1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
|
[/
Boost.Optional
Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
]
[section Synopsis]
namespace boost {
template<class T>
class optional
{
public :
// (If T is of reference type, the parameters and results by reference are by value)
optional () ; ``[link reference_optional_constructor __GO_TO__]``
optional ( none_t ) ; ``[link reference_optional_constructor_none_t __GO_TO__]``
optional ( T const& v ) ; ``[link reference_optional_constructor_value __GO_TO__]``
// [new in 1.34]
optional ( bool condition, T const& v ) ; ``[link reference_optional_constructor_bool_value __GO_TO__]``
optional ( optional const& rhs ) ; ``[link reference_optional_constructor_optional __GO_TO__]``
template<class U> explicit optional ( optional<U> const& rhs ) ; ``[link reference_optional_constructor_other_optional __GO_TO__]``
template<class InPlaceFactory> explicit optional ( InPlaceFactory const& f ) ; ``[link reference_optional_constructor_factory __GO_TO__]``
template<class TypedInPlaceFactory> explicit optional ( TypedInPlaceFactory const& f ) ; ``[link reference_optional_constructor_factory __GO_TO__]``
optional& operator = ( none_t ) ; ``[/[link reference_optional_operator_equal_none_t __GO_TO__]]``
optional& operator = ( T const& v ) ; ``[link reference_optional_operator_equal_value __GO_TO__]``
optional& operator = ( optional const& rhs ) ; ``[link reference_optional_operator_equal_optional __GO_TO__]``
template<class U> optional& operator = ( optional<U> const& rhs ) ; ``[link reference_optional_operator_equal_other_optional __GO_TO__]``
template<class InPlaceFactory> optional& operator = ( InPlaceFactory const& f ) ; ``[/[link reference_optional_operator_equal_factory __GO_TO__]]``
template<class TypedInPlaceFactory> optional& operator = ( TypedInPlaceFactory const& f ) ; ``[/[link reference_optional_operator_equal_factory __GO_TO__]]``
T const& get() const ; ``[link reference_optional_get __GO_TO__]``
T& get() ; ``[link reference_optional_get __GO_TO__]``
// [new in 1.34]
T const& get_value_or( T const& default ) const ; ``[link reference_optional_get_value_or_value __GO_TO__]``
T const* operator ->() const ; ``[link reference_optional_operator_arrow __GO_TO__]``
T* operator ->() ; ``[link reference_optional_operator_arrow __GO_TO__]``
T const& operator *() const ; ``[link reference_optional_get __GO_TO__]``
T& operator *() ; ``[link reference_optional_get __GO_TO__]``
T const* get_ptr() const ; ``[link reference_optional_get_ptr __GO_TO__]``
T* get_ptr() ; ``[link reference_optional_get_ptr __GO_TO__]``
operator unspecified-bool-type() const ; ``[link reference_optional_operator_bool __GO_TO__]``
bool operator!() const ; ``[link reference_optional_operator_not __GO_TO__]``
// deprecated methods
// (deprecated)
void reset() ; ``[link reference_optional_reset __GO_TO__]``
// (deprecated)
void reset ( T const& ) ; ``[link reference_optional_reset_value __GO_TO__]``
// (deprecated)
bool is_initialized() const ; ``[link reference_optional_is_initialized __GO_TO__]``
};
template<class T> inline bool operator == ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_equal_optional_optional __GO_TO__]``
template<class T> inline bool operator != ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_not_equal_optional_optional __GO_TO__]``
template<class T> inline bool operator < ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_less_optional_optional __GO_TO__]``
template<class T> inline bool operator > ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_greater_optional_optional __GO_TO__]``
template<class T> inline bool operator <= ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_less_or_equal_optional_optional __GO_TO__]``
template<class T> inline bool operator >= ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_greater_or_equal_optional_optional __GO_TO__]``
// [new in 1.34]
template<class T> inline optional<T> make_optional ( T const& v ) ; ``[link reference_make_optional_value __GO_TO__]``
// [new in 1.34]
template<class T> inline optional<T> make_optional ( bool condition, T const& v ) ; ``[link reference_make_optional_bool_value __GO_TO__]``
// [new in 1.34]
template<class T> inline T const& get_optional_value_or ( optional<T> const& opt, T const& default ) ; ``[link reference_optional_get_value_or_value __GO_TO__]``
template<class T> inline T const& get ( optional<T> const& opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T& get ( optional<T> & opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T const* get ( optional<T> const* opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T* get ( optional<T>* opt ) ; ``[link reference_optional_get __GO_TO__]``
template<class T> inline T const* get_pointer ( optional<T> const& opt ) ; ``[link reference_optional_get_ptr __GO_TO__]``
template<class T> inline T* get_pointer ( optional<T> & opt ) ; ``[link reference_optional_get_ptr __GO_TO__]``
template<class T> inline void swap( optional<T>& x, optional<T>& y ) ; ``[link reference_swap_optional_optional __GO_TO__]``
} // namespace boost
[endsect]
[section Detailed Semantics]
Because `T` might be of reference type, in the sequel, those entries whose
semantic depends on `T` being of reference type or not will be distinguished
using the following convention:
* If the entry reads: `optional<T`['(not a ref)]`>`, the description
corresponds only to the case where `T` is not of reference type.
* If the entry reads: `optional<T&>`, the description corresponds only to
the case where `T` is of reference type.
* If the entry reads: `optional<T>`, the description is the same for both
cases.
[note
The following section contains various `assert()` which are used only to show
the postconditions as sample code. It is not implied that the type `T` must
support each particular expression but that if the expression is supported,
the implied condition holds.
]
__SPACE__
[heading optional class member functions]
__SPACE__
[#reference_optional_constructor]
[: `optional<T>::optional();`]
* [*Effect:] Default-Constructs an `optional`.
* [*Postconditions:] `*this` is [_uninitialized].
* [*Throws:] Nothing.
* Notes: T's default constructor [_is not] called.
* [*Example:]
``
optional<T> def ;
assert ( !def ) ;
``
__SPACE__
[#reference_optional_constructor_none_t]
[: `optional<T>::optional( none_t );`]
* [*Effect:] Constructs an `optional` uninitialized.
* [*Postconditions:] `*this` is [_uninitialized].
* [*Throws:] Nothing.
* [*Notes:] `T`'s default constructor [_is not] called. The expression
`boost::none` denotes an instance of `boost::none_t` that can be used as
the parameter.
* [*Example:]
``
#include <boost/none.hpp>
optional<T> n(none) ;
assert ( !n ) ;
``
__SPACE__
[#reference_optional_constructor_value]
[: `optional<T `['(not a ref)]`>::optional( T const& v )`]
* [*Effect:] Directly-Constructs an `optional`.
* [*Postconditions:] `*this` is [_initialized] and its value is a['copy]
of `v`.
* [*Throws:] Whatever `T::T( T const& )` throws.
* [*Notes: ] `T::T( T const& )` is called.
* [*Exception Safety:] Exceptions can only be thrown during
`T::T( T const& );` in that case, this constructor has no effect.
* [*Example:]
``
T v;
optional<T> opt(v);
assert ( *opt == v ) ;
``
__SPACE__
[: `optional<T&>::optional( T& ref )`]
* [*Effect:] Directly-Constructs an `optional`.
* [*Postconditions:] `*this` is [_initialized] and its value is an instance
of an internal type wrapping the reference `ref`.
* [*Throws:] Nothing.
* [*Example:]
``
T v;
T& vref = v ;
optional<T&> opt(vref);
assert ( *opt == v ) ;
++ v ; // mutate referee
assert (*opt == v);
``
__SPACE__
[#reference_optional_constructor_bool_value]
[: `optional<T` ['(not a ref)]`>::optional( bool condition, T const& v ) ;` ]
[: `optional<T&> ::optional( bool condition, T& v ) ;` ]
* If condition is true, same as:
[: `optional<T` ['(not a ref)]`>::optional( T const& v )`]
[: `optional<T&> ::optional( T& v )`]
* otherwise, same as:
[: `optional<T ['(not a ref)]>::optional()`]
[: `optional<T&> ::optional()`]
__SPACE__
[#reference_optional_constructor_optional]
[: `optional<T `['(not a ref)]`>::optional( optional const& rhs );`]
* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If rhs is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs`; else `*this` is uninitialized.
* [*Throws:] Whatever `T::T( T const& )` throws.
* [*Notes:] If rhs is initialized, `T::T(T const& )` is called.
* [*Exception Safety:] Exceptions can only be thrown during
`T::T( T const& );` in that case, this constructor has no effect.
* [*Example:]
``
optional<T> uninit ;
assert (!uninit);
optional<T> uinit2 ( uninit ) ;
assert ( uninit2 == uninit );
optional<T> init( T(2) );
assert ( *init == T(2) ) ;
optional<T> init2 ( init ) ;
assert ( init2 == init ) ;
``
__SPACE__
[: `optional<T&>::optional( optional const& rhs );`]
* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its
value is another reference to the same object referenced by `*rhs`; else
`*this` is uninitialized.
* [*Throws:] Nothing.
* [*Notes:] If `rhs` is initialized, both `*this` and `*rhs` will reefer to the
same object (they alias).
* [*Example:]
``
optional<T&> uninit ;
assert (!uninit);
optional<T&> uinit2 ( uninit ) ;
assert ( uninit2 == uninit );
T v = 2 ; T& ref = v ;
optional<T> init(ref);
assert ( *init == v ) ;
optional<T> init2 ( init ) ;
assert ( *init2 == v ) ;
v = 3 ;
assert ( *init == 3 ) ;
assert ( *init2 == 3 ) ;
``
__SPACE__
[#reference_optional_constructor_other_optional]
[: `template<U> explicit optional<T` ['(not a ref)]`>::optional( optional<U> const& rhs );`]
* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its
value is a ['copy] of the value of rhs converted to type `T`; else `*this` is
uninitialized.
* [*Throws:] Whatever `T::T( U const& )` throws.
* [*Notes: ] `T::T( U const& )` is called if `rhs` is initialized, which requires a
valid conversion from `U` to `T`.
* [*Exception Safety:] Exceptions can only be thrown during `T::T( U const& );`
in that case, this constructor has no effect.
* [*Example:]
``
optional<double> x(123.4);
assert ( *x == 123.4 ) ;
optional<int> y(x) ;
assert( *y == 123 ) ;
``
__SPACE__
[#reference_optional_constructor_factory]
[: `template<InPlaceFactory> explicit optional<T` ['(not a ref)]`>::optional( InPlaceFactory const& f );`]
[: `template<TypedInPlaceFactory> explicit optional<T` ['(not a ref)]`>::optional( TypedInPlaceFactory const& f );`]
* [*Effect:] Constructs an `optional` with a value of `T` obtained from the
factory.
* [*Postconditions: ] `*this` is [_initialized] and its value is ['directly given]
from the factory `f` (i.e., the value [_is not copied]).
* [*Throws:] Whatever the `T` constructor called by the factory throws.
* [*Notes:] See [link boost_optional.in_place_factories In-Place Factories]
* [*Exception Safety:] Exceptions can only be thrown during the call to
the `T` constructor used by the factory; in that case, this constructor has
no effect.
* [*Example:]
``
class C { C ( char, double, std::string ) ; } ;
C v('A',123.4,"hello");
optional<C> x( in_place ('A', 123.4, "hello") ); // InPlaceFactory used
optional<C> y( in_place<C>('A', 123.4, "hello") ); // TypedInPlaceFactory used
assert ( *x == v ) ;
assert ( *y == v ) ;
``
__SPACE__
[#reference_optional_operator_equal_value]
[: `optional& optional<T` ['(not a ref)]`>::operator= ( T const& rhs ) ;`]
* [*Effect:] Assigns the value `rhs` to an `optional`.
* [*Postconditions: ] `*this` is initialized and its value is a ['copy] of `rhs`.
* [*Throws:] Whatever `T::operator=( T const& )` or `T::T(T const&)` throws.
* [*Notes:] If `*this` was initialized, `T`'s assignment operator is used,
otherwise, its copy-constructor is used.
* [*Exception Safety:] In the event of an exception, the initialization
state of `*this` is unchanged and its value unspecified as far as `optional`
is concerned (it is up to `T`'s `operator=()`). If `*this` is initially
uninitialized and `T`'s ['copy constructor] fails, `*this` is left properly
uninitialized.
* [*Example:]
``
T x;
optional<T> def ;
optional<T> opt(x) ;
T y;
def = y ;
assert ( *def == y ) ;
opt = y ;
assert ( *opt == y ) ;
``
__SPACE__
[: `optional<T&>& optional<T&>::operator= ( T& const& rhs ) ;`]
* [*Effect:] (Re)binds thee wrapped reference.
* [*Postconditions: ] `*this` is initialized and it references the same
object referenced by `rhs`.
* [*Notes:] If `*this` was initialized, is is ['rebound] to the new object.
See [link boost_optional.rebinding_semantics_for_assignment_of_optional_references here] for details on this behavior.
* [*Example:]
``
int a = 1 ;
int b = 2 ;
T& ra = a ;
T& rb = b ;
optional<int&> def ;
optional<int&> opt(ra) ;
def = rb ; // binds 'def' to 'b' through 'rb'
assert ( *def == b ) ;
*def = a ; // changes the value of 'b' to a copy of the value of 'a'
assert ( b == a ) ;
int c = 3;
int& rc = c ;
opt = rc ; // REBINDS to 'c' through 'rc'
c = 4 ;
assert ( *opt == 4 ) ;
``
__SPACE__
[#reference_optional_operator_equal_optional]
[: `optional& optional<T` ['(not a ref)]`>::operator= ( optional const& rhs ) ;`]
* [*Effect:] Assigns another `optional` to an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs`; else `*this` is uninitialized.
* [*Throws:] Whatever `T::operator( T const&)` or `T::T( T const& )` throws.
* [*Notes:] If both `*this` and `rhs` are initially initialized, `T`'s
['assignment operator] is used. If `*this` is initially initialized but `rhs` is
uninitialized, `T`'s [destructor] is called. If `*this` is initially uninitialized
but `rhs` is initialized, `T`'s ['copy constructor] is called.
* [*Exception Safety:] In the event of an exception, the initialization state of
`*this` is unchanged and its value unspecified as far as optional is concerned
(it is up to `T`'s `operator=()`). If `*this` is initially uninitialized and
`T`'s ['copy constructor] fails, `*this` is left properly uninitialized.
* [*Example:]
``
T v;
optional<T> opt(v);
optional<T> def ;
opt = def ;
assert ( !def ) ;
// previous value (copy of 'v') destroyed from within 'opt'.
``
__SPACE__
[: `optional<T&> & optional<T&>::operator= ( optional<T&> const& rhs ) ;`]
* [*Effect:] (Re)binds thee wrapped reference.
* [*Postconditions:] If `*rhs` is initialized, `*this` is initialized and it
references the same object referenced by `*rhs`; otherwise, `*this` is
uninitialized (and references no object).
* [*Notes:] If `*this` was initialized and so is *rhs, this is is ['rebound] to
the new object. See [link boost_optional.rebinding_semantics_for_assignment_of_optional_references here] for details on this behavior.
* [*Example:]
``
int a = 1 ;
int b = 2 ;
T& ra = a ;
T& rb = b ;
optional<int&> def ;
optional<int&> ora(ra) ;
optional<int&> orb(rb) ;
def = orb ; // binds 'def' to 'b' through 'rb' wrapped within 'orb'
assert ( *def == b ) ;
*def = ora ; // changes the value of 'b' to a copy of the value of 'a'
assert ( b == a ) ;
int c = 3;
int& rc = c ;
optional<int&> orc(rc) ;
ora = orc ; // REBINDS ora to 'c' through 'rc'
c = 4 ;
assert ( *ora == 4 ) ;
``
__SPACE__
[#reference_optional_operator_equal_other_optional]
[: `template<U> optional& optional<T` ['(not a ref)]`>::operator= ( optional<U> const& rhs ) ;`]
* [*Effect:] Assigns another convertible optional to an optional.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs` ['converted] to type `T`; else
`*this` is uninitialized.
* [*Throws:] Whatever `T::operator=( U const& )` or `T::T( U const& )` throws.
* [*Notes:] If both `*this` and rhs are initially initialized, `T`'s
['assignment operator] (from `U`) is used. If `*this` is initially initialized
but `rhs` is uninitialized, `T`'s ['destructor] is called. If `*this` is
initially uninitialized but rhs is initialized, `T`'s ['converting constructor]
(from `U`) is called.
* [*Exception Safety:] In the event of an exception, the initialization state
of `*this` is unchanged and its value unspecified as far as optional is
concerned (it is up to `T`'s `operator=()`). If `*this` is initially
uninitialized and `T`'s converting constructor fails, `*this` is left properly
uninitialized.
* [*Example:]
``
T v;
optional<T> opt0(v);
optional<U> opt1;
opt1 = opt0 ;
assert ( *opt1 == static_cast<U>(v) ) ;
``
__SPACE__
[#reference_optional_reset_value]
[: `void optional<T` ['(not a ref)]`>::reset( T const& v ) ;`]
* [*Deprecated:] same as `operator= ( T const& v) ;`
__SPACE__
[#reference_optional_reset]
[: `void optional<T>::reset() ;`]
* [*Deprecated:] Same as `operator=( detail::none_t );`
__SPACE__
[#reference_optional_get]
[: `T const& optional<T` ['(not a ref)]`>::operator*() const ;`]
[: `T& optional<T` ['(not a ref)]`>::operator*();`]
[: `T const& optional<T` ['(not a ref)]`>::get() const ;`]
[: `T& optional<T` ['(not a ref)]`>::get() ;`]
[: `inline T const& get ( optional<T` ['(not a ref)]`> const& ) ;`]
[: `inline T& get ( optional<T` ['(not a ref)]`> &) ;`]
* [*Requirements:] `*this` is initialized
* [*Returns:] A reference to the contained value
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
T v ;
optional<T> opt ( v );
T const& u = *opt;
assert ( u == v ) ;
T w ;
*opt = w ;
assert ( *opt == w ) ;
``
__SPACE__
[#reference_optional_get_value_or_value]
[: `T const& optional<T` ['(not a ref)]`>::get_value_or( T const& default) const ;`]
[: `T& optional<T` ['(not a ref)]`>::get_value_or( T& default ) ;`]
[: `inline T const& get_optional_value_or ( optional<T` ['(not a ref)]`> const& o, T const& default ) ;`]
[: `inline T& get_optional_value_or ( optional<T` ['(not a ref)]`>& o, T& default ) ;`]
* [*Returns:] A reference to the contained value, if any, or `default`.
* [*Throws:] Nothing.
* [*Example:]
``
T v, z ;
optional<T> def;
T const& y = def.get_value_or(z);
assert ( y == z ) ;
optional<T> opt ( v );
T const& u = get_optional_value_or(opt,z);
assert ( u == v ) ;
assert ( u != z ) ;
``
__SPACE__
[: `T const& optional<T&>::operator*() const ;`]
[: `T & optional<T&>::operator*();`]
[: `T const& optional<T&>::get() const ;`]
[: `T& optional<T&>::get() ;`]
[: `inline T const& get ( optional<T&> const& ) ;`]
[: `inline T& get ( optional<T&> &) ;`]
* [*Requirements: ] `*this` is initialized
* [*Returns:] [_The] reference contained.
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
T v ;
T& vref = v ;
optional<T&> opt ( vref );
T const& vref2 = *opt;
assert ( vref2 == v ) ;
++ v ;
assert ( *opt == v ) ;
``
__SPACE__
[#reference_optional_get_ptr]
[: `T const* optional<T` ['(not a ref)]`>::get_ptr() const ;`]
[: `T* optional<T` ['(not a ref)]`>::get_ptr() ;`]
[: `inline T const* get_pointer ( optional<T` ['(not a ref)]`> const& ) ;`]
[: `inline T* get_pointer ( optional<T` ['(not a ref)]`> &) ;`]
* [*Returns:] If `*this` is initialized, a pointer to the contained value;
else `0` (['null]).
* [*Throws:] Nothing.
* [*Notes:] The contained value is permanently stored within `*this`, so you
should not hold nor delete this pointer
* [*Example:]
``
T v;
optional<T> opt(v);
optional<T> const copt(v);
T* p = opt.get_ptr() ;
T const* cp = copt.get_ptr();
assert ( p == get_pointer(opt) );
assert ( cp == get_pointer(copt) ) ;
``
__SPACE__
[#reference_optional_operator_arrow]
[: `T const* optional<T` ['(not a ref)]`>::operator ->() const ;`]
[: `T* optional<T` ['(not a ref)]`>::operator ->() ;`]
* [*Requirements: ] `*this` is initialized.
* [*Returns:] A pointer to the contained value.
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
struct X { int mdata ; } ;
X x ;
optional<X> opt (x);
opt->mdata = 2 ;
``
__SPACE__
[#reference_optional_operator_bool]
[: `optional<T>::operator `['unspecified-bool-type]`() const ;`]
* [*Returns:] An unspecified value which if used on a boolean context
is equivalent to (`get() != 0`)
* [*Throws:] Nothing.
* [*Example:]
``
optional<T> def ;
assert ( def == 0 );
optional<T> opt ( v ) ;
assert ( opt );
assert ( opt != 0 );
``
__SPACE__
[#reference_optional_operator_not]
[: `bool optional<T>::operator!() ;`]
* [*Returns:] If `*this` is uninitialized, `true`; else `false`.
* [*Throws:] Nothing.
* [*Notes:] This operator is provided for those compilers which can't
use the ['unspecified-bool-type operator] in certain boolean contexts.
* [*Example:]
``
optional<T> opt ;
assert ( !opt );
*opt = some_T ;
// Notice the "double-bang" idiom here.
assert ( !!opt ) ;
``
__SPACE__
[#reference_optional_is_initialized]
[: `bool optional<T>::is_initialized() const ;`]
* [*Returns: ] `true` if the `optional` is initialized, `false` otherwise.
* [*Throws:] Nothing.
* [*Example:]
``
optional<T> def ;
assert ( !def.is_initialized() );
optional<T> opt ( v ) ;
assert ( opt.is_initialized() );
``
__SPACE__
[heading Free functions]
__SPACE__
[#reference_make_optional_value]
[: `optional<T` ['(not a ref)]`> make_optional( T const& v )`]
* [*Returns: ] `optional<T>(v)` for the ['deduced] type `T` of `v`.
* [*Example:]
``
template<class T> void foo ( optional<T> const& opt ) ;
foo ( make_optional(1+1) ) ; // Creates an optional<int>
``
__SPACE__
[#reference_make_optional_bool_value]
[: `optional<T` ['(not a ref)]`> make_optional( bool condition, T const& v )`]
* [*Returns: ] `optional<T>(condition,v)` for the ['deduced] type `T` of `v`.
* [*Example:]
``
optional<double> calculate_foo()
{
double val = compute_foo();
return make_optional(is_not_nan_and_finite(val),val);
}
optional<double> v = calculate_foo();
if ( !v )
error("foo wasn't computed");
``
__SPACE__
[#reference_operator_compare_equal_optional_optional]
[: `bool operator == ( optional<T> const& x, optional<T> const& y );`]
* [*Returns:] If both `x` and `y` are initialized, `(*x == *y)`. If only
`x` or `y` is initialized, `false`. If both are uninitialized, `true`.
* [*Throws:] Nothing.
* [*Notes:] Pointers have shallow relational operators while `optional` has
deep relational operators. Do not use `operator ==` directly in generic
code which expect to be given either an `optional<T>` or a pointer; use
__FUNCTION_EQUAL_POINTEES__ instead
* [*Example:]
``
T x(12);
T y(12);
T z(21);
optional<T> def0 ;
optional<T> def1 ;
optional<T> optX(x);
optional<T> optY(y);
optional<T> optZ(z);
// Identity always hold
assert ( def0 == def0 );
assert ( optX == optX );
// Both uninitialized compare equal
assert ( def0 == def1 );
// Only one initialized compare unequal.
assert ( def0 != optX );
// Both initialized compare as (*lhs == *rhs)
assert ( optX == optY ) ;
assert ( optX != optZ ) ;
``
__SPACE__
[#reference_operator_compare_less_optional_optional]
[: `bool operator < ( optional<T> const& x, optional<T> const& y );`]
* [*Returns:] If `y` is not initialized, `false`. If `y` is initialized
and `x` is not initialized, `true`. If both `x` and `y` are initialized,
`(*x < *y)`.
* [*Throws:] Nothing.
* [*Notes:] Pointers have shallow relational operators while `optional` has
deep relational operators. Do not use `operator <` directly in generic code
which expect to be given either an `optional<T>` or a pointer; use __FUNCTION_LESS_POINTEES__ instead.
* [*Example:]
``
T x(12);
T y(34);
optional<T> def ;
optional<T> optX(x);
optional<T> optY(y);
// Identity always hold
assert ( !(def < def) );
assert ( optX == optX );
// Both uninitialized compare equal
assert ( def0 == def1 );
// Only one initialized compare unequal.
assert ( def0 != optX );
// Both initialized compare as (*lhs == *rhs)
assert ( optX == optY ) ;
assert ( optX != optZ ) ;
``
__SPACE__
[#reference_operator_compare_not_equal_optional_optional]
[: `bool operator != ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `!( x == y );`
* [*Throws:] Nothing.
__SPACE__
[#reference_operator_compare_greater_optional_optional]
[: `bool operator > ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `( y < x );`
* [*Throws:] Nothing.
__SPACE__
[#reference_operator_compare_less_or_equal_optional_optional]
[: `bool operator <= ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `!( y<x );`
* [*Throws:] Nothing.
__SPACE__
[#reference_operator_compare_greater_or_equal_optional_optional]
[: `bool operator >= ( optional<T> const& x, optional<T> const& y );`]
* [*Returns: ] `!( x<y );`
* [*Throws:] Nothing.
__SPACE__
[#reference_swap_optional_optional]
[: `void swap ( optional<T>& x, optional<T>& y );`]
* [*Effect:] If both `x` and `y` are initialized, calls `swap(*x,*y)`
using `std::swap`. If only one is initialized, say `x`, calls:
`y.reset(*x); x.reset();` If none is initialized, does nothing.
* [*Postconditions:] The states of `x` and `y` interchanged.
* [*Throws:] If both are initialized, whatever `swap(T&,T&)` throws. If only
one is initialized, whatever `T::T ( T const& )` throws.
* [*Notes:] If both are initialized, `swap(T&,T&)` is used unqualified but
with `std::swap` introduced in scope.
If only one is initialized, `T::~T()` and `T::T( T const& )` is called.
* [*Exception Safety:] If both are initialized, this operation has the
exception safety guarantees of `swap(T&,T&)`.
If only one is initialized, it has the same basic guarantee as
`optional<T>::reset( T const& )`.
* [*Example:]
``
T x(12);
T y(21);
optional<T> def0 ;
optional<T> def1 ;
optional<T> optX(x);
optional<T> optY(y);
boost::swap(def0,def1); // no-op
boost::swap(def0,optX);
assert ( *def0 == x );
assert ( !optX );
boost::swap(def0,optX); // Get back to original values
boost::swap(optX,optY);
assert ( *optX == y );
assert ( *optY == x );
``
[endsect]
|