1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
//////////////////////////////////////////////////////////////////////////////
// Copyright 2002-2008 Andreas Huber Doenni
// Distributed under the Boost Software License, Version 1.0. (See accompany-
// ing file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// #define USE_TWO_THREADS // ignored for single-threaded builds
// #define CUSTOMIZE_MEMORY_MANAGEMENT
//////////////////////////////////////////////////////////////////////////////
// The following example program demonstrates the use of asynchronous state
// machines. First, it creates two objects of the same simple state machine
// mimicking a table tennis player. It then sends an event (the ball) to the
// first state machine. Upon reception, the first machine sends a similar
// event to the second state machine, which then sends the event back to the
// first machine. The two machines continue to bounce the event back and forth
// until one machine "has enough" and aborts the game. The two players don't
// "know" each other, they can only pass the ball back and forth because the
// event representing the ball also carries two boost::function objects.
// Both reference the fifo_scheduler<>::queue_event() function, binding the
// scheduler and the handle of the opponent. One can be used to return the
// ball to the opponent and the other can be used to abort the game.
// Depending on whether the program is compiled single-threaded or
// multi-threaded and the USE_TWO_THREADS define above, the two
// machines either run in the same thread without/with mutex locking or in two
// different threads with mutex locking.
//////////////////////////////////////////////////////////////////////////////
#include "Player.hpp"
#include <boost/statechart/asynchronous_state_machine.hpp>
#include <boost/statechart/fifo_worker.hpp>
#include <boost/mpl/list.hpp>
#include <boost/config.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#ifdef BOOST_HAS_THREADS
# include <boost/thread/thread.hpp>
#endif
#include <iostream>
#include <ctime>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std
{
using ::clock_t;
using ::clock;
}
#endif
#ifdef BOOST_INTEL
# pragma warning( disable: 304 ) // access control not specified
# pragma warning( disable: 383 ) // reference to temporary used
# pragma warning( disable: 981 ) // operands are evaluated in unspecified order
#endif
namespace sc = boost::statechart;
//////////////////////////////////////////////////////////////////////////////
const unsigned int noOfEvents = 1000000;
//////////////////////////////////////////////////////////////////////////////
char GetKey()
{
char key;
std::cin >> key;
return key;
}
//////////////////////////////////////////////////////////////////////////////
int main()
{
std::cout << "Boost.Statechart PingPong example\n\n";
std::cout << "Threading configuration:\n";
#ifdef BOOST_HAS_THREADS
std::cout << "Multi-threaded build with ";
#ifdef USE_TWO_THREADS
std::cout << 2;
#else
std::cout << 1;
#endif
std::cout << " thread(s).\n";
#else
std::cout << "Single-threaded build\n";
#endif
std::cout << "\np<CR>: Performance test\n";
std::cout << "e<CR>: Exits the program\n\n";
char key = GetKey();
while ( key != 'e' )
{
switch( key )
{
case 'p':
{
#ifdef BOOST_HAS_THREADS
MyScheduler scheduler1( true );
#else
MyScheduler scheduler1;
#endif
#ifdef USE_TWO_THREADS
#ifdef BOOST_HAS_THREADS
MyScheduler scheduler2( true );
#else
MyScheduler & scheduler2 = scheduler1;
#endif
#else
MyScheduler & scheduler2 = scheduler1;
#endif
MyScheduler::processor_handle player1 =
scheduler1.create_processor< Player >( noOfEvents / 2 );
scheduler1.initiate_processor( player1 );
MyScheduler::processor_handle player2 =
scheduler2.create_processor< Player >( noOfEvents / 2 );
scheduler2.initiate_processor( player2 );
boost::intrusive_ptr< BallReturned > pInitialBall = new BallReturned();
pInitialBall->returnToOpponent = boost::bind(
&MyScheduler::queue_event, &scheduler1, player1, _1 );
pInitialBall->abortGame = boost::bind(
&MyScheduler::queue_event,
&scheduler1, player1, MakeIntrusive( new GameAborted() ) );
scheduler2.queue_event( player2, pInitialBall );
std::cout << "\nHaving players return the ball " <<
noOfEvents << " times. Please wait...\n";
const unsigned int prevCount = Player::TotalNoOfProcessedEvents();
const std::clock_t startTime = std::clock();
#ifdef USE_TWO_THREADS
#ifdef BOOST_HAS_THREADS
boost::thread otherThread(
boost::bind( &MyScheduler::operator(), &scheduler2, 0 ) );
scheduler1();
otherThread.join();
#else
scheduler1();
#endif
#else
scheduler1();
#endif
const std::clock_t elapsedTime = std::clock() - startTime;
std::cout << "Time to send and dispatch one event and\n" <<
"perform the resulting transition: ";
std::cout << elapsedTime / static_cast< double >( CLOCKS_PER_SEC ) *
1000000.0 / ( Player::TotalNoOfProcessedEvents() - prevCount )
<< " microseconds\n\n";
}
break;
default:
{
std::cout << "Invalid key!\n";
}
}
key = GetKey();
}
return 0;
}
|