1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
// (C) Copyright John Maddock 2006.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#include <boost/test/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/test/results_collector.hpp>
#include <boost/math/special_functions/beta.hpp>
#include <boost/math/tools/roots.hpp>
#include <boost/test/results_collector.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/array.hpp>
#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
{\
unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
BOOST_CHECK_CLOSE(a, b, prec); \
if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
{\
std::cerr << "Failure was at row " << i << std::endl;\
std::cerr << std::setprecision(35); \
std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\
}\
}
//
// Implement various versions of inverse of the incomplete beta
// using different root finding algorithms, and deliberately "bad"
// starting conditions: that way we get all the pathological cases
// we could ever wish for!!!
//
template <class T, class Policy>
struct ibeta_roots_1 // for first order algorithms
{
ibeta_roots_1(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
T operator()(const T& x)
{
return boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
}
private:
T a, b, target;
bool invert;
};
template <class T, class Policy>
struct ibeta_roots_2 // for second order algorithms
{
ibeta_roots_2(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
std::tr1::tuple<T, T> operator()(const T& x)
{
typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
T f1 = invert ?
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
T y = 1 - x;
if(y == 0)
y = boost::math::tools::min_value<T>() * 8;
f1 /= y * x;
// make sure we don't have a zero derivative:
if(f1 == 0)
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
return std::tr1::make_tuple(f, f1);
}
private:
T a, b, target;
bool invert;
};
template <class T, class Policy>
struct ibeta_roots_3 // for third order algorithms
{
ibeta_roots_3(T _a, T _b, T t, bool inv = false)
: a(_a), b(_b), target(t), invert(inv) {}
std::tr1::tuple<T, T, T> operator()(const T& x)
{
typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
T f1 = invert ?
-boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
: boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
T y = 1 - x;
if(y == 0)
y = boost::math::tools::min_value<T>() * 8;
f1 /= y * x;
T f2 = f1 * (-y * a + (b - 2) * x + 1) / (y * x);
if(invert)
f2 = -f2;
// make sure we don't have a zero derivative:
if(f1 == 0)
f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
return std::tr1::make_tuple(f, f1, f2);
}
private:
T a, b, target;
bool invert;
};
double inverse_ibeta_bisect(double a, double b, double z)
{
typedef boost::math::policies::policy<> pol;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
boost::math::tools::eps_tolerance<double> tol(precision);
return boost::math::tools::bisect(ibeta_roots_1<double, pol>(a, b, z, invert), min, max, tol).first;
}
double inverse_ibeta_newton(double a, double b, double z)
{
double guess = 0.5;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
return boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
}
double inverse_ibeta_halley(double a, double b, double z)
{
double guess = 0.5;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
return boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
}
double inverse_ibeta_schroeder(double a, double b, double z)
{
double guess = 0.5;
bool invert = false;
int bits = std::numeric_limits<double>::digits;
//
// special cases, we need to have these because there may be other
// possible answers:
//
if(z == 1) return 1;
if(z == 0) return 0;
//
// We need a good estimate of the error in the incomplete beta function
// so that we don't set the desired precision too high. Assume that 3-bits
// are lost each time the arguments increase by a factor of 10:
//
using namespace std;
int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
if(bits_lost < 0)
bits_lost = 3;
else
bits_lost += 3;
int precision = bits - bits_lost;
double min = 0;
double max = 1;
return boost::math::tools::schroeder_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
}
template <class T>
void test_inverses(const T& data)
{
using namespace std;
typedef typename T::value_type row_type;
typedef typename row_type::value_type value_type;
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
for(unsigned i = 0; i < data.size(); ++i)
{
//
// These inverse tests are thrown off if the output of the
// incomplete beta is too close to 1: basically there is insuffient
// information left in the value we're using as input to the inverse
// to be able to get back to the original value.
//
if(data[i][5] == 0)
{
BOOST_CHECK_EQUAL(inverse_ibeta_halley(data[i][0], data[i][1], data[i][5]), value_type(0));
BOOST_CHECK_EQUAL(inverse_ibeta_schroeder(data[i][0], data[i][1], data[i][5]), value_type(0));
BOOST_CHECK_EQUAL(inverse_ibeta_newton(data[i][0], data[i][1], data[i][5]), value_type(0));
BOOST_CHECK_EQUAL(inverse_ibeta_bisect(data[i][0], data[i][1], data[i][5]), value_type(0));
}
else if((1 - data[i][5] > 0.001)
&& (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>())
&& (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>()))
{
value_type inv = inverse_ibeta_halley(data[i][0], data[i][1], data[i][5]);
BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);
inv = inverse_ibeta_schroeder(data[i][0], data[i][1], data[i][5]);
BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);
inv = inverse_ibeta_newton(data[i][0], data[i][1], data[i][5]);
BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);
inv = inverse_ibeta_bisect(data[i][0], data[i][1], data[i][5]);
BOOST_CHECK_CLOSE_EX(data[i][2], inv, precision, i);
}
else if(1 == data[i][5])
{
BOOST_CHECK_EQUAL(inverse_ibeta_halley(data[i][0], data[i][1], data[i][5]), value_type(1));
BOOST_CHECK_EQUAL(inverse_ibeta_schroeder(data[i][0], data[i][1], data[i][5]), value_type(1));
BOOST_CHECK_EQUAL(inverse_ibeta_newton(data[i][0], data[i][1], data[i][5]), value_type(1));
BOOST_CHECK_EQUAL(inverse_ibeta_bisect(data[i][0], data[i][1], data[i][5]), value_type(1));
}
}
}
template <class T>
void test_beta(T, const char* /* name */)
{
//
// The actual test data is rather verbose, so it's in a separate file
//
// The contents are as follows, each row of data contains
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
//
# include "ibeta_small_data.ipp"
test_inverses(ibeta_small_data);
# include "ibeta_data.ipp"
test_inverses(ibeta_data);
# include "ibeta_large_data.ipp"
test_inverses(ibeta_large_data);
}
int test_main(int, char* [])
{
test_beta(0.1, "double");
return 0;
}
|