File: inverse_gamma.qbk

package info (click to toggle)
boost1.49 1.49.0-3.2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 427,096 kB
  • sloc: cpp: 1,806,930; xml: 101,307; ansic: 43,491; python: 28,668; sh: 11,922; cs: 2,118; perl: 714; makefile: 671; yacc: 456; asm: 353; php: 116; lisp: 60; sql: 13; csh: 6
file content (129 lines) | stat: -rw-r--r-- 4,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
[section:inverse_gamma_dist Inverse Gamma Distribution]

``#include <boost/math/distributions/inverse_gamma.hpp>``

   namespace boost{ namespace math{ 
      
   template <class RealType = double, 
             class ``__Policy``   = ``__policy_class`` >
   class inverse_gamma_distribution
   {
   public:
      typedef RealType value_type;
      typedef Policy   policy_type;

      inverse_gamma_distribution(RealType shape, RealType scale = 1)

      RealType shape()const;
      RealType scale()const;
   };
   
   }} // namespaces
   
The inverse_gamma distribution is a continuous probability distribution
of the reciprocal of a variable distributed according to the gamma distribution.

The inverse_gamma distribution is used in Bayesian statistics.

See [@http://en.wikipedia.org/wiki/Inverse-gamma_distribution inverse gamma distribution].

[@http://rss.acs.unt.edu/Rdoc/library/pscl/html/igamma.html R inverse gamma distribution functions].

[@http://reference.wolfram.com/mathematica/ref/InverseGammaDistribution.html Wolfram inverse gamma distribution].

See also __gamma_distrib.


[note
In spite of potential confusion with the inverse gamma function, this
distribution *does* provide the typedef:

``typedef inverse_gamma_distribution<double> gamma;`` 

If you want a `double` precision gamma distribution you can use 

``boost::math::inverse_gamma_distribution<>``

or you can write `inverse_gamma my_ig(2, 3);`]

For shape parameter [alpha] and scale parameter [beta], it is defined 
by the probability density function (PDF):

__spaces f(x;[alpha], [beta]) = [beta][super [alpha]] * (1/x) [super [alpha]+1] exp(-[beta]/x) / [Gamma]([alpha])

and cumulative density function (CDF)

__spaces F(x;[alpha], [beta]) = [Gamma]([alpha], [beta]/x) / [Gamma]([alpha])

The following graphs illustrate how the PDF and CDF of the inverse gamma distribution
varies as the parameters vary:

[graph inverse_gamma_pdf]  [/png or svg]

[graph inverse_gamma_cdf]

[h4 Member Functions]

   inverse_gamma_distribution(RealType shape = 1, RealType scale = 1);
   
Constructs an inverse gamma distribution with shape [alpha] and scale [beta].

Requires that the shape and scale parameters are greater than zero, otherwise calls
__domain_error.

   RealType shape()const;
   
Returns the [alpha] shape parameter of this inverse gamma distribution.
   
   RealType scale()const;
      
Returns the [beta] scale parameter of this inverse gamma distribution.

[h4 Non-member Accessors]

All the [link math_toolkit.dist.dist_ref.nmp usual non-member accessor functions] that are generic to all
distributions are supported: __usual_accessors.

The domain of the random variate is \[0,+[infin]\].
[note Unlike some definitions, this implementation supports a random variate 
equal to zero as a special case, returning zero for pdf and cdf.]

[h4 Accuracy]

The inverse gamma distribution is implemented in terms of the 
incomplete gamma functions __gamma_p and __gamma_q and their
inverses __gamma_p_inv and __gamma_q_inv: refer to the accuracy
data for those functions for more information.
But in general, inverse_gamma results are accurate to a few epsilon,
>14 decimal digits accuracy for 64-bit double.

[h4 Implementation]

In the following table [alpha] is the shape parameter of the distribution, 
[alpha][space] is its scale parameter, /x/ is the random variate, /p/ is the probability
and /q = 1-p/.

[table
[[Function][Implementation Notes]]
[[pdf][Using the relation: pdf = __gamma_p_derivative([alpha], [beta]/ x, [beta]) / x * x ]]
[[cdf][Using the relation: p = __gamma_q([alpha], [beta] / x) ]]
[[cdf complement][Using the relation: q = __gamma_p([alpha], [beta] / x) ]]
[[quantile][Using the relation: x = [beta][space]/ __gamma_q_inv([alpha], p) ]]
[[quantile from the complement][Using the relation: x = [alpha][space]/ __gamma_p_inv([alpha], q) ]]
[[mode][[beta] / ([alpha] + 1) ]]
[[median][no analytic equation is known, but is evaluated as quantile(0.5)]]
[[mean][[beta] / ([alpha] - 1) for [alpha] > 1, else a __domain_error]]
[[variance][([beta] * [beta]) / (([alpha] - 1) * ([alpha] - 1) * ([alpha] - 2)) for [alpha] >2, else a __domain_error]]
[[skewness][4 * sqrt ([alpha] -2) / ([alpha] -3) for [alpha] >3, else a __domain_error]]
[[kurtosis_excess][(30 * [alpha] - 66) / (([alpha]-3)*([alpha] - 4)) for [alpha] >4, else a __domain_error]]
] [/table]

[endsect][/section:inverse_gamma_dist Inverse Gamma Distribution]

[/ 
  Copyright 2010 John Maddock and Paul A. Bristow.
  Distributed under the Boost Software License, Version 1.0.
  (See accompanying file LICENSE_1_0.txt or copy at
  http://www.boost.org/LICENSE_1_0.txt).
]