1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
// (C) Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <pch.hpp>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/test_exec_monitor.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/math/special_functions/trunc.hpp>
#include <boost/math/special_functions/modf.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/random/mersenne_twister.hpp>
boost::mt19937 rng;
template <class T>
T get_random()
{
//
// Fill all the bits in T with random values,
// likewise set the exponent to a random value
// that will still fit inside a T, and always
// have a remainder as well as an integer part.
//
int bits = boost::math::tools::digits<T>();
int shift = 0;
int exponent = rng() % (bits - 4);
T result = 0;
while(bits > 0)
{
result += ldexp(static_cast<T>(rng()), shift);
shift += std::numeric_limits<int>::digits;
bits -= std::numeric_limits<int>::digits;
}
return rng() & 1u ? -ldexp(frexp(result, &bits), exponent) : ldexp(frexp(result, &bits), exponent);
}
template <class T, class U>
void check_within_half(T a, U u)
{
BOOST_MATH_STD_USING
if(fabs(a-u) > 0.5f)
{
BOOST_ERROR("Rounded result differed by more than 0.5 from the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
}
//
// We may not have an abs overload for long long so provide a fall back:
//
template <class T>
inline T safe_abs(T const& v ...)
{
return v < 0 ? -v : v;
}
template <class T, class U>
void check_trunc_result(T a, U u)
{
BOOST_MATH_STD_USING
if(fabs(a-u) >= 1)
{
BOOST_ERROR("Rounded result differed by more than 1 from the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
if(abs(a) < safe_abs(u))
{
BOOST_ERROR("Truncated result had larger absolute value than the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << u << std::endl;
}
}
template <class T, class U>
void check_modf_result(T a, T fract, U ipart)
{
BOOST_MATH_STD_USING
if(fract + ipart != a)
{
BOOST_ERROR("Fractional and integer results do not add up to the original value");
std::cerr << "Values were: " << std::setprecision(35) << " "
<< std::left << a << ipart << " " << fract << std::endl;
}
if((boost::math::sign(a) != boost::math::sign(fract)) && boost::math::sign(fract))
{
BOOST_ERROR("Original and fractional parts have differing signs");
std::cerr << "Values were: " << std::setprecision(35) << " "
<< std::left << a << ipart << " " << fract << std::endl;
}
if((boost::math::sign(a) != boost::math::sign(ipart)) && boost::math::sign(ipart))
{
BOOST_ERROR("Original and integer parts have differing signs");
std::cerr << "Values were: " << std::setprecision(35) << " "
<< std::left << a << ipart << " " << ipart << std::endl;
}
if(fabs(a-ipart) >= 1)
{
BOOST_ERROR("Rounded result differed by more than 1 from the original");
std::cerr << "Values were: " << std::setprecision(35) << std::setw(40)
<< std::left << a << ipart << std::endl;
}
}
template <class T>
void test_round(T, const char* /* name */)
{
BOOST_MATH_STD_USING
for(int i = 0; i < 1000; ++i)
{
T arg = get_random<T>();
T r = boost::math::round(arg);
check_within_half(arg, r);
r = boost::math::trunc(arg);
check_trunc_result(arg, r);
T frac = boost::math::modf(arg, &r);
check_modf_result(arg, frac, r);
if(abs(r) < (std::numeric_limits<int>::max)())
{
int i = boost::math::iround(arg);
check_within_half(arg, i);
i = boost::math::itrunc(arg);
check_trunc_result(arg, i);
r = boost::math::modf(arg, &i);
check_modf_result(arg, r, i);
}
if(abs(r) < (std::numeric_limits<long>::max)())
{
long l = boost::math::lround(arg);
check_within_half(arg, l);
l = boost::math::ltrunc(arg);
check_trunc_result(arg, l);
r = boost::math::modf(arg, &l);
check_modf_result(arg, r, l);
}
#ifdef BOOST_HAS_LONG_LONG
if(abs(r) < (std::numeric_limits<boost::long_long_type>::max)())
{
boost::long_long_type ll = boost::math::llround(arg);
check_within_half(arg, ll);
ll = boost::math::lltrunc(arg);
check_trunc_result(arg, ll);
r = boost::math::modf(arg, &ll);
check_modf_result(arg, r, ll);
}
#endif
}
//
// Finish off by testing the error handlers:
//
BOOST_CHECK_THROW(boost::math::iround(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(static_cast<T>(-1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(static_cast<T>(-1e20)), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::llround(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::llround(static_cast<T>(-1e20)), boost::math::rounding_error);
#endif
if(std::numeric_limits<T>::has_infinity)
{
BOOST_CHECK_THROW(boost::math::round(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::llround(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::llround(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#endif
}
if(std::numeric_limits<T>::has_quiet_NaN)
{
BOOST_CHECK_THROW(boost::math::round(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::iround(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lround(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::llround(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#endif
}
BOOST_CHECK_THROW(boost::math::itrunc(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(static_cast<T>(-1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(static_cast<T>(-1e20)), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::lltrunc(static_cast<T>(1e20)), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lltrunc(static_cast<T>(-1e20)), boost::math::rounding_error);
#endif
if(std::numeric_limits<T>::has_infinity)
{
BOOST_CHECK_THROW(boost::math::trunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::lltrunc(std::numeric_limits<T>::infinity()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::lltrunc(-std::numeric_limits<T>::infinity()), boost::math::rounding_error);
#endif
}
if(std::numeric_limits<T>::has_quiet_NaN)
{
BOOST_CHECK_THROW(boost::math::trunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::itrunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
BOOST_CHECK_THROW(boost::math::ltrunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#ifdef BOOST_HAS_LONG_LONG
BOOST_CHECK_THROW(boost::math::lltrunc(std::numeric_limits<T>::quiet_NaN()), boost::math::rounding_error);
#endif
}
}
int test_main(int, char* [])
{
test_round(0.1F, "float");
test_round(0.1, "double");
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_round(0.1L, "long double");
//test_round(boost::math::concepts::real_concept(0.1), "real_concept");
#else
std::cout << "<note>The long double tests have been disabled on this platform "
"either because the long double overloads of the usual math functions are "
"not available at all, or because they are too inaccurate for these tests "
"to pass.</note>" << std::cout;
#endif
return 0;
}
|