File: ellint_legendre.qbk

package info (click to toggle)
boost1.49 1.49.0-3.2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 427,096 kB
  • sloc: cpp: 1,806,930; xml: 101,307; ansic: 43,491; python: 28,668; sh: 11,922; cs: 2,118; perl: 714; makefile: 671; yacc: 456; asm: 353; php: 116; lisp: 60; sql: 13; csh: 6
file content (339 lines) | stat: -rw-r--r-- 9,637 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
[/
Copyright (c) 2006 Xiaogang Zhang
Copyright (c) 2006 John Maddock
Use, modification and distribution are subject to the
Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]

[section:ellint_1 Elliptic Integrals of the First Kind - Legendre Form]

[heading Synopsis]

``
  #include <boost/math/special_functions/ellint_1.hpp>
``

  namespace boost { namespace math {

  template <class T1, class T2>
  ``__sf_result`` ellint_1(T1 k, T2 phi);

  template <class T1, class T2, class ``__Policy``>
  ``__sf_result`` ellint_1(T1 k, T2 phi, const ``__Policy``&);

  template <class T>
  ``__sf_result`` ellint_1(T k);

  template <class T, class ``__Policy``>
  ``__sf_result`` ellint_1(T k, const ``__Policy``&);

  }} // namespaces
  
[heading Description]

These two functions evaluate the incomplete elliptic integral of the first kind
['F([phi], k)] and its complete counterpart ['K(k) = F([pi]/2, k)].

[graph ellint_1]

The return type of these functions is computed using the __arg_pomotion_rules
when T1 and T2 are different types: when they are the same type then the result
is the same type as the arguments.

  template <class T1, class T2>
  ``__sf_result`` ellint_1(T1 k, T2 phi);
  
  template <class T1, class T2, class ``__Policy``>
  ``__sf_result`` ellint_1(T1 k, T2 phi, const ``__Policy``&);
  
Returns the incomplete elliptic integral of the first kind ['F([phi], k)]:

[equation ellint2]

Requires -1 <= k <= 1, otherwise returns the result of __domain_error.

[optional_policy]

  template <class T>
  ``__sf_result`` ellint_1(T k);
  
  template <class T>
  ``__sf_result`` ellint_1(T k, const ``__Policy``&);
  
Returns the complete elliptic integral of the first kind ['K(k)]:

[equation ellint6]

Requires -1 <= k <= 1, otherwise returns the result of __domain_error.

[optional_policy]

[heading Accuracy]

These functions are computed using only basic arithmetic operations, so
there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating point type on the 
system are given as narrower types have __zero_error.  All values
are relative errors in units of epsilon.

[table Errors Rates in the Elliptic Integrals of the First Kind
[[Significand Size] [Platform and Compiler] [F([phi], k)] [K(k)] ]
[[53] [Win32 / Visual C++ 8.0] [Peak=3 Mean=0.8] [Peak=1.8 Mean=0.7] ]
[[64] [Red Hat Linux / G++ 3.4] [Peak=2.6 Mean=1.7] [Peak=2.2 Mean=1.8]  ]
[[113] [HP-UX / HP aCC 6] [Peak=4.6 Mean=1.5] [Peak=3.7 Mean=1.5] ]
]


[heading Testing]

The tests use a mixture of spot test values calculated using the online
calculator at [@http://functions.wolfram.com/ functions.wolfram.com],
and random test data generated using
NTL::RR at 1000-bit precision and this implementation.

[heading Implementation]

These functions are implemented in terms of Carlson's integrals
using the relations:

[equation ellint19]

and

[equation ellint20]


[endsect]

[section:ellint_2 Elliptic Integrals of the Second Kind - Legendre Form]

[heading Synopsis]

``
  #include <boost/math/special_functions/ellint_2.hpp>
``

  namespace boost { namespace math {

  template <class T1, class T2>
  ``__sf_result`` ellint_2(T1 k, T2 phi);

  template <class T1, class T2, class ``__Policy``>
  ``__sf_result`` ellint_2(T1 k, T2 phi, const ``__Policy``&);

  template <class T>
  ``__sf_result`` ellint_2(T k);

  template <class T, class ``__Policy``>
  ``__sf_result`` ellint_2(T k, const ``__Policy``&);

  }} // namespaces
  
[heading Description]

These two functions evaluate the incomplete elliptic integral of the second kind
['E([phi], k)] and its complete counterpart ['E(k) = E([pi]/2, k)].

[graph ellint_2]

The return type of these functions is computed using the __arg_pomotion_rules
when T1 and T2 are different types: when they are the same type then the result
is the same type as the arguments.

  template <class T1, class T2>
  ``__sf_result`` ellint_2(T1 k, T2 phi);
  
  template <class T1, class T2, class ``__Policy``>
  ``__sf_result`` ellint_2(T1 k, T2 phi, const ``__Policy``&);
  
Returns the incomplete elliptic integral of the second kind ['E([phi], k)]:

[equation ellint3]

Requires -1 <= k <= 1, otherwise returns the result of __domain_error.

[optional_policy]

  template <class T>
  ``__sf_result`` ellint_2(T k);
  
  template <class T>
  ``__sf_result`` ellint_2(T k, const ``__Policy``&);
  
Returns the complete elliptic integral of the second kind ['E(k)]:

[equation ellint7]

Requires -1 <= k <= 1, otherwise returns the result of __domain_error.

[optional_policy]

[heading Accuracy]

These functions are computed using only basic arithmetic operations, so
there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating point type on the 
system are given as narrower types have __zero_error.  All values
are relative errors in units of epsilon.

[table Errors Rates in the Elliptic Integrals of the Second Kind
[[Significand Size] [Platform and Compiler] [F([phi], k)] [K(k)] ]
[[53] [Win32 / Visual C++ 8.0] [Peak=4.6 Mean=1.2] [Peak=3.5 Mean=1.0] ]
[[64] [Red Hat Linux / G++ 3.4] [Peak=4.3 Mean=1.1] [Peak=4.6 Mean=1.2]  ]
[[113] [HP-UX / HP aCC 6] [Peak=5.8 Mean=2.2] [Peak=10.8 Mean=2.3] ]
]


[heading Testing]

The tests use a mixture of spot test values calculated using the online
calculator at [@http://functions.wolfram.com
functions.wolfram.com], and random test data generated using
NTL::RR at 1000-bit precision and this implementation.

[heading Implementation]

These functions are implemented in terms of Carlson's integrals
using the relations:

[equation ellint21]

and

[equation ellint22]


[endsect]

[section:ellint_3 Elliptic Integrals of the Third Kind - Legendre Form]

[heading Synopsis]

``
  #include <boost/math/special_functions/ellint_3.hpp>
``

  namespace boost { namespace math {

  template <class T1, class T2, class T3>
  ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi);

  template <class T1, class T2, class T3, class ``__Policy``>
  ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi, const ``__Policy``&);

  template <class T1, class T2>
  ``__sf_result`` ellint_3(T1 k, T2 n);

  template <class T1, class T2, class ``__Policy``>
  ``__sf_result`` ellint_3(T1 k, T2 n, const ``__Policy``&);

  }} // namespaces
  
[heading Description]

These two functions evaluate the incomplete elliptic integral of the third kind
['[Pi](n, [phi], k)] and its complete counterpart ['[Pi](n, k) = E(n, [pi]/2, k)].

[graph ellint_3]

The return type of these functions is computed using the __arg_pomotion_rules
when the arguments are of different types: when they are the same type then the result
is the same type as the arguments.

  template <class T1, class T2, class T3>
  ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi);
  
  template <class T1, class T2, class T3, class ``__Policy``>
  ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi, const ``__Policy``&);
  
Returns the incomplete elliptic integral of the third kind ['[Pi](n, [phi], k)]:

[equation ellint4]

Requires ['-1 <= k <= 1] and ['n < 1/sin[super 2]([phi])], otherwise 
returns the result of __domain_error (outside this range the result 
would be complex).

[optional_policy]

  template <class T1, class T2>
  ``__sf_result`` ellint_3(T1 k, T2 n);
  
  template <class T1, class T2, class ``__Policy``>
  ``__sf_result`` ellint_3(T1 k, T2 n, const ``__Policy``&);
  
Returns the complete elliptic integral of the first kind ['[Pi](n, k)]:

[equation ellint8]

Requires ['-1 <= k <= 1] and ['n < 1], otherwise returns the 
result of __domain_error (outside this range the result would be complex).

[optional_policy]

[heading Accuracy]

These functions are computed using only basic arithmetic operations, so
there isn't much variation in accuracy over differing platforms.
Note that only results for the widest floating point type on the 
system are given as narrower types have __zero_error.  All values
are relative errors in units of epsilon.

[table Errors Rates in the Elliptic Integrals of the Third Kind
[[Significand Size] [Platform and Compiler] [[Pi](n, [phi], k)] [[Pi](n, k)] ]
[[53] [Win32 / Visual C++ 8.0] [Peak=29 Mean=2.2] [Peak=3 Mean=0.8] ]
[[64] [Red Hat Linux / G++ 3.4] [Peak=14 Mean=1.3] [Peak=2.3 Mean=0.8]  ]
[[113] [HP-UX / HP aCC 6] [Peak=10 Mean=1.4] [Peak=4.2 Mean=1.1] ]
]


[heading Testing]

The tests use a mixture of spot test values calculated using the online
calculator at [@http://functions.wolfram.com
functions.wolfram.com], and random test data generated using
NTL::RR at 1000-bit precision and this implementation.

[heading Implementation]

The implementation for [Pi](n, [phi], k) first siphons off the special cases:

['[Pi](0, [phi], k) = F([phi], k)]

['[Pi](n, [pi]/2, k) = [Pi](n, k)]

and

[equation ellint23]

Then if n < 0 the relations (A&S 17.7.15/16):

[equation ellint24]

are used to shift /n/ to the range \[0, 1\].

Then the relations:

['[Pi](n, -[phi], k) = -[Pi](n, [phi], k)]

['[Pi](n, [phi]+m[pi], k) = [Pi](n, [phi], k) + 2m[Pi](n, k) ; n <= 1]

['[Pi](n, [phi]+m[pi], k) = [Pi](n, [phi], k) ; n > 1] 
[footnote I haven't been able to find a literature reference for this
relation, but it appears to be the convention used by Mathematica.
Intuitively the first ['2 * m * [Pi](n, k)] terms cancel out as the
derivative alternates between +[infin] and -[infin].]

are used to move [phi][space] to the range \[0, [pi]\/2\].

The functions are then implemented in terms of Carlson's integrals
using the relations:

[equation ellint25]

and

[equation ellint26]

[endsect]