File: reference.qbk

package info (click to toggle)
boost1.42 1.42.0-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 277,864 kB
  • ctags: 401,076
  • sloc: cpp: 1,235,659; xml: 74,142; ansic: 41,313; python: 26,756; sh: 11,840; cs: 2,118; makefile: 655; perl: 494; yacc: 456; asm: 353; csh: 6
file content (881 lines) | stat: -rw-r--r-- 26,915 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
[/
    Boost.Optional

    Copyright (c) 2003-2007 Fernando Luis Cacciola Carballal

    Distributed under the Boost Software License, Version 1.0.
    (See accompanying file LICENSE_1_0.txt or copy at
    http://www.boost.org/LICENSE_1_0.txt)
]


[section Synopsis]

    namespace boost {

    template<class T>
    class optional
    {
        public :

        // (If T is of reference type, the parameters and results by reference are by value)

        optional () ; ``[link reference_optional_constructor __GO_TO__]``

        optional ( none_t ) ; ``[link reference_optional_constructor_none_t __GO_TO__]``

        optional ( T const& v ) ; ``[link reference_optional_constructor_value __GO_TO__]``

        // [new in 1.34]
        optional ( bool condition, T const& v ) ; ``[link reference_optional_constructor_bool_value __GO_TO__]`` 

        optional ( optional const& rhs ) ; ``[link reference_optional_constructor_optional __GO_TO__]``

        template<class U> explicit optional ( optional<U> const& rhs ) ; ``[link reference_optional_constructor_other_optional __GO_TO__]``

        template<class InPlaceFactory> explicit optional ( InPlaceFactory const& f ) ; ``[link reference_optional_constructor_factory __GO_TO__]``

        template<class TypedInPlaceFactory> explicit optional ( TypedInPlaceFactory const& f ) ; ``[link reference_optional_constructor_factory __GO_TO__]``

        optional& operator = ( none_t ) ; ``[/[link reference_optional_operator_equal_none_t __GO_TO__]]``

        optional& operator = ( T const& v ) ; ``[link reference_optional_operator_equal_value __GO_TO__]``

        optional& operator = ( optional const& rhs ) ; ``[link reference_optional_operator_equal_optional __GO_TO__]``

        template<class U> optional& operator = ( optional<U> const& rhs ) ; ``[link reference_optional_operator_equal_other_optional __GO_TO__]``

        template<class InPlaceFactory> optional& operator = ( InPlaceFactory const& f ) ; ``[/[link reference_optional_operator_equal_factory __GO_TO__]]``

        template<class TypedInPlaceFactory> optional& operator = ( TypedInPlaceFactory const& f ) ; ``[/[link reference_optional_operator_equal_factory __GO_TO__]]``

        T const& get() const ; ``[link reference_optional_get __GO_TO__]``
        T&       get() ; ``[link reference_optional_get __GO_TO__]``

        // [new in 1.34]
        T const& get_value_or( T const& default ) const ; ``[link reference_optional_get_value_or_value __GO_TO__]`` 

        T const* operator ->() const ; ``[link reference_optional_operator_arrow __GO_TO__]``
        T*       operator ->() ; ``[link reference_optional_operator_arrow __GO_TO__]``

        T const& operator *() const ; ``[link reference_optional_get __GO_TO__]``
        T&       operator *() ; ``[link reference_optional_get __GO_TO__]``

        T const* get_ptr() const ; ``[link reference_optional_get_ptr __GO_TO__]``
        T*       get_ptr() ; ``[link reference_optional_get_ptr __GO_TO__]``

        operator unspecified-bool-type() const ; ``[link reference_optional_operator_bool __GO_TO__]``

        bool operator!() const ; ``[link reference_optional_operator_not __GO_TO__]``

        // deprecated methods

        // (deprecated)
        void reset() ; ``[link reference_optional_reset __GO_TO__]``

        // (deprecated)
        void reset ( T const& ) ; ``[link reference_optional_reset_value __GO_TO__]``

        // (deprecated)
        bool is_initialized() const ; ``[link reference_optional_is_initialized __GO_TO__]``

    };

    template<class T> inline bool operator == ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_equal_optional_optional __GO_TO__]``

    template<class T> inline bool operator != ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_not_equal_optional_optional __GO_TO__]``

    template<class T> inline bool operator <  ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_less_optional_optional __GO_TO__]``

    template<class T> inline bool operator >  ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_greater_optional_optional __GO_TO__]``

    template<class T> inline bool operator <= ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_less_or_equal_optional_optional __GO_TO__]``

    template<class T> inline bool operator >= ( optional<T> const& x, optional<T> const& y ) ; ``[link reference_operator_compare_greater_or_equal_optional_optional __GO_TO__]``

    // [new in 1.34]
    template<class T> inline optional<T> make_optional ( T const& v ) ; ``[link reference_make_optional_value __GO_TO__]``

    // [new in 1.34]
    template<class T> inline optional<T> make_optional ( bool condition, T const& v ) ; ``[link reference_make_optional_bool_value __GO_TO__]``

    // [new in 1.34]
    template<class T> inline T const& get_optional_value_or ( optional<T> const& opt, T const& default ) ; ``[link reference_optional_get_value_or_value __GO_TO__]`` 

    template<class T> inline T const& get ( optional<T> const& opt ) ; ``[link reference_optional_get __GO_TO__]``

    template<class T> inline T& get ( optional<T> & opt ) ; ``[link reference_optional_get __GO_TO__]``

    template<class T> inline T const* get ( optional<T> const* opt ) ; ``[link reference_optional_get __GO_TO__]``

    template<class T> inline T* get ( optional<T>* opt ) ; ``[link reference_optional_get __GO_TO__]``

    template<class T> inline T const* get_pointer ( optional<T> const& opt ) ; ``[link reference_optional_get_ptr __GO_TO__]``

    template<class T> inline T* get_pointer ( optional<T> & opt ) ; ``[link reference_optional_get_ptr __GO_TO__]``

    template<class T> inline void swap( optional<T>& x, optional<T>& y ) ; ``[link reference_swap_optional_optional __GO_TO__]``

    } // namespace boost


[endsect]

[section Detailed Semantics]

Because `T` might be of reference type, in the sequel, those entries whose
semantic depends on `T` being of reference type or not will be distinguished
using the following convention:

* If the entry reads: `optional<T`['(not a ref)]`>`, the description
corresponds only to the case where `T` is not of reference type.
* If the entry reads: `optional<T&>`, the description corresponds only to
the case where `T` is of reference type.
* If the entry reads: `optional<T>`, the description is the same for both
cases.

[note
The following section contains various `assert()` which are used only to show
the postconditions as sample code. It is not implied that the type `T` must
support each particular expression but that if the expression is supported,
the implied condition holds.
]

__SPACE__

[heading optional class member functions]

__SPACE__

[#reference_optional_constructor]

[: `optional<T>::optional();`]

* [*Effect:] Default-Constructs an `optional`.
* [*Postconditions:] `*this` is [_uninitialized].
* [*Throws:] Nothing.
* Notes: T's default constructor [_is not] called.
* [*Example:]
``
optional<T> def ;
assert ( !def ) ;
``

__SPACE__

[#reference_optional_constructor_none_t]

[: `optional<T>::optional( none_t );`]

* [*Effect:] Constructs an `optional` uninitialized.
* [*Postconditions:] `*this` is [_uninitialized].
* [*Throws:] Nothing.
* [*Notes:] `T`'s default constructor [_is not] called. The expression
`boost::none` denotes an instance of `boost::none_t` that can be used as
the parameter.
* [*Example:]
``
#include <boost/none.hpp>
optional<T> n(none) ;
assert ( !n ) ;
``

__SPACE__

[#reference_optional_constructor_value]

[: `optional<T `['(not a ref)]`>::optional( T const& v )`]

* [*Effect:] Directly-Constructs an `optional`.
* [*Postconditions:] `*this` is [_initialized] and its value is a['copy]
of `v`.
* [*Throws:] Whatever `T::T( T const& )` throws.
* [*Notes: ] `T::T( T const& )` is called.
* [*Exception Safety:] Exceptions can only be thrown during
`T::T( T const& );` in that case, this constructor has no effect.
* [*Example:]
``
T v;
optional<T> opt(v);
assert ( *opt == v ) ;
``

__SPACE__

[: `optional<T&>::optional( T& ref )`]

* [*Effect:] Directly-Constructs an `optional`.
* [*Postconditions:] `*this` is [_initialized] and its value is an instance
of an internal type wrapping the reference `ref`.
* [*Throws:] Nothing.
* [*Example:]
``
T v;
T& vref = v ;
optional<T&> opt(vref);
assert ( *opt == v ) ;
++ v ; // mutate referee
assert (*opt == v);
``

__SPACE__

[#reference_optional_constructor_bool_value]

[: `optional<T` ['(not a ref)]`>::optional( bool condition, T const& v ) ;` ]
[: `optional<T&>           ::optional( bool condition, T&       v ) ;` ]

* If condition is true, same as:

[: `optional<T` ['(not a ref)]`>::optional( T const& v )`]
[: `optional<T&>           ::optional( T&       v )`]

* otherwise, same as:

[: `optional<T ['(not a ref)]>::optional()`]
[: `optional<T&>           ::optional()`]

__SPACE__

[#reference_optional_constructor_optional]

[: `optional<T `['(not a ref)]`>::optional( optional const& rhs );`]

* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If rhs is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs`; else `*this` is uninitialized.
* [*Throws:] Whatever `T::T( T const& )` throws.
* [*Notes:] If rhs is initialized, `T::T(T const& )` is called.
* [*Exception Safety:] Exceptions can only be thrown during
`T::T( T const& );` in that case, this constructor has no effect.
* [*Example:]
``
optional<T> uninit ;
assert (!uninit);

optional<T> uinit2 ( uninit ) ;
assert ( uninit2 == uninit );

optional<T> init( T(2) );
assert ( *init == T(2) ) ;

optional<T> init2 ( init ) ;
assert ( init2 == init ) ;
``

__SPACE__

[: `optional<T&>::optional( optional const& rhs );`]

* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its
value is another reference to the same object referenced by `*rhs`; else
`*this` is uninitialized.
* [*Throws:] Nothing.
* [*Notes:] If `rhs` is initialized, both `*this` and `*rhs` will reefer to the
same object (they alias).
* [*Example:]
``
optional<T&> uninit ;
assert (!uninit);

optional<T&> uinit2 ( uninit ) ;
assert ( uninit2 == uninit );

T v = 2 ; T& ref = v ;
optional<T> init(ref);
assert ( *init == v ) ;

optional<T> init2 ( init ) ;
assert ( *init2 == v ) ;

v = 3 ;

assert ( *init  == 3 ) ;
assert ( *init2 == 3 ) ;
``

__SPACE__

[#reference_optional_constructor_other_optional]

[: `template<U> explicit optional<T` ['(not a ref)]`>::optional( optional<U> const& rhs );`]

* [*Effect:] Copy-Constructs an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and its
value is a ['copy] of the value of rhs converted to type `T`; else `*this` is
uninitialized.
* [*Throws:] Whatever `T::T( U const& )` throws.
* [*Notes: ] `T::T( U const& )` is called if `rhs` is initialized, which requires a
valid conversion from `U` to `T`.
* [*Exception Safety:] Exceptions can only be thrown during `T::T( U const& );`
in that case, this constructor has no effect.
* [*Example:]
``
optional<double> x(123.4);
assert ( *x == 123.4 ) ;

optional<int> y(x) ;
assert( *y == 123 ) ;
``

__SPACE__

[#reference_optional_constructor_factory]

[: `template<InPlaceFactory> explicit optional<T` ['(not a ref)]`>::optional( InPlaceFactory const& f );`]
[: `template<TypedInPlaceFactory> explicit optional<T` ['(not a ref)]`>::optional( TypedInPlaceFactory const& f );`]

* [*Effect:] Constructs an `optional` with a value of `T` obtained from the
factory.
* [*Postconditions: ] `*this` is [_initialized] and its value is ['directly given]
from the factory `f` (i.e., the value [_is not copied]).
* [*Throws:] Whatever the `T` constructor called by the factory throws.
* [*Notes:] See [link boost_optional.in_place_factories In-Place Factories]
* [*Exception Safety:] Exceptions can only be thrown during the call to
the `T` constructor used by the factory; in that case, this constructor has
no effect.
* [*Example:]
``
class C { C ( char, double, std::string ) ; } ;

C v('A',123.4,"hello");

optional<C> x( in_place   ('A', 123.4, "hello") ); // InPlaceFactory used
optional<C> y( in_place<C>('A', 123.4, "hello") ); // TypedInPlaceFactory used

assert ( *x == v ) ;
assert ( *y == v ) ;
``

__SPACE__

[#reference_optional_operator_equal_value]

[: `optional& optional<T` ['(not a ref)]`>::operator= ( T const& rhs ) ;`]

* [*Effect:] Assigns the value `rhs` to an `optional`.
* [*Postconditions: ] `*this` is initialized and its value is a ['copy] of `rhs`.
* [*Throws:] Whatever `T::operator=( T const& )` or `T::T(T const&)` throws.
* [*Notes:] If `*this` was initialized, `T`'s assignment operator is used,
otherwise, its copy-constructor is used.
* [*Exception Safety:] In the event of an exception, the initialization
state of `*this` is unchanged and its value unspecified as far as `optional`
is concerned (it is up to `T`'s `operator=()`). If `*this` is initially
uninitialized and `T`'s ['copy constructor] fails, `*this` is left properly
uninitialized.
* [*Example:]
``
T x;
optional<T> def ;
optional<T> opt(x) ;

T y;
def = y ;
assert ( *def == y ) ;
opt = y ;
assert ( *opt == y ) ;
``

__SPACE__

[: `optional<T&>& optional<T&>::operator= ( T& const& rhs ) ;`]

* [*Effect:] (Re)binds thee wrapped reference.
* [*Postconditions: ] `*this` is initialized and it references the same
object referenced by `rhs`.
* [*Notes:] If `*this` was initialized, is is ['rebound] to the new object.
See [link boost_optional.rebinding_semantics_for_assignment_of_optional_references here] for details on this behavior.
* [*Example:]
``
int a = 1 ;
int b = 2 ;
T& ra = a ;
T& rb = b ;
optional<int&> def ;
optional<int&> opt(ra) ;

def = rb ; // binds 'def' to 'b' through 'rb'
assert ( *def == b ) ;
*def = a ; // changes the value of 'b' to a copy of the value of 'a'
assert ( b == a ) ;
int c = 3;
int& rc = c ;
opt = rc ; // REBINDS to 'c' through 'rc'
c = 4 ;
assert ( *opt == 4 ) ;
``

__SPACE__

[#reference_optional_operator_equal_optional]

[: `optional& optional<T` ['(not a ref)]`>::operator= ( optional const& rhs ) ;`]

* [*Effect:] Assigns another `optional` to an `optional`.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs`; else `*this` is uninitialized.
* [*Throws:] Whatever `T::operator( T const&)` or  `T::T( T const& )` throws.
* [*Notes:] If both `*this` and `rhs` are initially initialized, `T`'s
['assignment operator] is used. If `*this` is initially initialized but `rhs` is
uninitialized, `T`'s [destructor] is called. If `*this` is initially uninitialized
but `rhs` is initialized, `T`'s ['copy constructor] is called.
* [*Exception Safety:] In the event of an exception, the initialization state of
`*this` is unchanged and its value unspecified as far as optional is concerned
(it is up to `T`'s `operator=()`). If `*this` is initially uninitialized and
`T`'s ['copy constructor] fails, `*this` is left properly uninitialized.
* [*Example:]
``
T v;
optional<T> opt(v);
optional<T> def ;

opt = def ;
assert ( !def ) ;
// previous value (copy of 'v') destroyed from within 'opt'.
``

__SPACE__

[: `optional<T&> & optional<T&>::operator= ( optional<T&> const& rhs ) ;`]

* [*Effect:] (Re)binds thee wrapped reference.
* [*Postconditions:] If `*rhs` is initialized, `*this` is initialized and it
references the same object referenced by `*rhs`; otherwise, `*this` is
uninitialized (and references no object).
* [*Notes:] If `*this` was initialized and so is *rhs, this is is ['rebound] to
the new object. See [link boost_optional.rebinding_semantics_for_assignment_of_optional_references here] for details on this behavior.
* [*Example:]
``
int a = 1 ;
int b = 2 ;
T& ra = a ;
T& rb = b ;
optional<int&> def ;
optional<int&> ora(ra) ;
optional<int&> orb(rb) ;

def = orb ; // binds 'def' to 'b' through 'rb' wrapped within 'orb'
assert ( *def == b ) ;
*def = ora ; // changes the value of 'b' to a copy of the value of 'a'
assert ( b == a ) ;
int c = 3;
int& rc = c ;
optional<int&> orc(rc) ;
ora = orc ; // REBINDS ora to 'c' through 'rc'
c = 4 ;
assert ( *ora == 4 ) ;
``

__SPACE__

[#reference_optional_operator_equal_other_optional]

[: `template<U> optional& optional<T` ['(not a ref)]`>::operator= ( optional<U> const& rhs ) ;`]

* [*Effect:] Assigns another convertible optional to an optional.
* [*Postconditions:] If `rhs` is initialized, `*this` is initialized and
its value is a ['copy] of the value of `rhs` ['converted] to type `T`; else
`*this` is uninitialized. 
* [*Throws:] Whatever `T::operator=( U const& )` or `T::T( U const& )` throws.
* [*Notes:] If both `*this` and rhs are initially initialized, `T`'s
['assignment operator] (from `U`) is used. If `*this` is initially initialized
but `rhs` is uninitialized, `T`'s ['destructor] is called. If `*this` is
initially uninitialized but rhs is initialized, `T`'s ['converting constructor]
(from `U`) is called.
* [*Exception Safety:] In the event of an exception, the initialization state
of `*this` is unchanged and its value unspecified as far as optional is
concerned (it is up to `T`'s `operator=()`). If `*this` is initially
uninitialized and `T`'s converting constructor fails, `*this` is left properly
uninitialized.
* [*Example:]
``
T v;
optional<T> opt0(v);
optional<U> opt1;

opt1 = opt0 ;
assert ( *opt1 == static_cast<U>(v) ) ;
``

__SPACE__

[#reference_optional_reset_value]

[: `void optional<T` ['(not a ref)]`>::reset( T const& v ) ;`]
* [*Deprecated:] same as `operator= ( T const& v) ;`

__SPACE__

[#reference_optional_reset]

[: `void optional<T>::reset() ;`]
* [*Deprecated:] Same as `operator=( detail::none_t );`

__SPACE__

[#reference_optional_get]

[: `T const& optional<T` ['(not a ref)]`>::operator*() const ;`]
[: `T&       optional<T` ['(not a ref)]`>::operator*();`]
[: `T const& optional<T` ['(not a ref)]`>::get() const ;`]
[: `T&       optional<T` ['(not a ref)]`>::get() ;`]

[: `inline T const& get ( optional<T` ['(not a ref)]`> const& ) ;`]
[: `inline T&       get ( optional<T` ['(not a ref)]`> &) ;`]

* [*Requirements:] `*this` is initialized
* [*Returns:] A reference to the contained value
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
T v ;
optional<T> opt ( v );
T const& u = *opt;
assert ( u == v ) ;
T w ;
*opt = w ;
assert ( *opt == w ) ;
``

__SPACE__

[#reference_optional_get_value_or_value]

[: `T const& optional<T` ['(not a ref)]`>::get_value_or( T const& default) const ;`]
[: `T&       optional<T` ['(not a ref)]`>::get_value_or( T&       default ) ;`]

[: `inline T const& get_optional_value_or ( optional<T` ['(not a ref)]`> const& o, T const& default ) ;`]
[: `inline T&       get_optional_value_or ( optional<T` ['(not a ref)]`>&       o, T&       default ) ;`]

* [*Returns:] A reference to the contained value, if any, or `default`.
* [*Throws:] Nothing.
* [*Example:]
``
T v, z ;
optional<T> def;
T const& y = def.get_value_or(z);
assert ( y == z ) ;

optional<T> opt ( v );
T const& u = get_optional_value_or(opt,z);
assert ( u == v ) ;
assert ( u != z ) ;
``

__SPACE__

[: `T const& optional<T&>::operator*() const ;`]
[: `T      & optional<T&>::operator*();`]
[: `T const& optional<T&>::get() const ;`]
[: `T&       optional<T&>::get() ;`]

[: `inline T const& get ( optional<T&> const& ) ;`]
[: `inline T&       get ( optional<T&> &) ;`]

* [*Requirements: ] `*this` is initialized
* [*Returns:] [_The] reference contained.
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
T v ;
T& vref = v ;
optional<T&> opt ( vref );
T const& vref2 = *opt;
assert ( vref2 == v ) ;
++ v ;
assert ( *opt == v ) ;
``

__SPACE__

[#reference_optional_get_ptr]

[: `T const* optional<T` ['(not a ref)]`>::get_ptr() const ;`]
[: `T*       optional<T` ['(not a ref)]`>::get_ptr() ;`]

[: `inline T const* get_pointer ( optional<T` ['(not a ref)]`> const& ) ;`]
[: `inline T*       get_pointer ( optional<T` ['(not a ref)]`> &) ;`]

* [*Returns:] If `*this` is initialized, a pointer to the contained value;
else `0` (['null]).
* [*Throws:] Nothing.
* [*Notes:] The contained value is permanently stored within `*this`, so you
should not hold nor delete this pointer
* [*Example:]
``
T v;
optional<T> opt(v);
optional<T> const copt(v);
T* p = opt.get_ptr() ;
T const* cp = copt.get_ptr();
assert ( p == get_pointer(opt) );
assert ( cp == get_pointer(copt) ) ;
``

__SPACE__

[#reference_optional_operator_arrow]

[: `T const* optional<T` ['(not a ref)]`>::operator ->() const ;`]
[: `T*       optional<T` ['(not a ref)]`>::operator ->()       ;`]

* [*Requirements: ] `*this` is initialized.
* [*Returns:] A pointer to the contained value.
* [*Throws:] Nothing.
* [*Notes:] The requirement is asserted via `BOOST_ASSERT()`.
* [*Example:]
``
struct X { int mdata ; } ;
X x ;
optional<X> opt (x);
opt->mdata = 2 ;
``

__SPACE__

[#reference_optional_operator_bool]

[: `optional<T>::operator `['unspecified-bool-type]`() const ;`]

* [*Returns:] An unspecified value which if used on a boolean context
is equivalent to (`get() != 0`)
* [*Throws:] Nothing.
* [*Example:]
``
optional<T> def ;
assert ( def == 0 );
optional<T> opt ( v ) ;
assert ( opt );
assert ( opt != 0 );
``

__SPACE__

[#reference_optional_operator_not]

[: `bool optional<T>::operator!() ;`]

* [*Returns:] If `*this` is uninitialized, `true`; else `false`.
* [*Throws:] Nothing.
* [*Notes:] This operator is provided for those compilers which can't
use the ['unspecified-bool-type operator] in certain boolean contexts.
* [*Example:]
``
optional<T> opt ;
assert ( !opt );
*opt = some_T ;

// Notice the "double-bang" idiom here.
assert ( !!opt ) ;
``

__SPACE__

[#reference_optional_is_initialized]

[: `bool optional<T>::is_initialized() const ;`]

* [*Returns: ] `true` if the `optional` is initialized, `false` otherwise.
* [*Throws:] Nothing.
* [*Example:]
``
optional<T> def ;
assert ( !def.is_initialized() );
optional<T> opt ( v ) ;
assert ( opt.is_initialized() );
``

__SPACE__

[heading Free functions]

__SPACE__

[#reference_make_optional_value]

[: `optional<T` ['(not a ref)]`> make_optional( T const& v )`]

* [*Returns: ] `optional<T>(v)` for the ['deduced] type `T` of `v`.
* [*Example:]
``
template<class T> void foo ( optional<T> const& opt ) ;

foo ( make_optional(1+1) ) ; // Creates an optional<int>
``

__SPACE__

[#reference_make_optional_bool_value]

[: `optional<T` ['(not a ref)]`> make_optional( bool condition, T const& v )`]

* [*Returns: ] `optional<T>(condition,v)` for the ['deduced] type `T` of `v`.
* [*Example:]
``
optional<double> calculate_foo()
{
  double val = compute_foo();
  return make_optional(is_not_nan_and_finite(val),val);
}

optional<double> v = calculate_foo();
if ( !v )
  error("foo wasn't computed");
``

__SPACE__

[#reference_operator_compare_equal_optional_optional]

[: `bool operator == ( optional<T> const& x, optional<T> const& y );`]

* [*Returns:] If both `x` and `y` are initialized, `(*x == *y)`. If only
`x` or `y` is initialized, `false`. If both are uninitialized, `true`.
* [*Throws:] Nothing.
* [*Notes:] Pointers have shallow relational operators while `optional` has
deep relational operators. Do not use `operator ==` directly in generic
code which expect to be given either an `optional<T>` or a pointer; use
__FUNCTION_EQUAL_POINTEES__ instead
* [*Example:]
``
T x(12);
T y(12);
T z(21);
optional<T> def0 ;
optional<T> def1 ;
optional<T> optX(x);
optional<T> optY(y);
optional<T> optZ(z);

// Identity always hold
assert ( def0 == def0 );
assert ( optX == optX );

// Both uninitialized compare equal
assert ( def0 == def1 );

// Only one initialized compare unequal.
assert ( def0 != optX );

// Both initialized compare as (*lhs == *rhs)
assert ( optX == optY ) ;
assert ( optX != optZ ) ;
``

__SPACE__

[#reference_operator_compare_less_optional_optional]

[: `bool operator < ( optional<T> const& x, optional<T> const& y );`]

* [*Returns:] If `y` is not initialized, `false`. If `y` is initialized
and `x` is not initialized, `true`. If both `x` and `y` are initialized,
`(*x < *y)`.
* [*Throws:] Nothing.
* [*Notes:] Pointers have shallow relational operators while `optional` has
deep relational operators. Do not use `operator <` directly in generic code
which expect to be given either an `optional<T>` or a pointer; use __FUNCTION_LESS_POINTEES__ instead.
* [*Example:]
``
T x(12);
T y(34);
optional<T> def ;
optional<T> optX(x);
optional<T> optY(y);

// Identity always hold
assert ( !(def < def) );
assert ( optX == optX );

// Both uninitialized compare equal
assert ( def0 == def1 );

// Only one initialized compare unequal.
assert ( def0 != optX );

// Both initialized compare as (*lhs == *rhs)
assert ( optX == optY ) ;
assert ( optX != optZ ) ;
``

__SPACE__

[#reference_operator_compare_not_equal_optional_optional]

[: `bool operator != ( optional<T> const& x, optional<T> const& y );`]

* [*Returns: ] `!( x == y );`
* [*Throws:] Nothing.

__SPACE__

[#reference_operator_compare_greater_optional_optional]

[: `bool operator > ( optional<T> const& x, optional<T> const& y );`]

* [*Returns: ] `( y < x );`
* [*Throws:] Nothing.

__SPACE__

[#reference_operator_compare_less_or_equal_optional_optional]

[: `bool operator <= ( optional<T> const& x, optional<T> const& y );`]

* [*Returns: ] `!( y<x );`
* [*Throws:] Nothing.

__SPACE__

[#reference_operator_compare_greater_or_equal_optional_optional]

[: `bool operator >= ( optional<T> const& x, optional<T> const& y );`]

* [*Returns: ] `!( x<y );`
* [*Throws:] Nothing.

__SPACE__

[#reference_swap_optional_optional]

[: `void swap ( optional<T>& x, optional<T>& y );`]

* [*Effect:] If both `x` and `y` are initialized, calls `swap(*x,*y)`
using `std::swap`. If only one is initialized, say `x`, calls:
`y.reset(*x); x.reset();` If none is initialized, does nothing.
* [*Postconditions:] The states of `x` and `y` interchanged.
* [*Throws:] If both are initialized, whatever `swap(T&,T&)` throws. If only
one is initialized, whatever `T::T ( T const& )` throws.
* [*Notes:] If both are initialized, `swap(T&,T&)` is used unqualified but
with `std::swap` introduced in scope.
If only one is initialized, `T::~T()` and `T::T( T const& )` is called.
* [*Exception Safety:] If both are initialized, this operation has the
exception safety guarantees of `swap(T&,T&)`.
If only one is initialized, it has the same basic guarantee as
`optional<T>::reset( T const& )`.
* [*Example:]
``
T x(12);
T y(21);
optional<T> def0 ;
optional<T> def1 ;
optional<T> optX(x);
optional<T> optY(y);

boost::swap(def0,def1); // no-op

boost::swap(def0,optX);
assert ( *def0 == x );
assert ( !optX );

boost::swap(def0,optX); // Get back to original values

boost::swap(optX,optY);
assert ( *optX == y );
assert ( *optY == x );
``

[endsect]