1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
|
// Implementation of the circular buffer adaptor.
// Copyright (c) 2003-2008 Jan Gaspar
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_CIRCULAR_BUFFER_SPACE_OPTIMIZED_HPP)
#define BOOST_CIRCULAR_BUFFER_SPACE_OPTIMIZED_HPP
#if defined(_MSC_VER) && _MSC_VER >= 1200
#pragma once
#endif
#include <boost/type_traits/is_same.hpp>
#include <boost/detail/workaround.hpp>
namespace boost {
/*!
\class circular_buffer_space_optimized
\brief Space optimized circular buffer container adaptor.
For detailed documentation of the space_optimized_circular_buffer visit:
http://www.boost.org/libs/circular_buffer/doc/space_optimized.html
*/
template <class T, class Alloc>
class circular_buffer_space_optimized :
/*! \cond */
#if BOOST_CB_ENABLE_DEBUG
public
#endif
/*! \endcond */
circular_buffer<T, Alloc> {
public:
// Typedefs
typedef typename circular_buffer<T, Alloc>::value_type value_type;
typedef typename circular_buffer<T, Alloc>::pointer pointer;
typedef typename circular_buffer<T, Alloc>::const_pointer const_pointer;
typedef typename circular_buffer<T, Alloc>::reference reference;
typedef typename circular_buffer<T, Alloc>::const_reference const_reference;
typedef typename circular_buffer<T, Alloc>::size_type size_type;
typedef typename circular_buffer<T, Alloc>::difference_type difference_type;
typedef typename circular_buffer<T, Alloc>::allocator_type allocator_type;
typedef typename circular_buffer<T, Alloc>::const_iterator const_iterator;
typedef typename circular_buffer<T, Alloc>::iterator iterator;
typedef typename circular_buffer<T, Alloc>::const_reverse_iterator const_reverse_iterator;
typedef typename circular_buffer<T, Alloc>::reverse_iterator reverse_iterator;
typedef typename circular_buffer<T, Alloc>::array_range array_range;
typedef typename circular_buffer<T, Alloc>::const_array_range const_array_range;
typedef typename circular_buffer<T, Alloc>::param_value_type param_value_type;
typedef typename circular_buffer<T, Alloc>::return_value_type return_value_type;
//! Capacity controller of the space optimized circular buffer.
/*!
<p><pre>
class capacity_control {
size_type m_capacity;
size_type m_min_capacity;
public:
capacity_control(size_type capacity, size_type min_capacity = 0) : m_capacity(capacity), m_min_capacity(min_capacity) {};
size_type %capacity() const { return m_capacity; }
size_type min_capacity() const { return m_min_capacity; }
operator size_type() const { return m_capacity; }
};</pre></p>
\pre <code>capacity >= min_capacity</code>
<p>The <code>capacity()</code> represents the capacity of the <code>circular_buffer_space_optimized</code> and
the <code>min_capacity()</code> determines the minimal allocated size of its internal buffer.</p>
<p>The converting constructor of the <code>capacity_control</code> allows implicit conversion from
<code>size_type</code>-like types which ensures compatibility of creating an instance of the
<code>circular_buffer_space_optimized</code> with other STL containers. On the other hand the operator
<code>%size_type()</code> provides implicit conversion to the <code>size_type</code> which allows to treat the
capacity of the <code>circular_buffer_space_optimized</code> the same way as in the
<code><a href="circular_buffer.html">circular_buffer</a></code>.</p>
*/
typedef cb_details::capacity_control<size_type> capacity_type;
// Inherited
using circular_buffer<T, Alloc>::get_allocator;
using circular_buffer<T, Alloc>::begin;
using circular_buffer<T, Alloc>::end;
using circular_buffer<T, Alloc>::rbegin;
using circular_buffer<T, Alloc>::rend;
using circular_buffer<T, Alloc>::at;
using circular_buffer<T, Alloc>::front;
using circular_buffer<T, Alloc>::back;
using circular_buffer<T, Alloc>::array_one;
using circular_buffer<T, Alloc>::array_two;
using circular_buffer<T, Alloc>::linearize;
using circular_buffer<T, Alloc>::is_linearized;
using circular_buffer<T, Alloc>::rotate;
using circular_buffer<T, Alloc>::size;
using circular_buffer<T, Alloc>::max_size;
using circular_buffer<T, Alloc>::empty;
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
reference operator [] (size_type n) { return circular_buffer<T, Alloc>::operator[](n); }
return_value_type operator [] (size_type n) const { return circular_buffer<T, Alloc>::operator[](n); }
#else
using circular_buffer<T, Alloc>::operator[];
#endif
private:
// Member variables
//! The capacity controller of the space optimized circular buffer.
capacity_type m_capacity_ctrl;
public:
// Overridden
//! Is the <code>circular_buffer_space_optimized</code> full?
/*!
\return <code>true</code> if the number of elements stored in the <code>circular_buffer_space_optimized</code>
equals the capacity of the <code>circular_buffer_space_optimized</code>; <code>false</code> otherwise.
\throws Nothing.
\par Exception Safety
No-throw.
\par Iterator Invalidation
Does not invalidate any iterators.
\par Complexity
Constant (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>empty()</code>
*/
bool full() const { return m_capacity_ctrl == size(); }
/*! \brief Get the maximum number of elements which can be inserted into the
<code>circular_buffer_space_optimized</code> without overwriting any of already stored elements.
\return <code>capacity().%capacity() - size()</code>
\throws Nothing.
\par Exception Safety
No-throw.
\par Iterator Invalidation
Does not invalidate any iterators.
\par Complexity
Constant (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>capacity()</code>, <code>size()</code>, <code>max_size()</code>
*/
size_type reserve() const { return m_capacity_ctrl - size(); }
//! Get the capacity of the <code>circular_buffer_space_optimized</code>.
/*!
\return The capacity controller representing the maximum number of elements which can be stored in the
<code>circular_buffer_space_optimized</code> and the minimal allocated size of the internal buffer.
\throws Nothing.
\par Exception Safety
No-throw.
\par Iterator Invalidation
Does not invalidate any iterators.
\par Complexity
Constant (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>reserve()</code>, <code>size()</code>, <code>max_size()</code>,
<code>set_capacity(const capacity_type&)</code>
*/
const capacity_type& capacity() const { return m_capacity_ctrl; }
#if defined(BOOST_CB_TEST)
// Return the current capacity of the adapted circular buffer.
/*
\note This method is not intended to be used directly by the user.
It is defined only for testing purposes.
*/
size_type internal_capacity() const { return circular_buffer<T, Alloc>::capacity(); }
#endif // #if defined(BOOST_CB_TEST)
/*! \brief Change the capacity (and the minimal guaranteed amount of allocated memory) of the
<code>circular_buffer_space_optimized</code>.
\post <code>capacity() == capacity_ctrl \&\& size() \<= capacity_ctrl.capacity()</code><br><br>
If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
than the desired new capacity then number of <code>[size() - capacity_ctrl.capacity()]</code> <b>last</b>
elements will be removed and the new size will be equal to <code>capacity_ctrl.capacity()</code>.<br><br>
If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is lower
than the new capacity then the amount of allocated memory in the internal buffer may be accommodated as
necessary but it will never drop below <code>capacity_ctrl.min_capacity()</code>.
\param capacity_ctrl The new capacity controller.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Strong.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in <code>min[size(), capacity_ctrl.%capacity()]</code>).
\note To explicitly clear the extra allocated memory use the <b>shrink-to-fit</b> technique:<br><br>
<code>%boost::%circular_buffer_space_optimized\<int\> cb(1000);<br>
...<br>
%boost::%circular_buffer_space_optimized\<int\>(cb).swap(cb);</code><br><br>
For more information about the shrink-to-fit technique in STL see
<a href="http://www.gotw.ca/gotw/054.htm">http://www.gotw.ca/gotw/054.htm</a>.
\sa <code>rset_capacity(const capacity_type&)</code>,
<code>\link resize() resize(size_type, const_reference)\endlink</code>
*/
void set_capacity(const capacity_type& capacity_ctrl) {
m_capacity_ctrl = capacity_ctrl;
if (capacity_ctrl < size()) {
iterator e = end();
circular_buffer<T, Alloc>::erase(e - (size() - capacity_ctrl), e);
}
adjust_min_capacity();
}
//! Change the size of the <code>circular_buffer_space_optimized</code>.
/*!
\post <code>size() == new_size \&\& capacity().%capacity() >= new_size</code><br><br>
If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
<b>back</b> of the of the <code>circular_buffer_space_optimized</code> in order to achieve the desired
size. In the case the resulting size exceeds the current capacity the capacity will be set to
<code>new_size</code>.<br><br>
If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
than the desired new size then number of <code>[size() - new_size]</code> <b>last</b> elements will be
removed. (The capacity will remain unchanged.)<br><br>
The amount of allocated memory in the internal buffer may be accommodated as necessary.
\param new_size The new size.
\param item The element the <code>circular_buffer_space_optimized</code> will be filled with in order to gain
the requested size. (See the <i>Effect</i>.)
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the new size of the <code>circular_buffer_space_optimized</code>).
\sa <code>\link rresize() rresize(size_type, const_reference)\endlink</code>,
<code>set_capacity(const capacity_type&)</code>
*/
void resize(size_type new_size, param_value_type item = value_type()) {
if (new_size > size()) {
if (new_size > m_capacity_ctrl)
m_capacity_ctrl = capacity_type(new_size, m_capacity_ctrl.min_capacity());
insert(end(), new_size - size(), item);
} else {
iterator e = end();
erase(e - (size() - new_size), e);
}
}
/*! \brief Change the capacity (and the minimal guaranteed amount of allocated memory) of the
<code>circular_buffer_space_optimized</code>.
\post <code>capacity() == capacity_ctrl \&\& size() \<= capacity_ctrl</code><br><br>
If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
than the desired new capacity then number of <code>[size() - capacity_ctrl.capacity()]</code>
<b>first</b> elements will be removed and the new size will be equal to
<code>capacity_ctrl.capacity()</code>.<br><br>
If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is lower
than the new capacity then the amount of allocated memory in the internal buffer may be accommodated as
necessary but it will never drop below <code>capacity_ctrl.min_capacity()</code>.
\param capacity_ctrl The new capacity controller.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Strong.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in <code>min[size(), capacity_ctrl.%capacity()]</code>).
\sa <code>set_capacity(const capacity_type&)</code>,
<code>\link rresize() rresize(size_type, const_reference)\endlink</code>
*/
void rset_capacity(const capacity_type& capacity_ctrl) {
m_capacity_ctrl = capacity_ctrl;
if (capacity_ctrl < size()) {
iterator b = begin();
circular_buffer<T, Alloc>::rerase(b, b + (size() - capacity_ctrl));
}
adjust_min_capacity();
}
//! Change the size of the <code>circular_buffer_space_optimized</code>.
/*!
\post <code>size() == new_size \&\& capacity().%capacity() >= new_size</code><br><br>
If the new size is greater than the current size, copies of <code>item</code> will be inserted at the
<b>front</b> of the of the <code>circular_buffer_space_optimized</code> in order to achieve the desired
size. In the case the resulting size exceeds the current capacity the capacity will be set to
<code>new_size</code>.<br><br>
If the current number of elements stored in the <code>circular_buffer_space_optimized</code> is greater
than the desired new size then number of <code>[size() - new_size]</code> <b>first</b> elements will be
removed. (The capacity will remain unchanged.)<br><br>
The amount of allocated memory in the internal buffer may be accommodated as necessary.
\param new_size The new size.
\param item The element the <code>circular_buffer_space_optimized</code> will be filled with in order to gain
the requested size. (See the <i>Effect</i>.)
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the new size of the <code>circular_buffer_space_optimized</code>).
\sa <code>\link resize() resize(size_type, const_reference)\endlink</code>,
<code>rset_capacity(const capacity_type&)</code>
*/
void rresize(size_type new_size, param_value_type item = value_type()) {
if (new_size > size()) {
if (new_size > m_capacity_ctrl)
m_capacity_ctrl = capacity_type(new_size, m_capacity_ctrl.min_capacity());
rinsert(begin(), new_size - size(), item);
} else {
rerase(begin(), end() - new_size);
}
}
//! Create an empty space optimized circular buffer with zero capacity.
/*!
\post <code>capacity().%capacity() == 0 \&\& capacity().min_capacity() == 0 \&\& size() == 0</code>
\param alloc The allocator.
\throws Nothing.
\par Complexity
Constant.
\warning Since Boost version 1.36 the behaviour of this constructor has changed. Now it creates a space
optimized circular buffer with zero capacity.
*/
explicit circular_buffer_space_optimized(const allocator_type& alloc = allocator_type())
: circular_buffer<T, Alloc>(0, alloc)
, m_capacity_ctrl(0) {}
//! Create an empty space optimized circular buffer with the specified capacity.
/*!
\post <code>capacity() == capacity_ctrl \&\& size() == 0</code><br><br>
The amount of allocated memory in the internal buffer is <code>capacity_ctrl.min_capacity()</code>.
\param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
internal buffer.
\param alloc The allocator.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\par Complexity
Constant.
*/
explicit circular_buffer_space_optimized(capacity_type capacity_ctrl,
const allocator_type& alloc = allocator_type())
: circular_buffer<T, Alloc>(capacity_ctrl.min_capacity(), alloc)
, m_capacity_ctrl(capacity_ctrl) {}
/*! \brief Create a full space optimized circular buffer with the specified capacity filled with
<code>capacity_ctrl.%capacity()</code> copies of <code>item</code>.
\post <code>capacity() == capacity_ctrl \&\& full() \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ...
\&\& (*this) [capacity_ctrl.%capacity() - 1] == item </code><br><br>
The amount of allocated memory in the internal buffer is <code>capacity_ctrl.capacity()</code>.
\param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
internal buffer.
\param item The element the created <code>circular_buffer_space_optimized</code> will be filled with.
\param alloc The allocator.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Complexity
Linear (in the <code>capacity_ctrl.%capacity()</code>).
*/
circular_buffer_space_optimized(capacity_type capacity_ctrl, param_value_type item,
const allocator_type& alloc = allocator_type())
: circular_buffer<T, Alloc>(capacity_ctrl.capacity(), item, alloc)
, m_capacity_ctrl(capacity_ctrl) {}
/*! \brief Create a space optimized circular buffer with the specified capacity filled with <code>n</code> copies
of <code>item</code>.
\pre <code>capacity_ctrl.%capacity() >= n</code>
\post <code>capacity() == capacity_ctrl \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
\&\& ... \&\& (*this)[n - 1] == item</code><br><br>
The amount of allocated memory in the internal buffer is
<code>max[n, capacity_ctrl.min_capacity()]</code>.
\param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
internal buffer.
\param n The number of elements the created <code>circular_buffer_space_optimized</code> will be filled with.
\param item The element the created <code>circular_buffer_space_optimized</code> will be filled with.
\param alloc The allocator.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Complexity
Linear (in the <code>n</code>).
*/
circular_buffer_space_optimized(capacity_type capacity_ctrl, size_type n, param_value_type item,
const allocator_type& alloc = allocator_type())
: circular_buffer<T, Alloc>(init_capacity(capacity_ctrl, n), n, item, alloc)
, m_capacity_ctrl(capacity_ctrl) {}
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
/*! \cond */
circular_buffer_space_optimized(const circular_buffer_space_optimized<T, Alloc>& cb)
: circular_buffer<T, Alloc>(cb.begin(), cb.end())
, m_capacity_ctrl(cb.m_capacity_ctrl) {}
template <class InputIterator>
circular_buffer_space_optimized(InputIterator first, InputIterator last)
: circular_buffer<T, Alloc>(first, last)
, m_capacity_ctrl(circular_buffer<T, Alloc>::capacity()) {}
template <class InputIterator>
circular_buffer_space_optimized(capacity_type capacity_ctrl, InputIterator first, InputIterator last)
: circular_buffer<T, Alloc>(
init_capacity(capacity_ctrl, first, last, is_integral<InputIterator>()),
first, last)
, m_capacity_ctrl(capacity_ctrl) {
reduce_capacity(
is_same< BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<InputIterator>::type, std::input_iterator_tag >());
}
/*! \endcond */
#else
//! The copy constructor.
/*!
Creates a copy of the specified <code>circular_buffer_space_optimized</code>.
\post <code>*this == cb</code><br><br>
The amount of allocated memory in the internal buffer is <code>cb.size()</code>.
\param cb The <code>circular_buffer_space_optimized</code> to be copied.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Complexity
Linear (in the size of <code>cb</code>).
*/
circular_buffer_space_optimized(const circular_buffer_space_optimized<T, Alloc>& cb)
: circular_buffer<T, Alloc>(cb.begin(), cb.end(), cb.get_allocator())
, m_capacity_ctrl(cb.m_capacity_ctrl) {}
//! Create a full space optimized circular buffer filled with a copy of the range.
/*!
\pre Valid range <code>[first, last)</code>.<br>
<code>first</code> and <code>last</code> have to meet the requirements of
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
\post <code>capacity().%capacity() == std::distance(first, last) \&\& capacity().min_capacity() == 0 \&\&
full() \&\& (*this)[0]== *first \&\& (*this)[1] == *(first + 1) \&\& ... \&\&
(*this)[std::distance(first, last) - 1] == *(last - 1)</code><br><br>
The amount of allocated memory in the internal buffer is <code>std::distance(first, last)</code>.
\param first The beginning of the range to be copied.
\param last The end of the range to be copied.
\param alloc The allocator.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Complexity
Linear (in the <code>std::distance(first, last)</code>).
*/
template <class InputIterator>
circular_buffer_space_optimized(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type())
: circular_buffer<T, Alloc>(first, last, alloc)
, m_capacity_ctrl(circular_buffer<T, Alloc>::capacity()) {}
/*! \brief Create a space optimized circular buffer with the specified capacity (and the minimal guaranteed amount
of allocated memory) filled with a copy of the range.
\pre Valid range <code>[first, last)</code>.<br>
<code>first</code> and <code>last</code> have to meet the requirements of
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
\post <code>capacity() == capacity_ctrl \&\& size() \<= std::distance(first, last) \&\& (*this)[0]==
*(last - capacity_ctrl.%capacity()) \&\& (*this)[1] == *(last - capacity_ctrl.%capacity() + 1) \&\& ...
\&\& (*this)[capacity_ctrl.%capacity() - 1] == *(last - 1)</code><br><br>
If the number of items to be copied from the range <code>[first, last)</code> is greater than the
specified <code>capacity_ctrl.%capacity()</code> then only elements from the range
<code>[last - capacity_ctrl.%capacity(), last)</code> will be copied.<br><br>
The amount of allocated memory in the internal buffer is <code>max[capacity_ctrl.min_capacity(),
min[capacity_ctrl.%capacity(), std::distance(first, last)]]</code>.
\param capacity_ctrl The capacity controller representing the maximum number of elements which can be stored in
the <code>circular_buffer_space_optimized</code> and the minimal allocated size of the
internal buffer.
\param first The beginning of the range to be copied.
\param last The end of the range to be copied.
\param alloc The allocator.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Complexity
Linear (in <code>std::distance(first, last)</code>; in
<code>min[capacity_ctrl.%capacity(), std::distance(first, last)]</code> if the <code>InputIterator</code>
is a <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
*/
template <class InputIterator>
circular_buffer_space_optimized(capacity_type capacity_ctrl, InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type())
: circular_buffer<T, Alloc>(
init_capacity(capacity_ctrl, first, last, is_integral<InputIterator>()),
first, last, alloc)
, m_capacity_ctrl(capacity_ctrl) {
reduce_capacity(
is_same< BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<InputIterator>::type, std::input_iterator_tag >());
}
#endif // #if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
#if defined(BOOST_CB_NEVER_DEFINED)
// This section will never be compiled - the default destructor will be generated instead.
// Declared only for documentation purpose.
//! The destructor.
/*!
Destroys the <code>circular_buffer_space_optimized</code>.
\throws Nothing.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (including
iterators equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>clear()</code>
*/
~circular_buffer_space_optimized();
//! no-comment
void erase_begin(size_type n);
//! no-comment
void erase_end(size_type n);
#endif // #if defined(BOOST_CB_NEVER_DEFINED)
//! The assign operator.
/*!
Makes this <code>circular_buffer_space_optimized</code> to become a copy of the specified
<code>circular_buffer_space_optimized</code>.
\post <code>*this == cb</code><br><br>
The amount of allocated memory in the internal buffer is <code>cb.size()</code>.
\param cb The <code>circular_buffer_space_optimized</code> to be copied.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Strong.
\par Iterator Invalidation
Invalidates all iterators pointing to this <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of <code>cb</code>).
\sa <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
<code>\link assign(capacity_type, size_type, param_value_type)
assign(capacity_type, size_type, const_reference)\endlink</code>,
<code>assign(InputIterator, InputIterator)</code>,
<code>assign(capacity_type, InputIterator, InputIterator)</code>
*/
circular_buffer_space_optimized<T, Alloc>& operator = (const circular_buffer_space_optimized<T, Alloc>& cb) {
if (this == &cb)
return *this;
circular_buffer<T, Alloc>::assign(cb.begin(), cb.end());
m_capacity_ctrl = cb.m_capacity_ctrl;
return *this;
}
//! Assign <code>n</code> items into the space optimized circular buffer.
/*!
The content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with
<code>n</code> copies of the <code>item</code>.
\post <code>capacity().%capacity() == n \&\& capacity().min_capacity() == 0 \&\& size() == n \&\& (*this)[0] ==
item \&\& (*this)[1] == item \&\& ... \&\& (*this) [n - 1] == item</code><br><br>
The amount of allocated memory in the internal buffer is <code>n</code>.
\param n The number of elements the <code>circular_buffer_space_optimized</code> will be filled with.
\param item The element the <code>circular_buffer_space_optimized</code> will be filled with.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the <code>n</code>).
\sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
<code>\link assign(capacity_type, size_type, param_value_type)
assign(capacity_type, size_type, const_reference)\endlink</code>,
<code>assign(InputIterator, InputIterator)</code>,
<code>assign(capacity_type, InputIterator, InputIterator)</code>
*/
void assign(size_type n, param_value_type item) {
circular_buffer<T, Alloc>::assign(n, item);
m_capacity_ctrl = capacity_type(n);
}
//! Assign <code>n</code> items into the space optimized circular buffer specifying the capacity.
/*!
The capacity of the <code>circular_buffer_space_optimized</code> will be set to the specified value and the
content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with <code>n</code>
copies of the <code>item</code>.
\pre <code>capacity_ctrl.%capacity() >= n</code>
\post <code>capacity() == capacity_ctrl \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item
\&\& ... \&\& (*this) [n - 1] == item </code><br><br>
The amount of allocated memory will be <code>max[n, capacity_ctrl.min_capacity()]</code>.
\param capacity_ctrl The new capacity controller.
\param n The number of elements the <code>circular_buffer_space_optimized</code> will be filled with.
\param item The element the <code>circular_buffer_space_optimized</code> will be filled with.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the <code>n</code>).
\sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
<code>assign(InputIterator, InputIterator)</code>,
<code>assign(capacity_type, InputIterator, InputIterator)</code>
*/
void assign(capacity_type capacity_ctrl, size_type n, param_value_type item) {
BOOST_CB_ASSERT(capacity_ctrl.capacity() >= n); // check for new capacity lower than n
circular_buffer<T, Alloc>::assign((std::max)(capacity_ctrl.min_capacity(), n), n, item);
m_capacity_ctrl = capacity_ctrl;
}
//! Assign a copy of the range into the space optimized circular buffer.
/*!
The content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with copies of
elements from the specified range.
\pre Valid range <code>[first, last)</code>.<br>
<code>first</code> and <code>last</code> have to meet the requirements of
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
\post <code>capacity().%capacity() == std::distance(first, last) \&\& capacity().min_capacity() == 0 \&\&
size() == std::distance(first, last) \&\& (*this)[0]== *first \&\& (*this)[1] == *(first + 1) \&\& ...
\&\& (*this)[std::distance(first, last) - 1] == *(last - 1)</code><br><br>
The amount of allocated memory in the internal buffer is <code>std::distance(first, last)</code>.
\param first The beginning of the range to be copied.
\param last The end of the range to be copied.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the <code>std::distance(first, last)</code>).
\sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
<code>\link assign(capacity_type, size_type, param_value_type)
assign(capacity_type, size_type, const_reference)\endlink</code>,
<code>assign(capacity_type, InputIterator, InputIterator)</code>
*/
template <class InputIterator>
void assign(InputIterator first, InputIterator last) {
circular_buffer<T, Alloc>::assign(first, last);
m_capacity_ctrl = capacity_type(circular_buffer<T, Alloc>::capacity());
}
//! Assign a copy of the range into the space optimized circular buffer specifying the capacity.
/*!
The capacity of the <code>circular_buffer_space_optimized</code> will be set to the specified value and the
content of the <code>circular_buffer_space_optimized</code> will be removed and replaced with copies of
elements from the specified range.
\pre Valid range <code>[first, last)</code>.<br>
<code>first</code> and <code>last</code> have to meet the requirements of
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
\post <code>capacity() == capacity_ctrl \&\& size() \<= std::distance(first, last) \&\&
(*this)[0]== *(last - capacity) \&\& (*this)[1] == *(last - capacity + 1) \&\& ... \&\&
(*this)[capacity - 1] == *(last - 1)</code><br><br>
If the number of items to be copied from the range <code>[first, last)</code> is greater than the
specified <code>capacity</code> then only elements from the range <code>[last - capacity, last)</code>
will be copied.<br><br> The amount of allocated memory in the internal buffer is
<code>max[std::distance(first, last), capacity_ctrl.min_capacity()]</code>.
\param capacity_ctrl The new capacity controller.
\param first The beginning of the range to be copied.
\param last The end of the range to be copied.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in <code>std::distance(first, last)</code>; in
<code>min[capacity_ctrl.%capacity(), std::distance(first, last)]</code> if the <code>InputIterator</code>
is a <a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
\sa <code>\link operator=(const circular_buffer_space_optimized&) operator=\endlink</code>,
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>,
<code>\link assign(capacity_type, size_type, param_value_type)
assign(capacity_type, size_type, const_reference)\endlink</code>,
<code>assign(InputIterator, InputIterator)</code>
*/
template <class InputIterator>
void assign(capacity_type capacity_ctrl, InputIterator first, InputIterator last) {
m_capacity_ctrl = capacity_ctrl;
circular_buffer<T, Alloc>::assign(capacity_ctrl, first, last);
}
//! Swap the contents of two space optimized circular buffers.
/*!
\post <code>this</code> contains elements of <code>cb</code> and vice versa; the capacity and the amount of
allocated memory in the internal buffer of <code>this</code> equal to the capacity and the amount of
allocated memory of <code>cb</code> and vice versa.
\param cb The <code>circular_buffer_space_optimized</code> whose content will be swapped.
\throws Nothing.
\par Exception Safety
No-throw.
\par Iterator Invalidation
Invalidates all iterators of both <code>circular_buffer_space_optimized</code> containers. (On the other
hand the iterators still point to the same elements but within another container. If you want to rely on
this feature you have to turn the <a href="circular_buffer.html#debug">Debug Support</a> off otherwise an
assertion will report an error if such invalidated iterator is used.)
\par Complexity
Constant (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>\link swap(circular_buffer<T, Alloc>&, circular_buffer<T, Alloc>&)
swap(circular_buffer_space_optimized<T, Alloc>&, circular_buffer_space_optimized<T, Alloc>&)\endlink</code>
*/
void swap(circular_buffer_space_optimized<T, Alloc>& cb) {
std::swap(m_capacity_ctrl, cb.m_capacity_ctrl);
circular_buffer<T, Alloc>::swap(cb);
}
//! Insert a new element at the end of the space optimized circular buffer.
/*!
\post if <code>capacity().%capacity() > 0</code> then <code>back() == item</code><br>
If the <code>circular_buffer_space_optimized</code> is full, the first element will be removed. If the
capacity is <code>0</code>, nothing will be inserted.<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param item The element to be inserted.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>\link push_front() push_front(const_reference)\endlink</code>, <code>pop_back()</code>,
<code>pop_front()</code>
*/
void push_back(param_value_type item = value_type()) {
check_low_capacity();
circular_buffer<T, Alloc>::push_back(item);
}
//! Insert a new element at the beginning of the space optimized circular buffer.
/*!
\post if <code>capacity().%capacity() > 0</code> then <code>front() == item</code><br>
If the <code>circular_buffer_space_optimized</code> is full, the last element will be removed. If the
capacity is <code>0</code>, nothing will be inserted.<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param item The element to be inserted.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>\link push_back() push_back(const_reference)\endlink</code>, <code>pop_back()</code>,
<code>pop_front()</code>
*/
void push_front(param_value_type item = value_type()) {
check_low_capacity();
circular_buffer<T, Alloc>::push_front(item);
}
//! Remove the last element from the space optimized circular buffer.
/*!
\pre <code>!empty()</code>
\post The last element is removed from the <code>circular_buffer_space_optimized</code>.<br><br>
The amount of allocated memory in the internal buffer may be predictively decreased.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>pop_front()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
<code>\link push_front() push_front(const_reference)\endlink</code>
*/
void pop_back() {
circular_buffer<T, Alloc>::pop_back();
check_high_capacity();
}
//! Remove the first element from the space optimized circular buffer.
/*!
\pre <code>!empty()</code>
\post The first element is removed from the <code>circular_buffer_space_optimized</code>.<br><br>
The amount of allocated memory in the internal buffer may be predictively decreased.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>pop_back()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>,
<code>\link push_front() push_front(const_reference)\endlink</code>
*/
void pop_front() {
circular_buffer<T, Alloc>::pop_front();
check_high_capacity();
}
//! Insert an element at the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
end.
\post The <code>item</code> will be inserted at the position <code>pos</code>.<br>
If the <code>circular_buffer_space_optimized</code> is full, the first element will be overwritten. If
the <code>circular_buffer_space_optimized</code> is full and the <code>pos</code> points to
<code>begin()</code>, then the <code>item</code> will not be inserted. If the capacity is <code>0</code>,
nothing will be inserted.<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param pos An iterator specifying the position where the <code>item</code> will be inserted.
\param item The element to be inserted.
\return Iterator to the inserted element or <code>begin()</code> if the <code>item</code> is not inserted. (See
the <i>Effect</i>.)
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>\link insert(iterator, size_type, param_value_type)
insert(iterator, size_type, value_type)\endlink</code>,
<code>insert(iterator, InputIterator, InputIterator)</code>,
<code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
<code>\link rinsert(iterator, size_type, param_value_type)
rinsert(iterator, size_type, value_type)\endlink</code>,
<code>rinsert(iterator, InputIterator, InputIterator)</code>
*/
iterator insert(iterator pos, param_value_type item = value_type()) {
size_type index = pos - begin();
check_low_capacity();
return circular_buffer<T, Alloc>::insert(begin() + index, item);
}
//! Insert <code>n</code> copies of the <code>item</code> at the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
end.
\post The number of <code>min[n, (pos - begin()) + reserve()]</code> elements will be inserted at the position
<code>pos</code>.<br>The number of <code>min[pos - begin(), max[0, n - reserve()]]</code> elements will
be overwritten at the beginning of the <code>circular_buffer_space_optimized</code>.<br>(See
<i>Example</i> for the explanation.)<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param pos An iterator specifying the position where the <code>item</code>s will be inserted.
\param n The number of <code>item</code>s the to be inserted.
\param item The element whose copies will be inserted.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in <code>min[capacity().%capacity(), size() + n]</code>).
\par Example
Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
internal buffer may look like the one below.<br><br>
<code>|1|2|3|4| | |</code><br>
<code>p ---^</code><br><br>After inserting 5 elements at the position <code>p</code>:<br><br>
<code>insert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
<code>1</code> and <code>2</code> are overwritten. This is due to the fact the insert operation preserves
the capacity. After insertion the internal buffer looks like this:<br><br><code>|0|0|0|0|3|4|</code><br>
<br>For comparison if the capacity would not be preserved the internal buffer would then result in
<code>|1|2|0|0|0|0|0|3|4|</code>.
\sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
<code>insert(iterator, InputIterator, InputIterator)</code>,
<code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
<code>\link rinsert(iterator, size_type, param_value_type)
rinsert(iterator, size_type, value_type)\endlink</code>,
<code>rinsert(iterator, InputIterator, InputIterator)</code>
*/
void insert(iterator pos, size_type n, param_value_type item) {
size_type index = pos - begin();
check_low_capacity(n);
circular_buffer<T, Alloc>::insert(begin() + index, n, item);
}
//! Insert the range <code>[first, last)</code> at the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
end.<br>Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
\post Elements from the range
<code>[first + max[0, distance(first, last) - (pos - begin()) - reserve()], last)</code> will be
inserted at the position <code>pos</code>.<br>The number of <code>min[pos - begin(), max[0,
distance(first, last) - reserve()]]</code> elements will be overwritten at the beginning of the
<code>circular_buffer_space_optimized</code>.<br>(See <i>Example</i> for the explanation.)<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param pos An iterator specifying the position where the range will be inserted.
\param first The beginning of the range to be inserted.
\param last The end of the range to be inserted.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in <code>[size() + std::distance(first, last)]</code>; in
<code>min[capacity().%capacity(), size() + std::distance(first, last)]</code> if the
<code>InputIterator</code> is a
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
\par Example
Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
internal buffer may look like the one below.<br><br>
<code>|1|2|3|4| | |</code><br>
<code>p ---^</code><br><br>After inserting a range of elements at the position <code>p</code>:<br><br>
<code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
actually only elements <code>6</code>, <code>7</code>, <code>8</code> and <code>9</code> from the
specified range get inserted and elements <code>1</code> and <code>2</code> are overwritten. This is due
to the fact the insert operation preserves the capacity. After insertion the internal buffer looks like
this:<br><br><code>|6|7|8|9|3|4|</code><br><br>For comparison if the capacity would not be preserved the
internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
\sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
<code>\link insert(iterator, size_type, param_value_type)
insert(iterator, size_type, value_type)\endlink</code>, <code>\link rinsert(iterator, param_value_type)
rinsert(iterator, value_type)\endlink</code>, <code>\link rinsert(iterator, size_type, param_value_type)
rinsert(iterator, size_type, value_type)\endlink</code>,
<code>rinsert(iterator, InputIterator, InputIterator)</code>
*/
template <class InputIterator>
void insert(iterator pos, InputIterator first, InputIterator last) {
insert(pos, first, last, is_integral<InputIterator>());
}
//! Insert an element before the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
end.
\post The <code>item</code> will be inserted before the position <code>pos</code>.<br>
If the <code>circular_buffer_space_optimized</code> is full, the last element will be overwritten. If the
<code>circular_buffer_space_optimized</code> is full and the <code>pos</code> points to
<code>end()</code>, then the <code>item</code> will not be inserted. If the capacity is <code>0</code>,
nothing will be inserted.<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param pos An iterator specifying the position before which the <code>item</code> will be inserted.
\param item The element to be inserted.
\return Iterator to the inserted element or <code>end()</code> if the <code>item</code> is not inserted. (See
the <i>Effect</i>.)
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>\link rinsert(iterator, size_type, param_value_type)
rinsert(iterator, size_type, value_type)\endlink</code>,
<code>rinsert(iterator, InputIterator, InputIterator)</code>,
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
<code>\link insert(iterator, size_type, param_value_type)
insert(iterator, size_type, value_type)\endlink</code>,
<code>insert(iterator, InputIterator, InputIterator)</code>
*/
iterator rinsert(iterator pos, param_value_type item = value_type()) {
size_type index = pos - begin();
check_low_capacity();
return circular_buffer<T, Alloc>::rinsert(begin() + index, item);
}
//! Insert <code>n</code> copies of the <code>item</code> before the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
end.
\post The number of <code>min[n, (end() - pos) + reserve()]</code> elements will be inserted before the
position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0, n - reserve()]]</code> elements
will be overwritten at the end of the <code>circular_buffer_space_optimized</code>.<br>(See
<i>Example</i> for the explanation.)<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param pos An iterator specifying the position where the <code>item</code>s will be inserted.
\param n The number of <code>item</code>s the to be inserted.
\param item The element whose copies will be inserted.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in <code>min[capacity().%capacity(), size() + n]</code>).
\par Example
Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
internal buffer may look like the one below.<br><br>
<code>|1|2|3|4| | |</code><br>
<code>p ---^</code><br><br>After inserting 5 elements before the position <code>p</code>:<br><br>
<code>rinsert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements
<code>3</code> and <code>4</code> are overwritten. This is due to the fact the rinsert operation preserves
the capacity. After insertion the internal buffer looks like this:<br><br><code>|1|2|0|0|0|0|</code><br>
<br>For comparison if the capacity would not be preserved the internal buffer would then result in
<code>|1|2|0|0|0|0|0|3|4|</code>.
\sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
<code>rinsert(iterator, InputIterator, InputIterator)</code>,
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>,
<code>\link insert(iterator, size_type, param_value_type)
insert(iterator, size_type, value_type)\endlink</code>,
<code>insert(iterator, InputIterator, InputIterator)</code>
*/
void rinsert(iterator pos, size_type n, param_value_type item) {
size_type index = pos - begin();
check_low_capacity(n);
circular_buffer<T, Alloc>::rinsert(begin() + index, n, item);
}
//! Insert the range <code>[first, last)</code> before the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> or its
end.<br>
Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the
requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>.
\post Elements from the range
<code>[first, last - max[0, distance(first, last) - (end() - pos) - reserve()])</code> will be inserted
before the position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0,
distance(first, last) - reserve()]]</code> elements will be overwritten at the end of the
<code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.)<br><br>
The amount of allocated memory in the internal buffer may be predictively increased.
\param pos An iterator specifying the position where the range will be inserted.
\param first The beginning of the range to be inserted.
\param last The end of the range to be inserted.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::T(const T&)</code> throws.
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in <code>[size() + std::distance(first, last)]</code>; in
<code>min[capacity().%capacity(), size() + std::distance(first, last)]</code> if the
<code>InputIterator</code> is a
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>).
\par Example
Consider a <code>circular_buffer_space_optimized</code> with the capacity of 6 and the size of 4. Its
internal buffer may look like the one below.<br><br>
<code>|1|2|3|4| | |</code><br>
<code>p ---^</code><br><br>After inserting a range of elements before the position <code>p</code>:<br><br>
<code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br>
actually only elements <code>5</code>, <code>6</code>, <code>7</code> and <code>8</code> from the
specified range get inserted and elements <code>3</code> and <code>4</code> are overwritten. This is due
to the fact the rinsert operation preserves the capacity. After insertion the internal buffer looks like
this:<br><br><code>|1|2|5|6|7|8|</code><br><br>For comparison if the capacity would not be preserved the
internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>.
\sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>,
<code>\link rinsert(iterator, size_type, param_value_type)
rinsert(iterator, size_type, value_type)\endlink</code>, <code>\link insert(iterator, param_value_type)
insert(iterator, value_type)\endlink</code>, <code>\link insert(iterator, size_type, param_value_type)
insert(iterator, size_type, value_type)\endlink</code>,
<code>insert(iterator, InputIterator, InputIterator)</code>
*/
template <class InputIterator>
void rinsert(iterator pos, InputIterator first, InputIterator last) {
rinsert(pos, first, last, is_integral<InputIterator>());
}
//! Remove an element at the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> (but not
an <code>end()</code>).
\post The element at the position <code>pos</code> is removed.<br><br>
The amount of allocated memory in the internal buffer may be predictively decreased.
\param pos An iterator pointing at the element to be removed.
\return Iterator to the first element remaining beyond the removed element or <code>end()</code> if no such
element exists.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
<code>rerase(iterator, iterator)</code>, <code>clear()</code>
*/
iterator erase(iterator pos) {
iterator it = circular_buffer<T, Alloc>::erase(pos);
size_type index = it - begin();
check_high_capacity();
return begin() + index;
}
//! Erase the range <code>[first, last)</code>.
/*!
\pre Valid range <code>[first, last)</code>.
\post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
nothing is removed.)<br><br>
The amount of allocated memory in the internal buffer may be predictively decreased.
\param first The beginning of the range to be removed.
\param last The end of the range to be removed.
\return Iterator to the first element remaining beyond the removed elements or <code>end()</code> if no such
element exists.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>erase(iterator)</code>, <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>,
<code>clear()</code>
*/
iterator erase(iterator first, iterator last) {
iterator it = circular_buffer<T, Alloc>::erase(first, last);
size_type index = it - begin();
check_high_capacity();
return begin() + index;
}
//! Remove an element at the specified position.
/*!
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer_space_optimized</code> (but not
an <code>end()</code>).<br><br>
The amount of allocated memory in the internal buffer may be predictively decreased.
\post The element at the position <code>pos</code> is removed.
\param pos An iterator pointing at the element to be removed.
\return Iterator to the first element remaining in front of the removed element or <code>begin()</code> if no
such element exists.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\note Basically there is no difference between <code>erase(iterator)</code> and this method. It is implemented
only for consistency with the base <code><a href="circular_buffer.html">circular_buffer</a></code>.
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>,
<code>rerase(iterator, iterator)</code>, <code>clear()</code>
*/
iterator rerase(iterator pos) {
iterator it = circular_buffer<T, Alloc>::rerase(pos);
size_type index = it - begin();
check_high_capacity();
return begin() + index;
}
//! Erase the range <code>[first, last)</code>.
/*!
\pre Valid range <code>[first, last)</code>.
\post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code>
nothing is removed.)<br><br>
The amount of allocated memory in the internal buffer may be predictively decreased.
\param first The beginning of the range to be removed.
\param last The end of the range to be removed.
\return Iterator to the first element remaining in front of the removed elements or <code>begin()</code> if no
such element exists.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\throws Whatever <code>T::operator = (const T&)</code> throws.
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\note Basically there is no difference between <code>erase(iterator, iterator)</code> and this method. It is
implemented only for consistency with the base
<code><a href="circular_buffer.html">circular_buffer</a></code>.
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
<code>clear()</code>
*/
iterator rerase(iterator first, iterator last) {
iterator it = circular_buffer<T, Alloc>::rerase(first, last);
size_type index = it - begin();
check_high_capacity();
return begin() + index;
}
//! Remove all stored elements from the space optimized circular buffer.
/*!
\post <code>size() == 0</code><br><br>
The amount of allocated memory in the internal buffer may be predictively decreased.
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is
used).
\par Exception Safety
Basic.
\par Iterator Invalidation
Invalidates all iterators pointing to the <code>circular_buffer_space_optimized</code> (except iterators
equal to <code>end()</code>).
\par Complexity
Linear (in the size of the <code>circular_buffer_space_optimized</code>).
\sa <code>~circular_buffer_space_optimized()</code>, <code>erase(iterator)</code>,
<code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>,
<code>rerase(iterator, iterator)</code>
*/
void clear() { erase(begin(), end()); }
private:
// Helper methods
//! Adjust the amount of allocated memory.
void adjust_min_capacity() {
if (m_capacity_ctrl.min_capacity() > circular_buffer<T, Alloc>::capacity())
circular_buffer<T, Alloc>::set_capacity(m_capacity_ctrl.min_capacity());
else
check_high_capacity();
}
//! Ensure the reserve for possible growth up.
size_type ensure_reserve(size_type new_capacity, size_type buffer_size) const {
if (buffer_size + new_capacity / 5 >= new_capacity)
new_capacity *= 2; // ensure at least 20% reserve
if (new_capacity > m_capacity_ctrl)
return m_capacity_ctrl;
return new_capacity;
}
//! Check for low capacity.
/*
\post If the capacity is low it will be increased.
*/
void check_low_capacity(size_type n = 1) {
size_type new_size = size() + n;
size_type new_capacity = circular_buffer<T, Alloc>::capacity();
if (new_size > new_capacity) {
if (new_capacity == 0)
new_capacity = 1;
for (; new_size > new_capacity; new_capacity *= 2) {}
circular_buffer<T, Alloc>::set_capacity(
ensure_reserve(new_capacity, new_size));
}
#if BOOST_CB_ENABLE_DEBUG
this->invalidate_iterators_except(end());
#endif
}
//! Check for high capacity.
/*
\post If the capacity is high it will be decreased.
*/
void check_high_capacity() {
size_type new_capacity = circular_buffer<T, Alloc>::capacity();
while (new_capacity / 3 >= size()) { // (new_capacity / 3) -> avoid oscillations
new_capacity /= 2;
if (new_capacity <= m_capacity_ctrl.min_capacity()) {
new_capacity = m_capacity_ctrl.min_capacity();
break;
}
}
circular_buffer<T, Alloc>::set_capacity(
ensure_reserve(new_capacity, size()));
#if BOOST_CB_ENABLE_DEBUG
this->invalidate_iterators_except(end());
#endif
}
//! Specialized method for reducing the capacity.
void reduce_capacity(const true_type&) {
circular_buffer<T, Alloc>::set_capacity((std::max)(m_capacity_ctrl.min_capacity(), size()));
}
//! Specialized method for reducing the capacity.
void reduce_capacity(const false_type&) {}
//! Determine the initial capacity.
static size_type init_capacity(const capacity_type& capacity_ctrl, size_type n) {
BOOST_CB_ASSERT(capacity_ctrl.capacity() >= n); // check for capacity lower than n
return (std::max)(capacity_ctrl.min_capacity(), n);
}
//! Specialized method for determining the initial capacity.
template <class IntegralType>
static size_type init_capacity(const capacity_type& capacity_ctrl, IntegralType n, IntegralType item,
const true_type&) {
return init_capacity(capacity_ctrl, static_cast<size_type>(n));
}
//! Specialized method for determining the initial capacity.
template <class Iterator>
static size_type init_capacity(const capacity_type& capacity_ctrl, Iterator first, Iterator last,
const false_type&) {
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
return init_capacity(capacity_ctrl, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type());
#else
return init_capacity(
capacity_ctrl, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type());
#endif
}
//! Specialized method for determining the initial capacity.
template <class InputIterator>
static size_type init_capacity(const capacity_type& capacity_ctrl, InputIterator first, InputIterator last,
const std::input_iterator_tag&) {
return capacity_ctrl.capacity();
}
//! Specialized method for determining the initial capacity.
template <class ForwardIterator>
static size_type init_capacity(const capacity_type& capacity_ctrl, ForwardIterator first, ForwardIterator last,
const std::forward_iterator_tag&) {
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range
return (std::max)(capacity_ctrl.min_capacity(),
(std::min)(capacity_ctrl.capacity(), static_cast<size_type>(std::distance(first, last))));
}
//! Specialized insert method.
template <class IntegralType>
void insert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
insert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
}
//! Specialized insert method.
template <class Iterator>
void insert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
size_type index = pos - begin();
check_low_capacity(std::distance(first, last));
circular_buffer<T, Alloc>::insert(begin() + index, first, last);
}
//! Specialized rinsert method.
template <class IntegralType>
void rinsert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) {
rinsert(pos, static_cast<size_type>(n), static_cast<value_type>(item));
}
//! Specialized rinsert method.
template <class Iterator>
void rinsert(const iterator& pos, Iterator first, Iterator last, const false_type&) {
size_type index = pos - begin();
check_low_capacity(std::distance(first, last));
circular_buffer<T, Alloc>::rinsert(begin() + index, first, last);
}
};
// Non-member functions
//! Test two space optimized circular buffers for equality.
template <class T, class Alloc>
inline bool operator == (const circular_buffer_space_optimized<T, Alloc>& lhs,
const circular_buffer_space_optimized<T, Alloc>& rhs) {
return lhs.size() == rhs.size() &&
std::equal(lhs.begin(), lhs.end(), rhs.begin());
}
//! Lexicographical comparison.
template <class T, class Alloc>
inline bool operator < (const circular_buffer_space_optimized<T, Alloc>& lhs,
const circular_buffer_space_optimized<T, Alloc>& rhs) {
return std::lexicographical_compare(
lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
}
#if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1310))
//! Test two space optimized circular buffers for non-equality.
template <class T, class Alloc>
inline bool operator != (const circular_buffer_space_optimized<T, Alloc>& lhs,
const circular_buffer_space_optimized<T, Alloc>& rhs) {
return !(lhs == rhs);
}
//! Lexicographical comparison.
template <class T, class Alloc>
inline bool operator > (const circular_buffer_space_optimized<T, Alloc>& lhs,
const circular_buffer_space_optimized<T, Alloc>& rhs) {
return rhs < lhs;
}
//! Lexicographical comparison.
template <class T, class Alloc>
inline bool operator <= (const circular_buffer_space_optimized<T, Alloc>& lhs,
const circular_buffer_space_optimized<T, Alloc>& rhs) {
return !(rhs < lhs);
}
//! Lexicographical comparison.
template <class T, class Alloc>
inline bool operator >= (const circular_buffer_space_optimized<T, Alloc>& lhs,
const circular_buffer_space_optimized<T, Alloc>& rhs) {
return !(lhs < rhs);
}
//! Swap the contents of two space optimized circular buffers.
template <class T, class Alloc>
inline void swap(circular_buffer_space_optimized<T, Alloc>& lhs,
circular_buffer_space_optimized<T, Alloc>& rhs) {
lhs.swap(rhs);
}
#endif // #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1310))
} // namespace boost
#endif // #if !defined(BOOST_CIRCULAR_BUFFER_SPACE_OPTIMIZED_HPP)
|