File: tutorial.cpp

package info (click to toggle)
boost1.42 1.42.0-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 277,864 kB
  • ctags: 401,076
  • sloc: cpp: 1,235,659; xml: 74,142; ansic: 41,313; python: 26,756; sh: 11,840; cs: 2,118; makefile: 655; perl: 494; yacc: 456; asm: 353; csh: 6
file content (88 lines) | stat: -rw-r--r-- 2,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// Boost.Units - A C++ library for zero-overhead dimensional analysis and 
// unit/quantity manipulation and conversion
//
// Copyright (C) 2003-2008 Matthias Christian Schabel
// Copyright (C) 2008 Steven Watanabe
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

/** 
\file
    
\brief tutorial.cpp

\detailed
Basic tutorial using si units.

Output:
@verbatim

//[tutorial_output
F  = 2 N
dx = 2 m
E  = 4 J

V   = (12.5,0) V
I   = (3,4) A
Z   = (1.5,-2) Ohm
I*Z = (12.5,0) V
I*Z == V? true
//]

@endverbatim
**/

//[tutorial_code
#include <complex>
#include <iostream>

#include <boost/typeof/std/complex.hpp>

#include <boost/units/systems/si/energy.hpp>
#include <boost/units/systems/si/force.hpp>
#include <boost/units/systems/si/length.hpp>
#include <boost/units/systems/si/electric_potential.hpp>
#include <boost/units/systems/si/current.hpp>
#include <boost/units/systems/si/resistance.hpp>
#include <boost/units/systems/si/io.hpp>

using namespace boost::units;
using namespace boost::units::si;

quantity<energy> 
work(const quantity<force>& F,const quantity<length>& dx)
{
    return F*dx;
}

int main()
{   
    /// test calcuation of work
    quantity<force>     F(2.0*newton);
    quantity<length>    dx(2.0*meter);
    quantity<energy>    E(work(F,dx));
    
    std::cout << "F  = " << F << std::endl
              << "dx = " << dx << std::endl
              << "E  = " << E << std::endl
              << std::endl;

    /// check complex quantities
    typedef std::complex<double>    complex_type;
    
    quantity<electric_potential,complex_type> v = complex_type(12.5,0.0)*volts;
    quantity<current,complex_type>            i = complex_type(3.0,4.0)*amperes;
    quantity<resistance,complex_type>         z = complex_type(1.5,-2.0)*ohms;
    
    std::cout << "V   = " << v << std::endl
              << "I   = " << i << std::endl
              << "Z   = " << z << std::endl
              << "I*Z = " << i*z << std::endl
              << "I*Z == V? " << std::boolalpha << (i*z == v) << std::endl
              << std::endl;

    return 0;
}
//]