1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
// - lambda_traits.hpp --- Boost Lambda Library ----------------------------
//
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org
// -------------------------------------------------------------------------
#ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP
#define BOOST_LAMBDA_LAMBDA_TRAITS_HPP
#include "boost/type_traits/transform_traits.hpp"
#include "boost/type_traits/cv_traits.hpp"
#include "boost/type_traits/function_traits.hpp"
#include "boost/type_traits/object_traits.hpp"
#include "boost/tuple/tuple.hpp"
namespace boost {
namespace lambda {
// -- if construct ------------------------------------------------
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
namespace detail {
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
template <class Then, class Else> struct IF<false, Then, Else> {
typedef Else RET;
};
// An if construct that doesn't instantiate the non-matching template:
// Called as:
// IF_type<condition, A, B>::type
// The matching template must define the typeded 'type'
// I.e. A::type if condition is true, B::type if condition is false
// Idea from Vesa Karvonen (from C&E as well I guess)
template<class T>
struct IF_type_
{
typedef typename T::type type;
};
template<bool C, class T, class E>
struct IF_type
{
typedef typename
IF_type_<typename IF<C, T, E>::RET >::type type;
};
// helper that can be used to give typedef T to some type
template <class T> struct identity_mapping { typedef T type; };
// An if construct for finding an integral constant 'value'
// Does not instantiate the non-matching branch
// Called as IF_value<condition, A, B>::value
// If condition is true A::value must be defined, otherwise B::value
template<class T>
struct IF_value_
{
BOOST_STATIC_CONSTANT(int, value = T::value);
};
template<bool C, class T, class E>
struct IF_value
{
BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value));
};
// --------------------------------------------------------------
// removes reference from other than function types:
template<class T> class remove_reference_if_valid
{
typedef typename boost::remove_reference<T>::type plainT;
public:
typedef typename IF<
boost::is_function<plainT>::value,
T,
plainT
>::RET type;
};
template<class T> struct remove_reference_and_cv {
typedef typename boost::remove_cv<
typename boost::remove_reference<T>::type
>::type type;
};
// returns a reference to the element of tuple T
template<int N, class T> struct tuple_element_as_reference {
typedef typename
boost::tuples::access_traits<
typename boost::tuples::element<N, T>::type
>::non_const_type type;
};
// returns the cv and reverence stripped type of a tuple element
template<int N, class T> struct tuple_element_stripped {
typedef typename
remove_reference_and_cv<
typename boost::tuples::element<N, T>::type
>::type type;
};
// is_lambda_functor -------------------------------------------------
template <class T> struct is_lambda_functor_ {
BOOST_STATIC_CONSTANT(bool, value = false);
};
template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > {
BOOST_STATIC_CONSTANT(bool, value = true);
};
} // end detail
template <class T> struct is_lambda_functor {
BOOST_STATIC_CONSTANT(bool,
value =
detail::is_lambda_functor_<
typename detail::remove_reference_and_cv<T>::type
>::value);
};
namespace detail {
// -- parameter_traits_ ---------------------------------------------
// An internal parameter type traits class that respects
// the reference_wrapper class.
// The conversions performed are:
// references -> compile_time_error
// T1 -> T2,
// reference_wrapper<T> -> T&
// const array -> ref to const array
// array -> ref to array
// function -> ref to function
// ------------------------------------------------------------------------
template<class T1, class T2>
struct parameter_traits_ {
typedef T2 type;
};
// Do not instantiate with reference types
template<class T, class Any> struct parameter_traits_<T&, Any> {
typedef typename
generate_error<T&>::
parameter_traits_class_instantiated_with_reference_type type;
};
// Arrays can't be stored as plain types; convert them to references
template<class T, int n, class Any> struct parameter_traits_<T[n], Any> {
typedef T (&type)[n];
};
template<class T, int n, class Any>
struct parameter_traits_<const T[n], Any> {
typedef const T (&type)[n];
};
template<class T, int n, class Any>
struct parameter_traits_<volatile T[n], Any> {
typedef volatile T (&type)[n];
};
template<class T, int n, class Any>
struct parameter_traits_<const volatile T[n], Any> {
typedef const volatile T (&type)[n];
};
template<class T, class Any>
struct parameter_traits_<boost::reference_wrapper<T>, Any >{
typedef T& type;
};
template<class T, class Any>
struct parameter_traits_<const boost::reference_wrapper<T>, Any >{
typedef T& type;
};
template<class T, class Any>
struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{
typedef T& type;
};
template<class T, class Any>
struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{
typedef T& type;
};
template<class Any>
struct parameter_traits_<void, Any> {
typedef void type;
};
template<class Arg, class Any>
struct parameter_traits_<lambda_functor<Arg>, Any > {
typedef lambda_functor<Arg> type;
};
template<class Arg, class Any>
struct parameter_traits_<const lambda_functor<Arg>, Any > {
typedef lambda_functor<Arg> type;
};
// Are the volatile versions needed?
template<class Arg, class Any>
struct parameter_traits_<volatile lambda_functor<Arg>, Any > {
typedef lambda_functor<Arg> type;
};
template<class Arg, class Any>
struct parameter_traits_<const volatile lambda_functor<Arg>, Any > {
typedef lambda_functor<Arg> type;
};
} // end namespace detail
// ------------------------------------------------------------------------
// traits classes for lambda expressions (bind functions, operators ...)
// must be instantiated with non-reference types
// The default is const plain type -------------------------
// const T -> const T,
// T -> const T,
// references -> compile_time_error
// reference_wrapper<T> -> T&
// array -> const ref array
template<class T>
struct const_copy_argument {
typedef typename
detail::parameter_traits_<
T,
typename detail::IF<boost::is_function<T>::value, T&, const T>::RET
>::type type;
};
// T may be a function type. Without the IF test, const would be added
// to a function type, which is illegal.
// all arrays are converted to const.
// This traits template is used for 'const T&' parameter passing
// and thus the knowledge of the potential
// non-constness of an actual argument is lost.
template<class T, int n> struct const_copy_argument <T[n]> {
typedef const T (&type)[n];
};
template<class T, int n> struct const_copy_argument <volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class T>
struct const_copy_argument<T&> {};
// do not instantiate with references
// typedef typename detail::generate_error<T&>::references_not_allowed type;
template<>
struct const_copy_argument<void> {
typedef void type;
};
// Does the same as const_copy_argument, but passes references through as such
template<class T>
struct bound_argument_conversion {
typedef typename const_copy_argument<T>::type type;
};
template<class T>
struct bound_argument_conversion<T&> {
typedef T& type;
};
// The default is non-const reference -------------------------
// const T -> const T&,
// T -> T&,
// references -> compile_time_error
// reference_wrapper<T> -> T&
template<class T>
struct reference_argument {
typedef typename detail::parameter_traits_<T, T&>::type type;
};
template<class T>
struct reference_argument<T&> {
typedef typename detail::generate_error<T&>::references_not_allowed type;
};
template<class Arg>
struct reference_argument<lambda_functor<Arg> > {
typedef lambda_functor<Arg> type;
};
template<class Arg>
struct reference_argument<const lambda_functor<Arg> > {
typedef lambda_functor<Arg> type;
};
// Are the volatile versions needed?
template<class Arg>
struct reference_argument<volatile lambda_functor<Arg> > {
typedef lambda_functor<Arg> type;
};
template<class Arg>
struct reference_argument<const volatile lambda_functor<Arg> > {
typedef lambda_functor<Arg> type;
};
template<>
struct reference_argument<void> {
typedef void type;
};
namespace detail {
// Array to pointer conversion
template <class T>
struct array_to_pointer {
typedef T type;
};
template <class T, int N>
struct array_to_pointer <const T[N]> {
typedef const T* type;
};
template <class T, int N>
struct array_to_pointer <T[N]> {
typedef T* type;
};
template <class T, int N>
struct array_to_pointer <const T (&) [N]> {
typedef const T* type;
};
template <class T, int N>
struct array_to_pointer <T (&) [N]> {
typedef T* type;
};
// ---------------------------------------------------------------------------
// The call_traits for bind
// Respects the reference_wrapper class.
// These templates are used outside of bind functions as well.
// the bind_tuple_mapper provides a shorter notation for default
// bound argument storing semantics, if all arguments are treated
// uniformly.
// from template<class T> foo(const T& t) : bind_traits<const T>::type
// from template<class T> foo(T& t) : bind_traits<T>::type
// Conversions:
// T -> const T,
// cv T -> cv T,
// T& -> T&
// reference_wrapper<T> -> T&
// const reference_wrapper<T> -> T&
// array -> const ref array
// make bound arguments const, this is a deliberate design choice, the
// purpose is to prevent side effects to bound arguments that are stored
// as copies
template<class T>
struct bind_traits {
typedef const T type;
};
template<class T>
struct bind_traits<T&> {
typedef T& type;
};
// null_types are an exception, we always want to store them as non const
// so that other templates can assume that null_type is always without const
template<>
struct bind_traits<null_type> {
typedef null_type type;
};
// the bind_tuple_mapper, bind_type_generators may
// introduce const to null_type
template<>
struct bind_traits<const null_type> {
typedef null_type type;
};
// Arrays can't be stored as plain types; convert them to references.
// All arrays are converted to const. This is because bind takes its
// parameters as const T& and thus the knowledge of the potential
// non-constness of actual argument is lost.
template<class T, int n> struct bind_traits <T[n]> {
typedef const T (&type)[n];
};
template<class T, int n>
struct bind_traits<const T[n]> {
typedef const T (&type)[n];
};
template<class T, int n> struct bind_traits<volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class T, int n>
struct bind_traits<const volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class R>
struct bind_traits<R()> {
typedef R(&type)();
};
template<class R, class Arg1>
struct bind_traits<R(Arg1)> {
typedef R(&type)(Arg1);
};
template<class R, class Arg1, class Arg2>
struct bind_traits<R(Arg1, Arg2)> {
typedef R(&type)(Arg1, Arg2);
};
template<class R, class Arg1, class Arg2, class Arg3>
struct bind_traits<R(Arg1, Arg2, Arg3)> {
typedef R(&type)(Arg1, Arg2, Arg3);
};
template<class R, class Arg1, class Arg2, class Arg3, class Arg4>
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> {
typedef R(&type)(Arg1, Arg2, Arg3, Arg4);
};
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> {
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5);
};
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6>
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
};
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7>
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7);
};
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8);
};
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9);
};
template<class T>
struct bind_traits<reference_wrapper<T> >{
typedef T& type;
};
template<class T>
struct bind_traits<const reference_wrapper<T> >{
typedef T& type;
};
template<>
struct bind_traits<void> {
typedef void type;
};
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type
>
struct bind_tuple_mapper {
typedef
tuple<typename bind_traits<T0>::type,
typename bind_traits<T1>::type,
typename bind_traits<T2>::type,
typename bind_traits<T3>::type,
typename bind_traits<T4>::type,
typename bind_traits<T5>::type,
typename bind_traits<T6>::type,
typename bind_traits<T7>::type,
typename bind_traits<T8>::type,
typename bind_traits<T9>::type> type;
};
// bind_traits, except map const T& -> const T
// this is needed e.g. in currying. Const reference arguments can
// refer to temporaries, so it is not safe to store them as references.
template <class T> struct remove_const_reference {
typedef typename bind_traits<T>::type type;
};
template <class T> struct remove_const_reference<const T&> {
typedef const T type;
};
// maps the bind argument types to the resulting lambda functor type
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type
>
class bind_type_generator {
typedef typename
detail::bind_tuple_mapper<
T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
>::type args_t;
BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value);
typedef
action<
nof_elems,
function_action<nof_elems>
> action_type;
public:
typedef
lambda_functor<
lambda_functor_base<
action_type,
args_t
>
> type;
};
} // detail
template <class T> inline const T& make_const(const T& t) { return t; }
} // end of namespace lambda
} // end of namespace boost
#endif // BOOST_LAMBDA_TRAITS_HPP
|