<RealType>(5.388394890639957139696546086044839573749e-2L), tolerance);
} // template <class RealType>void test_spots(RealType)
template <class T>
T nct_cdf(T df, T nc, T x)
{
return cdf(boost::math::non_central_t_distribution<T>(df, nc), x);
}
template <class T>
T nct_ccdf(T df, T nc, T x)
{
return cdf(complement(boost::math::non_central_t_distribution<T>(df, nc), x));
}
template <typename T>
void do_test_nc_t(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
std::cout << "Testing: " << test << std::endl;
value_type (*fp1)(value_type, value_type, value_type) = nct_cdf;
boost::math::tools::test_result<value_type> result;
result = boost::math::tools::test(
data,
bind_func(fp1, 0, 1, 2),
extract_result(3));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "CDF", test);
fp1 = nct_ccdf;
result = boost::math::tools::test(
data,
bind_func(fp1, 0, 1, 2),
extract_result(4));
handle_test_result(result, data[result.worst()], result.worst(),
type_name, "CCDF", test);
std::cout << std::endl;
}
template <typename T>
void quantile_sanity_check(T& data, const char* type_name, const char* test)
{
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
//
// Tests with type real_concept take rather too long to run, so
// for now we'll disable them:
//
if(!boost::is_floating_point<value_type>::value)
return;
std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
//
// These sanity checks test for a round trip accuracy of one half
// of the bits in T, unless T is type float, in which case we check
// for just one decimal digit. The problem here is the sensitivity
// of the functions, not their accuracy. This test data was generated
// for the forward functions, which means that when it is used as
// the input to the inverses then it is necessarily inexact. This rounding
// of the input is what makes the data unsuitable for use as an accuracy check,
// and also demonstrates that you can't in general round-trip these functions.
// It is however a useful sanity check.
//
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float
for(unsigned i = 0; i < data.size(); ++i)
{
if(data[i][3] == 0)
{
BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
}
else if(data[i][3] < 0.9999f)
{
value_type p = quantile(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(data[i][4] == 0)
{
BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
}
else if(data[i][4] < 0.9999f)
{
value_type p = quantile(complement(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
value_type pt = data[i][2];
BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
}
if(boost::math::tools::digits<value_type>() > 50)
{
//
// Sanity check mode, the accuracy of
// the mode is at *best* the square root of the accuracy of the PDF:
//
try{
value_type m = mode(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]));
value_type p = pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m);
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 100)) <= p, i);
BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 100) <= p, i);
}
catch(const boost::math::evaluation_error& ) {}
#if 0
//
// Sanity check degrees-of-freedom finder, don't bother at float
// precision though as there's not enough data in the probability
// values to get back to the correct degrees of freedom or
// non-cenrality parameter:
//
try{
if((data[i][3] < 0.99) && (data[i][3] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
data[i][1], precision, i);
}
if((data[i][4] < 0.99) && (data[i][4] != 0))
{
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
data[i][0], precision, i);
BOOST_CHECK_CLOSE_EX(
boost::math::non_central_t_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
data[i][1], precision, i);
}
}
catch(const std::exception& e)
{
BOOST_ERROR(e.what());
}
#endif
}
}
}
template <typename T>
void test_accuracy(T, const char* type_name)
{
#include "nct.ipp"
do_test_nc_t(nct, type_name, "Non Central T");
quantile_sanity_check(nct, type_name, "Non Central T");
}
int test_main(int, char* [])
{
BOOST_MATH_CONTROL_FP;
// Basic sanity-check spot values.
expected_results();
// (Parameter value, arbitrarily zero, only communicates the floating point type).
#ifdef TEST_FLOAT
test_spots(0.0F); // Test float.
#endif
#ifdef TEST_DOUBLE
test_spots(0.0); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_spots(0.0L); // Test long double.
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#ifdef TEST_REAL_CONCEPT
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
#endif
#endif
#endif
#ifdef TEST_FLOAT
test_accuracy(0.0F, "float"); // Test float.
#endif
#ifdef TEST_DOUBLE
test_accuracy(0.0, "double"); // Test double.
#endif
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
#ifdef TEST_LDOUBLE
test_accuracy(0.0L, "long double"); // Test long double.
#endif
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
#ifdef TEST_REAL_CONCEPT
test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept.
#endif
#endif
#endif
return 0;
} // int test_main(int, char* [])
|