1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
// Boost.Geometry Index
//
// R-tree initial packing
//
// Copyright (c) 2011-2013 Adam Wulkiewicz, Lodz, Poland.
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
#define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
namespace boost { namespace geometry { namespace index { namespace detail { namespace rtree {
namespace pack_utils {
template <std::size_t Dimension>
struct biggest_edge
{
BOOST_STATIC_ASSERT(0 < Dimension);
template <typename Box>
static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
{
biggest_edge<Dimension-1>::apply(box, length, dim_index);
typename coordinate_type<Box>::type curr
= geometry::get<max_corner, Dimension-1>(box) - geometry::get<min_corner, Dimension-1>(box);
if ( length < curr )
{
dim_index = Dimension - 1;
length = curr;
}
}
};
template <>
struct biggest_edge<1>
{
template <typename Box>
static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
{
dim_index = 0;
length = geometry::get<max_corner, 0>(box) - geometry::get<min_corner, 0>(box);
}
};
template <std::size_t I>
struct point_entries_comparer
{
template <typename PointEntry>
bool operator()(PointEntry const& e1, PointEntry const& e2) const
{
return geometry::get<I>(e1.first) < geometry::get<I>(e2.first);
}
};
template <std::size_t I, std::size_t Dimension>
struct partial_sort_and_half_boxes
{
template <typename EIt, typename Box>
static inline void apply(EIt first, EIt median, EIt last, Box const& box, Box & left, Box & right, std::size_t dim_index)
{
if ( I == dim_index )
{
std::partial_sort(first, median, last, point_entries_comparer<I>());
geometry::convert(box, left);
geometry::convert(box, right);
typename coordinate_type<Box>::type edge_len
= geometry::get<max_corner, I>(box) - geometry::get<min_corner, I>(box);
typename coordinate_type<Box>::type median
= geometry::get<min_corner, I>(box) + edge_len / 2;
geometry::set<max_corner, I>(left, median);
geometry::set<min_corner, I>(right, median);
}
else
partial_sort_and_half_boxes<I+1, Dimension>::apply(first, median, last, box, left, right, dim_index);
}
};
template <std::size_t Dimension>
struct partial_sort_and_half_boxes<Dimension, Dimension>
{
template <typename EIt, typename Box>
static inline void apply(EIt , EIt , EIt , Box const& , Box & , Box & , std::size_t ) {}
};
} // namespace pack_utils
// STR leafs number are calculated as rcount/max
// and the number of splitting planes for each dimension as (count/max)^(1/dimension)
// <-> for dimension==2 -> sqrt(count/max)
//
// The main flaw of this algorithm is that the resulting tree will have bad structure for:
// 1. non-uniformly distributed elements
// Statistic check could be performed, e.g. based on variance of lengths of elements edges for each dimension
// 2. elements distributed mainly along one axis
// Calculate bounding box of all elements and then number of dividing planes for a dimension
// from the length of BB edge for this dimension (more or less assuming that elements are uniformly-distributed squares)
//
// Another thing is that the last node may have less elements than Max or even Min.
// The number of splitting planes must be chosen more carefully than count/max
//
// This algorithm is something between STR and TGS
// it is more similar to the top-down recursive kd-tree creation algorithm
// using object median split and split axis of greatest BB edge
// BB is only used as a hint (assuming objects are distributed uniformly)
//
// Implemented algorithm guarantees that the number of elements in nodes will be between Min and Max
// and that nodes are packed as tightly as possible
// e.g. for 177 values Max = 5 and Min = 2 it will construct the following tree:
// ROOT 177
// L1 125 52
// L2 25 25 25 25 25 25 17 10
// L3 5x5 5x5 5x5 5x5 5x5 5x5 3x5+2 2x5
template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
class pack
{
typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
typedef typename Allocators::node_pointer node_pointer;
typedef rtree::node_auto_ptr<Value, Options, Translator, Box, Allocators> node_auto_ptr;
typedef typename Allocators::size_type size_type;
typedef typename traits::point_type<Box>::type point_type;
typedef typename traits::coordinate_type<point_type>::type coordinate_type;
typedef typename detail::default_content_result<Box>::type content_type;
typedef typename Options::parameters_type parameters_type;
static const std::size_t dimension = traits::dimension<point_type>::value;
typedef typename rtree::container_from_elements_type<
typename rtree::elements_type<leaf>::type,
std::size_t
>::type values_counts_container;
typedef typename rtree::elements_type<internal_node>::type internal_elements;
typedef typename internal_elements::value_type internal_element;
public:
// Arbitrary iterators
template <typename InIt> inline static
node_pointer apply(InIt first, InIt last, size_type & values_count, size_type & leafs_level,
parameters_type const& parameters, Translator const& translator, Allocators & allocators)
{
typedef typename std::iterator_traits<InIt>::difference_type diff_type;
diff_type diff = std::distance(first, last);
if ( diff <= 0 )
return node_pointer(0);
typedef std::pair<point_type, InIt> entry_type;
std::vector<entry_type> entries;
values_count = static_cast<size_type>(diff);
entries.reserve(values_count);
Box hint_box;
geometry::assign_inverse(hint_box);
for ( ; first != last ; ++first )
{
geometry::expand(hint_box, translator(*first));
point_type pt;
geometry::centroid(translator(*first), pt);
entries.push_back(std::make_pair(pt, first));
}
subtree_elements_counts subtree_counts = calculate_subtree_elements_counts(values_count, parameters, leafs_level);
internal_element el = per_level(entries.begin(), entries.end(), hint_box, values_count, subtree_counts,
parameters, translator, allocators);
return el.second;
}
private:
struct subtree_elements_counts
{
subtree_elements_counts(std::size_t ma, std::size_t mi) : maxc(ma), minc(mi) {}
std::size_t maxc;
std::size_t minc;
};
template <typename EIt> inline static
internal_element per_level(EIt first, EIt last, Box const& hint_box, std::size_t values_count, subtree_elements_counts const& subtree_counts,
parameters_type const& parameters, Translator const& translator, Allocators & allocators)
{
BOOST_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count);
if ( subtree_counts.maxc <= 1 )
{
// ROOT or LEAF
BOOST_ASSERT(values_count <= parameters.get_max_elements());
// if !root check m_parameters.get_min_elements() <= count
// create new leaf node
node_pointer n = rtree::create_node<Allocators, leaf>::apply(allocators); // MAY THROW (A)
node_auto_ptr auto_remover(n, allocators);
leaf & l = rtree::get<leaf>(*n);
// reserve space for values
rtree::elements(l).reserve(values_count); // MAY THROW (A)
// calculate values box and copy values
Box elements_box;
geometry::assign_inverse(elements_box);
for ( ; first != last ; ++first )
{
rtree::elements(l).push_back(*(first->second)); // MAY THROW (A?,C)
geometry::expand(elements_box, translator(*(first->second)));
}
auto_remover.release();
return internal_element(elements_box, n);
}
// calculate next max and min subtree counts
subtree_elements_counts next_subtree_counts = subtree_counts;
next_subtree_counts.maxc /= parameters.get_max_elements();
next_subtree_counts.minc /= parameters.get_max_elements();
// create new internal node
node_pointer n = rtree::create_node<Allocators, internal_node>::apply(allocators); // MAY THROW (A)
node_auto_ptr auto_remover(n, allocators);
internal_node & in = rtree::get<internal_node>(*n);
// reserve space for values
std::size_t nodes_count = calculate_nodes_count(values_count, subtree_counts);
rtree::elements(in).reserve(nodes_count); // MAY THROW (A)
// calculate values box and copy values
Box elements_box;
geometry::assign_inverse(elements_box);
per_level_packets(first, last, hint_box, values_count, subtree_counts, next_subtree_counts,
rtree::elements(in), elements_box,
parameters, translator, allocators);
auto_remover.release();
return internal_element(elements_box, n);
}
template <typename EIt> inline static
void per_level_packets(EIt first, EIt last, Box const& hint_box,
std::size_t values_count,
subtree_elements_counts const& subtree_counts,
subtree_elements_counts const& next_subtree_counts,
internal_elements & elements, Box & elements_box,
parameters_type const& parameters, Translator const& translator, Allocators & allocators)
{
BOOST_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count);
BOOST_ASSERT_MSG( subtree_counts.minc <= values_count, "too small number of elements");
// only one packet
if ( values_count <= subtree_counts.maxc )
{
// the end, move to the next level
internal_element el = per_level(first, last, hint_box, values_count, next_subtree_counts,
parameters, translator, allocators);
// in case if push_back() do throw here
// and even if this is not probable (previously reserved memory, nonthrowing pairs copy)
// this case is also tested by exceptions test.
node_auto_ptr auto_remover(el.second, allocators);
// this container should have memory allocated, reserve() called outside
elements.push_back(el); // MAY THROW (A?,C) - however in normal conditions shouldn't
auto_remover.release();
geometry::expand(elements_box, el.first);
return;
}
std::size_t median_count = calculate_median_count(values_count, subtree_counts);
EIt median = first + median_count;
coordinate_type greatest_length;
std::size_t greatest_dim_index = 0;
pack_utils::biggest_edge<dimension>::apply(hint_box, greatest_length, greatest_dim_index);
Box left, right;
pack_utils::partial_sort_and_half_boxes<0, dimension>
::apply(first, median, last, hint_box, left, right, greatest_dim_index);
per_level_packets(first, median, left,
median_count, subtree_counts, next_subtree_counts,
elements, elements_box,
parameters, translator, allocators);
per_level_packets(median, last, right,
values_count - median_count, subtree_counts, next_subtree_counts,
elements, elements_box,
parameters, translator, allocators);
}
inline static
subtree_elements_counts calculate_subtree_elements_counts(std::size_t elements_count, parameters_type const& parameters, size_type & leafs_level)
{
(void)parameters;
subtree_elements_counts res(1, 1);
leafs_level = 0;
std::size_t smax = parameters.get_max_elements();
for ( ; smax < elements_count ; smax *= parameters.get_max_elements(), ++leafs_level )
res.maxc = smax;
res.minc = parameters.get_min_elements() * (res.maxc / parameters.get_max_elements());
return res;
}
inline static
std::size_t calculate_nodes_count(std::size_t count,
subtree_elements_counts const& subtree_counts)
{
std::size_t n = count / subtree_counts.maxc;
std::size_t r = count % subtree_counts.maxc;
if ( 0 < r && r < subtree_counts.minc )
{
std::size_t count_minus_min = count - subtree_counts.minc;
n = count_minus_min / subtree_counts.maxc;
r = count_minus_min % subtree_counts.maxc;
++n;
}
if ( 0 < r )
++n;
return n;
}
inline static
std::size_t calculate_median_count(std::size_t count,
subtree_elements_counts const& subtree_counts)
{
// e.g. for max = 5, min = 2, count = 52, subtree_max = 25, subtree_min = 10
std::size_t n = count / subtree_counts.maxc; // e.g. 52 / 25 = 2
std::size_t r = count % subtree_counts.maxc; // e.g. 52 % 25 = 2
std::size_t median_count = (n / 2) * subtree_counts.maxc; // e.g. 2 / 2 * 25 = 25
if ( 0 != r ) // e.g. 0 != 2
{
if ( subtree_counts.minc <= r ) // e.g. 10 <= 2 == false
{
//BOOST_ASSERT_MSG(0 < n, "unexpected value");
median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((2+1)/2) * 25 which would be ok, but not in all cases
}
else // r < subtree_counts.second // e.g. 2 < 10 == true
{
std::size_t count_minus_min = count - subtree_counts.minc; // e.g. 52 - 10 = 42
n = count_minus_min / subtree_counts.maxc; // e.g. 42 / 25 = 1
r = count_minus_min % subtree_counts.maxc; // e.g. 42 % 25 = 17
if ( r == 0 ) // e.g. false
{
// n can't be equal to 0 because then there wouldn't be any element in the other node
//BOOST_ASSERT_MSG(0 < n, "unexpected value");
median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((1+1)/2) * 25 which would be ok, but not in all cases
}
else
{
if ( n == 0 ) // e.g. false
median_count = r; // if calculated -> 17 which is wrong!
else
median_count = ((n+2)/2) * subtree_counts.maxc; // e.g. ((1+2)/2) * 25 = 25
}
}
}
return median_count;
}
};
}}}}} // namespace boost::geometry::index::detail::rtree
#endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
|