File: tr1_ref.qbk

package info (click to toggle)
boost1.49 1.49.0-3.2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 427,096 kB
  • sloc: cpp: 1,806,930; xml: 101,307; ansic: 43,491; python: 28,668; sh: 11,922; cs: 2,118; perl: 714; makefile: 671; yacc: 456; asm: 353; php: 116; lisp: 60; sql: 13; csh: 6
file content (393 lines) | stat: -rw-r--r-- 13,819 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
[section:tr1_ref TR1 C Functions Quick Reference]


[h4 Supported TR1 Functions]

   namespace boost{ namespace math{ namespace tr1{ extern "C"{
      
   // [5.2.1.1] associated Laguerre polynomials:
   double assoc_laguerre(unsigned n, unsigned m, double x);
   float assoc_laguerref(unsigned n, unsigned m, float x);
   long double assoc_laguerrel(unsigned n, unsigned m, long double x);

   // [5.2.1.2] associated Legendre functions:
   double assoc_legendre(unsigned l, unsigned m, double x);
   float assoc_legendref(unsigned l, unsigned m, float x);
   long double assoc_legendrel(unsigned l, unsigned m, long double x);

   // [5.2.1.3] beta function:
   double beta(double x, double y);
   float betaf(float x, float y);
   long double betal(long double x, long double y);

   // [5.2.1.4] (complete) elliptic integral of the first kind:
   double comp_ellint_1(double k);
   float comp_ellint_1f(float k);
   long double comp_ellint_1l(long double k);

   // [5.2.1.5] (complete) elliptic integral of the second kind:
   double comp_ellint_2(double k);
   float comp_ellint_2f(float k);
   long double comp_ellint_2l(long double k);

   // [5.2.1.6] (complete) elliptic integral of the third kind:
   double comp_ellint_3(double k, double nu);
   float comp_ellint_3f(float k, float nu);
   long double comp_ellint_3l(long double k, long double nu);

   // [5.2.1.8] regular modified cylindrical Bessel functions:
   double cyl_bessel_i(double nu, double x);
   float cyl_bessel_if(float nu, float x);
   long double cyl_bessel_il(long double nu, long double x);

   // [5.2.1.9] cylindrical Bessel functions (of the first kind):
   double cyl_bessel_j(double nu, double x);
   float cyl_bessel_jf(float nu, float x);
   long double cyl_bessel_jl(long double nu, long double x);

   // [5.2.1.10] irregular modified cylindrical Bessel functions:
   double cyl_bessel_k(double nu, double x);
   float cyl_bessel_kf(float nu, float x);
   long double cyl_bessel_kl(long double nu, long double x);

   // [5.2.1.11] cylindrical Neumann functions;
   // cylindrical Bessel functions (of the second kind):
   double cyl_neumann(double nu, double x);
   float cyl_neumannf(float nu, float x);
   long double cyl_neumannl(long double nu, long double x);

   // [5.2.1.12] (incomplete) elliptic integral of the first kind:
   double ellint_1(double k, double phi);
   float ellint_1f(float k, float phi);
   long double ellint_1l(long double k, long double phi);

   // [5.2.1.13] (incomplete) elliptic integral of the second kind:
   double ellint_2(double k, double phi);
   float ellint_2f(float k, float phi);
   long double ellint_2l(long double k, long double phi);

   // [5.2.1.14] (incomplete) elliptic integral of the third kind:
   double ellint_3(double k, double nu, double phi);
   float ellint_3f(float k, float nu, float phi);
   long double ellint_3l(long double k, long double nu, long double phi);

   // [5.2.1.15] exponential integral:
   double expint(double x);
   float expintf(float x);
   long double expintl(long double x);

   // [5.2.1.16] Hermite polynomials:
   double hermite(unsigned n, double x);
   float hermitef(unsigned n, float x);
   long double hermitel(unsigned n, long double x);

   // [5.2.1.18] Laguerre polynomials:
   double laguerre(unsigned n, double x);
   float laguerref(unsigned n, float x);
   long double laguerrel(unsigned n, long double x);

   // [5.2.1.19] Legendre polynomials:
   double legendre(unsigned l, double x);
   float legendref(unsigned l, float x);
   long double legendrel(unsigned l, long double x);

   // [5.2.1.20] Riemann zeta function:
   double riemann_zeta(double);
   float riemann_zetaf(float);
   long double riemann_zetal(long double);

   // [5.2.1.21] spherical Bessel functions (of the first kind):
   double sph_bessel(unsigned n, double x);
   float sph_besself(unsigned n, float x);
   long double sph_bessell(unsigned n, long double x);

   // [5.2.1.22] spherical associated Legendre functions:
   double sph_legendre(unsigned l, unsigned m, double theta);
   float sph_legendref(unsigned l, unsigned m, float theta);
   long double sph_legendrel(unsigned l, unsigned m, long double theta);

   // [5.2.1.23] spherical Neumann functions;
   // spherical Bessel functions (of the second kind):
   double sph_neumann(unsigned n, double x);
   float sph_neumannf(unsigned n, float x);
   long double sph_neumannl(unsigned n, long double x);
   
   }}}} // namespaces
   
In addition sufficient additional overloads of the `double` versions of the
above functions are provided, so that calling the function with any mixture
of `float`, `double`, `long double`, or /integer/ arguments is supported, with the
return type determined by the __arg_pomotion_rules.
   
For example:

   expintf(2.0f);  // float version, returns float.
   expint(2.0f);   // also calls the float version and returns float.
   expint(2.0);    // double version, returns double.
   expintl(2.0L);  // long double version, returns a long double.
   expint(2.0L);   // also calls the long double version.
   expint(2);      // integer argument is treated as a double, returns double.

[h4 Quick Reference]

   // [5.2.1.1] associated Laguerre polynomials:
   double assoc_laguerre(unsigned n, unsigned m, double x);
   float assoc_laguerref(unsigned n, unsigned m, float x);
   long double assoc_laguerrel(unsigned n, unsigned m, long double x);
   
The assoc_laguerre functions return:

[equation laguerre_1]

See also __laguerre for the full template (header only) version of this function.

   // [5.2.1.2] associated Legendre functions:
   double assoc_legendre(unsigned l, unsigned m, double x);
   float assoc_legendref(unsigned l, unsigned m, float x);
   long double assoc_legendrel(unsigned l, unsigned m, long double x);

The assoc_legendre functions return:

[equation legendre_1b]

See also __legendre for the full template (header only) version of this function.

   // [5.2.1.3] beta function:
   double beta(double x, double y);
   float betaf(float x, float y);
   long double betal(long double x, long double y);
   
Returns the beta function of /x/ and /y/:

[equation beta1]

See also __beta for the full template (header only) version of this function.

   // [5.2.1.4] (complete) elliptic integral of the first kind:
   double comp_ellint_1(double k);
   float comp_ellint_1f(float k);
   long double comp_ellint_1l(long double k);

Returns the complete elliptic integral of the first kind of /k/:

[equation ellint6]

See also __ellint_1 for the full template (header only) version of this function.

   // [5.2.1.5] (complete) elliptic integral of the second kind:
   double comp_ellint_2(double k);
   float comp_ellint_2f(float k);
   long double comp_ellint_2l(long double k);

Returns the complete elliptic integral of the second kind of /k/:

[equation ellint7]

See also __ellint_2 for the full template (header only) version of this function.

   // [5.2.1.6] (complete) elliptic integral of the third kind:
   double comp_ellint_3(double k, double nu);
   float comp_ellint_3f(float k, float nu);
   long double comp_ellint_3l(long double k, long double nu);

Returns the complete elliptic integral of the third kind of /k/ and /nu/:

[equation ellint8]

See also __ellint_3 for the full template (header only) version of this function.

   // [5.2.1.8] regular modified cylindrical Bessel functions:
   double cyl_bessel_i(double nu, double x);
   float cyl_bessel_if(float nu, float x);
   long double cyl_bessel_il(long double nu, long double x);

Returns the modified bessel function of the first kind of /nu/ and /x/:

[equation mbessel2]

See also __cyl_bessel_i for the full template (header only) version of this function.

   // [5.2.1.9] cylindrical Bessel functions (of the first kind):
   double cyl_bessel_j(double nu, double x);
   float cyl_bessel_jf(float nu, float x);
   long double cyl_bessel_jl(long double nu, long double x);

Returns the bessel function of the first kind of /nu/ and /x/:

[equation bessel2]

See also __cyl_bessel_j for the full template (header only) version of this function.

   // [5.2.1.10] irregular modified cylindrical Bessel functions:
   double cyl_bessel_k(double nu, double x);
   float cyl_bessel_kf(float nu, float x);
   long double cyl_bessel_kl(long double nu, long double x);

Returns the modified bessel function of the second kind of /nu/ and /x/:

[equation mbessel3]

See also __cyl_bessel_k for the full template (header only) version of this function.

   // [5.2.1.11] cylindrical Neumann functions;
   // cylindrical Bessel functions (of the second kind):
   double cyl_neumann(double nu, double x);
   float cyl_neumannf(float nu, float x);
   long double cyl_neumannl(long double nu, long double x);

Returns the bessel function of the second kind (Neumann function) of /nu/ and /x/:

[equation bessel3]

See also __cyl_neumann for the full template (header only) version of this function.

   // [5.2.1.12] (incomplete) elliptic integral of the first kind:
   double ellint_1(double k, double phi);
   float ellint_1f(float k, float phi);
   long double ellint_1l(long double k, long double phi);

Returns the incomplete elliptic integral of the first kind of /k/ and /phi/:

[equation ellint2]

See also __ellint_1 for the full template (header only) version of this function.

   // [5.2.1.13] (incomplete) elliptic integral of the second kind:
   double ellint_2(double k, double phi);
   float ellint_2f(float k, float phi);
   long double ellint_2l(long double k, long double phi);

Returns the incomplete elliptic integral of the second kind of /k/ and /phi/:

[equation ellint3]

See also __ellint_2 for the full template (header only) version of this function.

   // [5.2.1.14] (incomplete) elliptic integral of the third kind:
   double ellint_3(double k, double nu, double phi);
   float ellint_3f(float k, float nu, float phi);
   long double ellint_3l(long double k, long double nu, long double phi);

Returns the incomplete elliptic integral of the third kind of /k/, /nu/ and /phi/:

[equation ellint4]

See also __ellint_3 for the full template (header only) version of this function.

   // [5.2.1.15] exponential integral:
   double expint(double x);
   float expintf(float x);
   long double expintl(long double x);

Returns the exponential integral Ei of /x/:

[equation expint_i_1]

See also __expint for the full template (header only) version of this function.

   // [5.2.1.16] Hermite polynomials:
   double hermite(unsigned n, double x);
   float hermitef(unsigned n, float x);
   long double hermitel(unsigned n, long double x);

Returns the n'th Hermite polynomial of /x/:

[equation hermite_0]

See also __hermite for the full template (header only) version of this function.

   // [5.2.1.18] Laguerre polynomials:
   double laguerre(unsigned n, double x);
   float laguerref(unsigned n, float x);
   long double laguerrel(unsigned n, long double x);

Returns the n'th Laguerre polynomial of /x/:

[equation laguerre_0]

See also __laguerre for the full template (header only) version of this function.

   // [5.2.1.19] Legendre polynomials:
   double legendre(unsigned l, double x);
   float legendref(unsigned l, float x);
   long double legendrel(unsigned l, long double x);

Returns the l'th Legendre polynomial of /x/:

[equation legendre_0]

See also __legendre for the full template (header only) version of this function.

   // [5.2.1.20] Riemann zeta function:
   double riemann_zeta(double);
   float riemann_zetaf(float);
   long double riemann_zetal(long double);

Returns the Riemann Zeta function of /x/:

[equation zeta1]

See also __zeta for the full template (header only) version of this function.

   // [5.2.1.21] spherical Bessel functions (of the first kind):
   double sph_bessel(unsigned n, double x);
   float sph_besself(unsigned n, float x);
   long double sph_bessell(unsigned n, long double x);

Returns the spherical Bessel function of the first kind of /x/ j[sub n](x):

[equation sbessel2]

See also __sph_bessel for the full template (header only) version of this function.

   // [5.2.1.22] spherical associated Legendre functions:
   double sph_legendre(unsigned l, unsigned m, double theta);
   float sph_legendref(unsigned l, unsigned m, float theta);
   long double sph_legendrel(unsigned l, unsigned m, long double theta);
   
Returns the spherical associated Legendre function of /l/, /m/ and /theta/:

[equation spherical_3]

See also __spherical_harmonic for the full template (header only) version of this function.

   // [5.2.1.23] spherical Neumann functions;
   // spherical Bessel functions (of the second kind):
   double sph_neumann(unsigned n, double x);
   float sph_neumannf(unsigned n, float x);
   long double sph_neumannl(unsigned n, long double x);

Returns the spherical Neumann function of /x/ y[sub n](x):

[equation sbessel2]

See also __sph_bessel for the full template (header only) version of this function.



[h4 Currently Unsupported TR1 Functions]

   // [5.2.1.7] confluent hypergeometric functions:
   double conf_hyperg(double a, double c, double x);
   float conf_hypergf(float a, float c, float x);
   long double conf_hypergl(long double a, long double c, long double x);

   // [5.2.1.17] hypergeometric functions:
   double hyperg(double a, double b, double c, double x);
   float hypergf(float a, float b, float c, float x);
   long double hypergl(long double a, long double b, long double c,
   long double x);
   
[note These two functions are not implemented as they are not believed
to be numerically stable.]


[endsect]

[/ 
  Copyright 2008, 2009 John Maddock and Paul A. Bristow.
  Distributed under the Boost Software License, Version 1.0.
  (See accompanying file LICENSE_1_0.txt or copy at
  http://www.boost.org/LICENSE_1_0.txt).
]