File: ssca.cpp

package info (click to toggle)
boost1.55 1.55.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 487,824 kB
  • ctags: 673,349
  • sloc: cpp: 2,098,430; xml: 106,036; ansic: 46,744; python: 32,427; sh: 11,864; cs: 2,121; asm: 1,640; makefile: 984; perl: 714; yacc: 456; php: 132; fortran: 43; sql: 13; csh: 6
file content (1263 lines) | stat: -rw-r--r-- 42,059 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
// Copyright 2004 The Trustees of Indiana University.

// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

//  Authors: Nick Edmonds
//           Andrew Lumsdaine

#include <boost/graph/use_mpi.hpp>

#define CSR

#ifdef CSR
#  include <boost/graph/distributed/compressed_sparse_row_graph.hpp>
#else
#  include <boost/graph/distributed/adjacency_list.hpp>
#endif

#include <boost/test/minimal.hpp>
#include <boost/graph/distributed/mpi_process_group.hpp>
#include <boost/graph/distributed/queue.hpp>

#include <boost/graph/parallel/distribution.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/bind.hpp>
#include <sys/time.h>
#include <time.h>

#include <boost/random.hpp>
#include <boost/property_map/parallel/distributed_property_map.hpp>

#include <boost/random/linear_congruential.hpp>

#include <boost/graph/distributed/graphviz.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/iteration_macros.hpp>

#include <boost/graph/parallel/algorithm.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/pending/queue.hpp>

#include <boost/graph/rmat_graph_generator.hpp>
#include <boost/graph/distributed/betweenness_centrality.hpp>
#include <boost/graph/distributed/filtered_graph.hpp>
#include <boost/graph/parallel/container_traits.hpp>

#include <boost/graph/properties.hpp>

#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <sstream>
#include <stdint.h>

using namespace boost;

// #define DEBUG

typedef rand48 RandomGenerator;

/****************************************************************************
 * Timing
 ****************************************************************************/
#ifndef PBGL_ACCOUNTING 

typedef double time_type;

inline time_type get_time()
{
  timeval tp;
  gettimeofday(&tp, 0);
  return tp.tv_sec + tp.tv_usec / 1000000.0;
}

std::string print_time(time_type t)
{
  std::ostringstream out;
  out << std::setiosflags(std::ios::fixed) << std::setprecision(2) << t;
  return out.str();
}

#endif // PBGL_ACCOUNTING

/****************************************************************************
 * Edge weight generator iterator                                           *
 ****************************************************************************/
template<typename F, typename RandomGenerator>
class generator_iterator
{
public:
  typedef std::input_iterator_tag iterator_category;
  typedef typename F::result_type value_type;
  typedef const value_type&       reference;
  typedef const value_type*       pointer;
  typedef void                    difference_type;

  explicit 
  generator_iterator(RandomGenerator& gen, const F& f = F()) 
    : f(f), gen(&gen) 
  { 
    value = this->f(gen); 
  }

  reference operator*() const  { return value; }
  pointer   operator->() const { return &value; }

  generator_iterator& operator++()
  {
    value = f(*gen);
    return *this;
  }

  generator_iterator operator++(int)
  {
    generator_iterator temp(*this);
    ++(*this);
    return temp;
  }

  bool operator==(const generator_iterator& other) const
  { return f == other.f; }

  bool operator!=(const generator_iterator& other) const
  { return !(*this == other); }

private:
  F f;
  RandomGenerator* gen;
  value_type value;
};

template<typename F, typename RandomGenerator>
inline generator_iterator<F, RandomGenerator> 
make_generator_iterator( RandomGenerator& gen, const F& f)
{ return generator_iterator<F, RandomGenerator>(gen, f); }

template<typename Graph, typename DistanceMap, typename WeightMap, typename ColorMap>
struct ssca_visitor : bfs_visitor<> 
{
  typedef typename property_traits<WeightMap>::value_type Weight;
  typedef typename property_traits<ColorMap>::value_type ColorValue;
  typedef color_traits<ColorValue> Color;

  ssca_visitor(DistanceMap& distance, const WeightMap& weight, ColorMap& color,
               Weight max_)
    : distance(distance), weight(weight), color(color), max_(max_) {}

  template<typename Edge>
  void tree_edge(Edge e, const Graph& g)
  {
    int new_distance = get(weight, e) == (std::numeric_limits<Weight>::max)() ? 
      (std::numeric_limits<Weight>::max)() : get(distance, source(e, g)) + get(weight, e);

    put(distance, target(e, g), new_distance);
    if (new_distance > max_)
      put(color, target(e, g), Color::black());
  }

 private:
  DistanceMap& distance;
  const WeightMap& weight;
  ColorMap& color;
  Weight max_;
};

// Generate source vertices for approximate BC
template <typename Graph, typename Buffer>
void
generate_sources(const Graph& g, Buffer sources, 
                 typename graph_traits<Graph>::vertices_size_type num_sources)
{
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
  typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
  typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;

  typedef typename boost::graph::parallel::process_group_type<Graph>::type 
    process_group_type;
  process_group_type pg = g.process_group();

  typename process_group_type::process_id_type id = process_id(pg);
  typename process_group_type::process_size_type p = num_processes(pg);    
  
  // Don't feel like adding a special case for num_sources < p
  assert(num_sources >= p);
  
  minstd_rand gen;
  uniform_int<vertices_size_type> rand_vertex(0, num_vertices(g) - 1);
  std::vector<vertex_descriptor> all_sources, local_sources;
  vertices_size_type local_vertices = vertices_size_type(floor((double)num_sources / p));
  local_vertices += (id < (num_sources - (p * local_vertices)) ? 1 : 0); 
  
  while (local_vertices > 0) {
    vertex_iterator iter = vertices(g).first;
    std::advance(iter, rand_vertex(gen));
    
    if (out_degree(*iter, g) != 0
        && std::find(local_sources.begin(), local_sources.end(), *iter) == local_sources.end()) {
      local_sources.push_back(*iter);
      --local_vertices;
    }
  }
  all_gather(pg, local_sources.begin(), local_sources.end(), all_sources);
  std::sort(all_sources.begin(), all_sources.end());
  for (typename std::vector<vertex_descriptor>::iterator iter = all_sources.begin(); 
       iter != all_sources.end(); ++iter)
    sources.push(*iter);
}

// Kernel 2 - Classify large sets
template <typename Graph, typename WeightMap>
void classify_sets(const Graph& g, const WeightMap& weight_map, 
                   std::vector<std::pair<typename graph_traits<Graph>::vertex_descriptor,
                                         typename graph_traits<Graph>::vertex_descriptor> > & global_S)
{
  typedef typename boost::graph::parallel::process_group_type<Graph>::type 
    process_group_type;
  process_group_type pg = g.process_group();

  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
  std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;

  time_type start = get_time();

#ifdef CSR
  typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
  typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;
  OwnerMap owner = get(vertex_owner, g);
  LocalMap local = get(vertex_local, g);
#endif

  int max_ = 0;
  BGL_FORALL_EDGES_T(e, g, Graph) {
#ifdef CSR
    if (get(owner, source(e, g)) == process_id(pg)) {
#endif
    int w = get(weight_map, e);
    if (w > max_) {
      max_ = w;
      S.clear();
    }

    if (w >= max_)
      S.push_back(std::make_pair(source(e, g), target(e, g)));
#ifdef CSR
    }
#endif
  }

  int global_max = all_reduce(pg, max_, boost::parallel::maximum<int>());
  if (max_ < global_max)
    S.clear();

  global_S.clear();

  all_gather(pg, S.begin(), S.end(), global_S);
  
  // This is probably unnecessary as long as the sets of edges owned by procs is disjoint
  std::sort(global_S.begin(), global_S.end());
  std::unique(global_S.begin(), global_S.end());

  synchronize(pg);

  time_type end = get_time();

  if (process_id(pg) == 0) {
    std::cerr << "    Distributed Graph: " << print_time(end - start) << std::endl
              << "      Max int weight = " << global_max << std::endl;
  }
}

template <typename ProcessGroup, typename Graph, typename WeightMap, 
          typename EdgeVector>
void seq_classify_sets(const ProcessGroup& pg, const Graph& g, 
                       const WeightMap& weight_map, EdgeVector& S)
{
  typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
  typedef typename property_traits<WeightMap>::value_type edge_weight_type;

  time_type start = get_time();

  edge_weight_type max_ = 0;
  BGL_FORALL_EDGES_T(e, g, Graph) {
    edge_weight_type w = get(weight_map, e);
    if (w > max_) {
      max_ = w;
      S.clear();
    }

    if (w >= max_)
      S.push_back(e);
  }

  synchronize(pg);

  time_type end = get_time();

  if (process_id(pg) == 0) 
    std::cerr << "    Non-Distributed Graph: " << print_time(end - start) << std::endl
              << "      Max int weight = " << max_ << std::endl;
}

// Kernel 3 - Graph Extraction
template <typename Graph, typename OwnerMap, typename LocalMap, 
          typename WeightMap, typename DistanceMap, typename ColorMap,
          typename EdgeVector>
void subgraph_extraction(Graph& g, const OwnerMap& owner, const LocalMap& local,
                         const WeightMap& weight_map, DistanceMap distances,
                         ColorMap color_map, const EdgeVector& S,
                         int subGraphEdgeLength)
{
  // Nick: I think turning the vertex black when the maximum distance is
  //       exceeded will prevent BFS from exploring beyond the subgraph.
  //       Unfortunately we can't run subgraph extraction in parallel
  //       because the subgraphs may overlap

  typedef typename property_traits<ColorMap>::value_type ColorValue;
  typedef color_traits<ColorValue> Color;

  typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;

  typedef typename boost::graph::parallel::process_group_type<Graph>::type 
    process_group_type;

  typedef boost::graph::distributed::distributed_queue<process_group_type, 
    OwnerMap, queue<vertex_descriptor> > queue_t;

  process_group_type pg = g.process_group();
  typename process_group_type::process_id_type id = process_id(pg);

  queue_t Q(pg, owner);

  EdgeVector sources(S.begin(), S.end());

#ifdef DEBUG
  std::vector<std::vector<vertex_descriptor> > subgraphs;
#endif

  synchronize(pg);

  typedef typename std::vector<std::pair<vertex_descriptor, vertex_descriptor> >::iterator
    source_iterator;

  time_type start = get_time();
  for (source_iterator iter = sources.begin(); iter != sources.end(); ++iter) {
    // Reinitialize distance and color maps every BFS
    BGL_FORALL_VERTICES_T(v, g, Graph) { 
      if (get(owner, v) == id) {
        local_put(color_map, v, Color::white()); 
        local_put(distances, v, (std::numeric_limits<int>::max)());
      }
    }

    vertex_descriptor u = iter->first, v = iter->second;

    local_put(distances, u, 0);
    local_put(distances, v, 0);

    while (!Q.empty()) Q.pop();
    if (get(owner, u) == id)
      Q.push(u);

    local_put(color_map, u, Color::gray()); 

    breadth_first_search(g, v, Q,
                         ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
                           (distances, weight_map, color_map, subGraphEdgeLength),
                         color_map);
                           
    // At this point all vertices with distance > 0 in addition to the 
    // starting vertices compose the subgraph.
#ifdef DEBUG
    subgraphs.push_back(std::vector<vertex_descriptor>());    
    std::vector<vertex_descriptor>& subgraph = subgraphs.back();

    BGL_FORALL_VERTICES_T(v, g, Graph) {
      if (get(distances, v) < (std::numeric_limits<int>::max)())
        subgraph.push_back(v);
    }
#endif    
  }

  synchronize(pg);

  time_type end = get_time();

#ifdef DEBUG
  for (unsigned int i = 0; i < subgraphs.size(); i++) {
    all_gather(pg, subgraphs[i].begin(), subgraphs[i].end(), subgraphs[i]);
    std::sort(subgraphs[i].begin(), subgraphs[i].end()); 
    subgraphs[i].erase(std::unique(subgraphs[i].begin(), subgraphs[i].end()),
                       subgraphs[i].end()); 
  }

  if (process_id(pg) == 0)
    for (int i = 0; abs(i) < subgraphs.size(); i++) {
      std::cerr << "Subgraph " << i << " :\n";
      for (int j = 0; abs(j) < subgraphs[i].size(); j++)
        std::cerr << "  " << get(local, subgraphs[i][j]) << "@" 
                  << get(owner, subgraphs[i][j]) << std::endl;
    }
#endif

  if (process_id(pg) == 0)
    std::cerr << "    Distributed Graph: " << print_time(end - start) << std::endl;
}

template <typename ProcessGroup, typename Graph, typename WeightMap, 
          typename DistanceMap, typename ColorMap, typename EdgeVector>
void seq_subgraph_extraction(const ProcessGroup& pg, const Graph& g, 
                             const WeightMap& weight_map, DistanceMap distances,
                             ColorMap color_map, const EdgeVector& S,
                             int subGraphEdgeLength)
{
  // Nick: I think turning the vertex black when the maximum distance is
  //       exceeded will prevent BFS from exploring beyond the subgraph.

  using boost::graph::distributed::mpi_process_group;

  typedef typename property_traits<ColorMap>::value_type ColorValue;
  typedef color_traits<ColorValue> Color;

  typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;

  boost::queue<vertex_descriptor> Q;

  std::vector<edge_descriptor> sources(S.begin(), S.end());

#ifdef DEBUG
  std::vector<std::vector<vertex_descriptor> > subgraphs;
#endif

  synchronize(pg);
    
  typedef ProcessGroup process_group_type;
  
  typename process_group_type::process_id_type id = process_id(pg);
  typename process_group_type::process_size_type p = num_processes(pg);    

  time_type start = get_time();

  for (int i = id; i < sources.size(); i += p) {

    // Reinitialize distance and color maps every BFS
    BGL_FORALL_VERTICES_T(v, g, Graph) { 
      put(color_map, v, Color::white()); 
      put(distances, v, (std::numeric_limits<int>::max)());
    }

    vertex_descriptor u = source(sources[i], g),
      v = target(sources[i], g);

    put(distances, u, 0);
    put(distances, v, 0); 

    while (!Q.empty()) Q.pop();
    Q.push(u);

    put(color_map, u, Color::gray()); 

    breadth_first_search(g, v, Q,
                         ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
                           (distances, weight_map, color_map, subGraphEdgeLength),
                         color_map);

#ifdef DEBUG
    subgraphs.push_back(std::vector<vertex_descriptor>());    
    std::vector<vertex_descriptor>& subgraph = subgraphs.back();

    BGL_FORALL_VERTICES_T(v, g, Graph) {
      if (get(distances, v) < (std::numeric_limits<int>::max)())
        subgraph.push_back(v);
    }
#endif    
  }

  synchronize(pg);

  time_type end = get_time();

#ifdef DEBUG
  std::vector<vertex_descriptor> ser_subgraphs;

  for (int i = 0; i < subgraphs.size(); ++i) {
    for (int j = 0; j < subgraphs[i].size(); ++j)
      ser_subgraphs.push_back(subgraphs[i][j]);
    ser_subgraphs.push_back(graph_traits<Graph>::null_vertex());
  }

  all_gather(pg, ser_subgraphs.begin(), ser_subgraphs.end(), ser_subgraphs);

  int i = 0;
  typename std::vector<vertex_descriptor>::iterator iter(ser_subgraphs.begin());

  while (iter != ser_subgraphs.end()) {
    std::cerr << "Subgraph " << i << " :\n";
    while (*iter != graph_traits<Graph>::null_vertex()) {
      std::cerr << "  " << *iter << std::endl;
      ++iter;
    }
    ++i;
    ++iter;
  }
#endif

  if (process_id(pg) == 0)
    std::cerr << "    Non-Distributed Graph: " << print_time(end - start) << std::endl;
}

template <typename ProcessGroup, typename Graph, typename CentralityMap>
void
extract_max_bc_vertices(const ProcessGroup& pg, const Graph& g, const CentralityMap& centrality,
                        std::vector<typename graph_traits<Graph>::vertex_descriptor>& max_bc_vec)
{
  using boost::graph::parallel::process_group;
  using boost::parallel::all_gather;
  using boost::parallel::all_reduce;

  // Find set of vertices with highest BC score
  typedef typename property_traits<CentralityMap>::value_type centrality_type;
  std::vector<centrality_type> max_bc_vertices;
  centrality_type max_ = 0;

  max_bc_vec.clear();

  BGL_FORALL_VERTICES_T(v, g, Graph) {
    if (get(centrality, v) == max_)
      max_bc_vec.push_back(v);
    else if (get(centrality, v) > max_) {
      max_ = get(centrality, v);
      max_bc_vec.clear();
      max_bc_vec.push_back(v);      
    }
  }

  centrality_type global_max = all_reduce(pg, max_, boost::parallel::minimum<int>());

  if (global_max > max_)
    max_bc_vec.clear();

  all_gather(pg, max_bc_vec.begin(), max_bc_vec.end(), max_bc_vec);
}


// Function object to filter edges divisible by 8
// EdgeWeightMap::value_type must be integral!
template <typename EdgeWeightMap>
struct edge_weight_not_divisible_by_eight {
  typedef typename property_traits<EdgeWeightMap>::value_type weight_type;

  edge_weight_not_divisible_by_eight() { }
  edge_weight_not_divisible_by_eight(EdgeWeightMap weight) : m_weight(weight) { }
  template <typename Edge>
  bool operator()(const Edge& e) const {
    return (get(m_weight, e) & ((std::numeric_limits<weight_type>::max)() - 7)) != get(m_weight, e);
  }

  EdgeWeightMap m_weight;
};

//
// Vertex and Edge properties
//
#ifdef CSR
typedef int weight_type;

struct WeightedEdge {
  WeightedEdge(weight_type weight = 0) : weight(weight) { }
  
  weight_type weight;
};

struct VertexProperties {
  VertexProperties(int distance = 0, default_color_type color = white_color)
    : distance(distance), color(color) { }

  int distance;
  default_color_type color;
};
#endif

template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
          typename edges_size_type>
void
run_non_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
                                vertices_size_type n, edges_size_type m, 
                                std::size_t maxEdgeWeight, uint64_t seed, 
                                int K4Alpha, double a, double b, double c, double d, 
                                int subGraphEdgeLength, bool show_degree_dist, 
                                bool full_bc, bool verify)
{
#ifdef CSR
  typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge>
    seqGraph;
#else
  typedef adjacency_list<vecS, vecS, directedS, 
                         // Vertex properties
                         property<vertex_distance_t, int,
                         property<vertex_color_t, default_color_type> >,
                         // Edge properties
                         property<edge_weight_t, int> > seqGraph;
#endif

  // Generate sequential graph for non_distributed betweenness centrality
  // Reseed the PRNG to get the same graph
  gen.seed(seed);

  synchronize(pg);

  time_type start = get_time();

#ifdef CSR
  seqGraph sg(edges_are_sorted,
              sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
              sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
              make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
              n);
#else
  seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
              unique_rmat_iterator<RandomGenerator, seqGraph>(),
              make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
              n);
#endif

  // Not strictly necessary to synchronize here, but it make sure that the
  // time we measure is the time needed for all copies of the graph to be 
  // constructed
  synchronize(pg);

  time_type end = get_time();

  if (process_id(pg) == 0)
    std::cerr<< "Kernel 1:\n" 
             << "    Non-Distributed Graph: " << print_time(end - start) << std::endl;

  std::map<int, int> degree_dist;
  if ( show_degree_dist ) {
    BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
      degree_dist[out_degree(v, sg)]++;
    }

    std::cerr << "Degree - Fraction of vertices of that degree\n";
    for (std::map<int, int>::iterator iter = degree_dist.begin(); 
         iter != degree_dist.end(); ++iter)
      std::cerr << "  " << iter->first << " - " << double(iter->second) / num_vertices(sg) << std::endl << std::endl;
  }

  //
  // Kernel 2 - Classify large sets
  //
  std::vector<graph_traits<seqGraph>::edge_descriptor> seqS;

  if (process_id(pg) == 0)
    std::cerr << "Kernel 2:\n";

  seq_classify_sets(pg, sg,
#ifdef CSR
                    get(&WeightedEdge::weight, sg),
#else
                    get(edge_weight, sg),
#endif
                    seqS);

  //
  // Kernel 3 - Graph Extraction
  //
#ifdef CSR
  typedef weight_type weight_t;
  weight_t unit_weight(1);
#else
  int unit_weight(1);;
#endif

  if (process_id(pg) == 0)
    std::cerr << "Kernel 3:\n";

  seq_subgraph_extraction(pg, sg,
#ifdef CSR
//                        get(&WeightedEdge::weight, sg), 
                          ref_property_map<graph_traits<seqGraph>::edge_descriptor, weight_t>(unit_weight),
                          get(&VertexProperties::distance, sg),
                          get(&VertexProperties::color, sg), 
#else
//                        get(edge_weight, sg), 
                          ref_property_map<graph_traits<seqGraph>::edge_descriptor, int>(unit_weight),
                          get(vertex_distance, sg), 
                          get(vertex_color, sg), 
#endif
                          seqS, subGraphEdgeLength); 

#ifdef CSR
  typedef property_map<seqGraph, weight_type WeightedEdge::*>::type seqEdgeWeightMap;
  edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(&WeightedEdge::weight, sg));
#else
  typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
  edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
#endif

  typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> > 
    filteredSeqGraph;

  filteredSeqGraph fsg(sg, sg_filter);

  std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;

  // Non-Distributed Centrality Map
  typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
  typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;

  std::vector<int> non_distributed_centralityS(num_vertices(sg), 0);
  seqCentralityMap non_distributed_centrality(non_distributed_centralityS.begin(), 
                                              get(vertex_index, sg));

  vertices_size_type n0 = 0;
  BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph) {
    if (out_degree(v, fsg) == 0) ++n0;
  }

  if (process_id(pg) == 0)
    std::cerr << "Kernel 4:\n";

  // Run Betweenness Centrality
  if (full_bc) {

    // Non-Distributed Graph BC
    start = get_time();
    non_distributed_brandes_betweenness_centrality(pg, fsg, non_distributed_centrality);
    extract_max_bc_vertices(pg, fsg, non_distributed_centrality, max_seq_bc_vec);
    end = get_time();

    edges_size_type nonDistributedExactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));

    if (process_id(pg) == 0)
      std::cerr << "    non-Distributed Graph Exact = " << print_time(end - start) << " ("
                << nonDistributedExactTEPs << " TEPs)\n";
  }

  // Non-Distributed Graph Approximate BC
  std::vector<int> nonDistributedApproxCentralityS(num_vertices(sg), 0);
  seqCentralityMap nonDistributedApproxCentrality(nonDistributedApproxCentralityS.begin(), 
                                                  get(vertex_index, sg));

  queue<typename graph_traits<filteredSeqGraph>::vertex_descriptor> sources;
  {
    minstd_rand gen;
    uniform_int<vertices_size_type> rand_vertex(0, num_vertices(fsg) - 1);
    int remaining_sources = floor(pow(2, K4Alpha));
    std::vector<typename graph_traits<filteredSeqGraph>::vertex_descriptor> temp_sources;
 
    while (remaining_sources > 0) {
      typename graph_traits<filteredSeqGraph>::vertex_descriptor v = 
        vertex(rand_vertex(gen), fsg);
    
      if (out_degree(v, fsg) != 0
          && std::find(temp_sources.begin(), temp_sources.end(), v) == temp_sources.end()) {
        temp_sources.push_back(v);
        --remaining_sources;
      }
    }

    for (int i = 0; i < temp_sources.size(); ++i)
      sources.push(temp_sources[i]);
  }

  start = get_time();
  non_distributed_brandes_betweenness_centrality(pg, fsg, buffer(sources).
                                                 centrality_map(nonDistributedApproxCentrality)); 
  extract_max_bc_vertices(pg, fsg, nonDistributedApproxCentrality, max_seq_bc_vec);
  end = get_time();

  edges_size_type nonDistributedApproxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));

  if (process_id(pg) == 0)
    std::cerr << "    Non-Distributed Graph Approximate (" << floor(pow(2, K4Alpha)) << " sources) = " 
              << print_time(end - start) << " (" << nonDistributedApproxTEPs << " TEPs)\n";

  // Verify Correctness of Kernel 4
  if (full_bc && verify && process_id(pg) == 0) {

    std::vector<int> seq_centralityS(num_vertices(fsg), 0);
    seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, fsg));

    max_seq_bc_vec.clear();
    property_traits<seqCentralityMap>::value_type max_ = 0;

    start = get_time();
    brandes_betweenness_centrality(fsg, seq_centrality);

    typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
      filteredSeqGraph;

    BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
      if (get(seq_centrality, v) == max_)
        max_seq_bc_vec.push_back(v);
      else if (get(seq_centrality, v) > max_) {
        max_ = get(seq_centrality, v);
        max_seq_bc_vec.clear();
        max_seq_bc_vec.push_back(v);      
      }
    }

    end = get_time();

    edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));

    std::cerr << "    Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";

    typename ProcessGroup::process_id_type id = process_id(pg);
    typename ProcessGroup::process_size_type p = num_processes(pg);    

    assert((double)n/p == floor((double)n/p));
    
    std::cerr << "\nVerifying non-scalable betweenness centrality...\n";

    {
      bool passed = true;

      // Verify non-scalable betweenness centrality
      BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
        if (get(non_distributed_centrality, v) != get(seq_centrality, v)) {
          std::cerr << "  " << id << ": Error - centrality of " << v
                    << " does not match the sequential result (" 
                    << get(non_distributed_centrality, v) << " vs. " 
                    << get(seq_centrality, v) << ")\n";
          passed = false;
        }
      }

      if (passed)
        std::cerr << "  PASSED\n";
    }

  }    

}

template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
          typename edges_size_type>
void
run_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
                            vertices_size_type n, edges_size_type m, 
                            std::size_t maxEdgeWeight, uint64_t seed, 
                            int K4Alpha, double a, double b, double c, double d, 
                            int subGraphEdgeLength, bool show_degree_dist, 
                            bool emit_dot_file, bool full_bc, bool verify)
{
#ifdef CSR
  typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
                                      distributedS<ProcessGroup> > Graph;
#else
  typedef adjacency_list<vecS, 
                         distributedS<ProcessGroup, vecS>,
                         directedS, 
                         // Vertex properties
                         property<vertex_distance_t, int,
                         property<vertex_color_t, default_color_type> >,
                         // Edge properties
                         property<edge_weight_t, int> > Graph;
#endif

  gen.seed(seed);

  parallel::variant_distribution<ProcessGroup> distrib 
    = parallel::block(pg, n);

  typedef typename ProcessGroup::process_id_type process_id_type;
  process_id_type id = process_id(pg);

  typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
  typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;

  typedef keep_local_edges<parallel::variant_distribution<ProcessGroup>,
                           process_id_type>
    EdgeFilter; 

  //
  // Kernel 1 - Graph construction
  // Nick: The benchmark specifies that we only have to time graph generation from
  //       edge tuples, the generator generates the edge tuples at graph construction
  //       time so we're timing some overhead in the random number generator, etc.
  synchronize(pg);

  time_type start = get_time();

#ifdef CSR
//   typedef sorted_unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
  typedef sorted_rmat_iterator<RandomGenerator, Graph, keep_all_edges> RMATIter;

  Graph g(//RMATIter(gen, n, m, a, b, c, d, false, true, EdgeFilter(distrib, id)),
          RMATIter(gen, n, m, a, b, c, d, true, keep_all_edges()),
          RMATIter(),
          make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
          n, pg, distrib);
#else
  typedef unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
  Graph g(RMATIter(gen, n, m, a, b, c, d, true EdgeFilter(distrib, id)),
          RMATIter(),
          make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
          n, pg, distrib);
#endif

  synchronize(pg);

  time_type end = get_time();

  if (id == 0)
    std::cerr<< "Kernel 1:\n" 
             << "    Distributed Graph: " << print_time(end - start) << std::endl;

  if ( emit_dot_file )
    write_graphviz("ssca.dot", g);

  //
  // Kernel 2 - Classify large sets
  //
  typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
  std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;

  if (id == 0)
    std::cerr << "Kernel 2:\n";

  classify_sets(g,
#ifdef CSR
                get(&WeightedEdge::weight, g),
#else
                get(edge_weight, g),
#endif
                S);

  //
  // Kernel 3 - Graph Extraction
  //
  OwnerMap owner = get(vertex_owner, g);
  LocalMap local = get(vertex_local, g);

  if (id == 0)
    std::cerr << "Kernel 3:\n";

#ifdef CSR
  typedef weight_type weight_t;
  weight_t unit_weight(1);
#else
  int unit_weight(1);;
#endif

  subgraph_extraction(g, owner, local, 
#ifdef CSR
//                    get(&WeightedEdge::weight, g), 
                      ref_property_map<typename graph_traits<Graph>::edge_descriptor, weight_t>(unit_weight),
                      get(&VertexProperties::distance, g),
                      get(&VertexProperties::color, g),
#else
//                    get(edge_weight, g), 
                      ref_property_map<graph_traits<Graph>::edge_descriptor, int>(unit_weight),
                      get(vertex_distance, g), 
                      get(vertex_color, g), 
#endif
                      S, subGraphEdgeLength);

  //
  // Kernel 4 - Betweenness Centrality
  //

  // Filter edges with weights divisible by 8
#ifdef CSR
  typedef typename property_map<Graph, weight_type WeightedEdge::*>::type EdgeWeightMap;
  edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(&WeightedEdge::weight, g));
#else
  typedef typename property_map<Graph, edge_weight_t>::type EdgeWeightMap;
  edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(edge_weight, g));
#endif

  typedef filtered_graph<const Graph, edge_weight_not_divisible_by_eight<EdgeWeightMap> > 
    filteredGraph;
  filteredGraph fg(g, filter);

  // Vectors of max BC scores for all tests
  std::vector<typename graph_traits<Graph>::vertex_descriptor> max_bc_vec; 

  // Distributed Centrality Map
  typedef typename property_map<Graph, vertex_index_t>::const_type IndexMap;
  typedef iterator_property_map<std::vector<int>::iterator, IndexMap> CentralityMap;

  std::vector<int> centralityS(num_vertices(g), 0);
  CentralityMap centrality(centralityS.begin(), get(vertex_index, g));

  // Calculate number of vertices of degree 0
  vertices_size_type local_n0 = 0, n0;
  BGL_FORALL_VERTICES_T(v, fg, filteredGraph) {
    if (out_degree(v, g) == 0) local_n0++;
  }
  n0 = boost::parallel::all_reduce(pg, local_n0, std::plus<vertices_size_type>());

  if (id == 0)
    std::cerr << "Kernel 4:\n";

  // Run Betweenness Centrality
  if (full_bc) {
    
    // Distributed Graph Full BC
    start = get_time();
    brandes_betweenness_centrality(fg, centrality);
    extract_max_bc_vertices(pg, g, centrality, max_bc_vec);
    end = get_time();
    
    edges_size_type exactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
    
    if (id == 0)
      std::cerr << "    Exact = " << print_time(end - start) << " ("
                << exactTEPs << " TEPs)\n";
  }

  // Distributed Graph Approximate BC
  std::vector<int> approxCentralityS(num_vertices(g), 0);
  CentralityMap approxCentrality(approxCentralityS.begin(), get(vertex_index, g));

  queue<vertex_descriptor> sources;
  generate_sources(g, sources, vertices_size_type(floor(pow(2, K4Alpha))));
  
  start = get_time();
  brandes_betweenness_centrality(fg, buffer(sources).centrality_map(approxCentrality)); 
  extract_max_bc_vertices(pg, fg, approxCentrality, max_bc_vec);
  end = get_time();
  
  edges_size_type approxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));
  
  if (id == 0)
    std::cerr << "    Approximate (" << floor(pow(2, K4Alpha)) << " sources) = " 
              << print_time(end - start) << " (" << approxTEPs << " TEPs)\n";


  // Verify Correctness of Kernel 4
  if (full_bc && verify && id == 0) {

    // Build non-distributed graph to verify against
    typedef adjacency_list<vecS, vecS, directedS, 
                           // Vertex properties
                           property<vertex_distance_t, int,
                           property<vertex_color_t, default_color_type> >,
                           // Edge properties
                           property<edge_weight_t, int> > seqGraph;

    gen.seed(seed);

#ifdef CSR
    seqGraph sg(sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
                sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
                make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
                n);
#else
    seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
                unique_rmat_iterator<RandomGenerator, seqGraph>(),
                make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
                n);
#endif

    typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
    edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
    
    filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> > 
      fsg(sg, sg_filter);

    // Build sequential centrality map 
    typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
    typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;

    std::vector<int> seq_centralityS(num_vertices(sg), 0);
    seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, sg));

    std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;

    max_seq_bc_vec.clear();
    property_traits<seqCentralityMap>::value_type max_ = 0;

    start = get_time();
    brandes_betweenness_centrality(fsg, seq_centrality);

    typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
      filteredSeqGraph;

    BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
      if (get(seq_centrality, v) == max_)
        max_seq_bc_vec.push_back(v);
      else if (get(seq_centrality, v) > max_) {
        max_ = get(seq_centrality, v);
        max_seq_bc_vec.clear();
        max_seq_bc_vec.push_back(v);      
      }
    }

    end = get_time();

    edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));

    std::cerr << "    Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";
    
    typename ProcessGroup::process_size_type p = num_processes(pg);    

    assert((double)n/p == floor((double)n/p));

    std::cerr << "\nVerifying betweenness centrality...\n";

    {
      bool passed = true;

      // Verify exact betweenness centrality
      BGL_FORALL_VERTICES_T(v, g, Graph) {
        if (get(centrality, v) != seq_centralityS[(n/p) * get(owner, v) + get(local, v)]) {
          std::cerr << "  " << id << ": Error - centrality of " << get(local, v) << "@" << get(owner, v)
                    << " does not match the sequential result (" << get(centrality, v) << " vs. " 
                    << seq_centralityS[(n/p) * get(owner, v) + get(local, v)] << ")\n";
          passed = false;
        }
      }

      if (passed)
        std::cerr << "  PASSED\n";
    }      
  }    
}

void usage()
{
  std::cerr << "SSCA benchmark.\n\n"
            << "Usage : ssca [options]\n\n"
            << "Options are:\n"
            << "\t--vertices v\t\t\tNumber of vertices in the graph\n"
            << "\t--edges v\t\t\tNumber of edges in the graph\n"
            << "\t--seed s\t\t\tSeed for synchronized random number generator\n"
            << "\t--full-bc\t\t\tRun full (exact) Betweenness Centrality\n"
            << "\t--max-weight miw\t\tMaximum integer edge weight\n"
            << "\t--subgraph-edge-length sel\tEdge length of subgraphs to extract in Kernel 3\n"
            << "\t--k4alpha k\t\t\tValue of K4Alpha in Kernel 4\n"
            << "\t--scale s\t\t\tSCALE parameter for the SSCA benchmark (sets n, m, and C)\n"
            << "\t--dot\t\t\t\tEmit a dot file containing the graph\n"
            << "\t--verify\t\t\tVerify result\n"
            << "\t--degree-dist\t\t\t Output degree distribution of graph\n"
            << "\t--no-distributed-graph\t\tOmit distributed graph tests\n";
}

int test_main(int argc, char* argv[])
{
  mpi::environment env(argc, argv);

  using boost::graph::distributed::mpi_process_group;

#ifdef CSR
  typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
                                      distributedS<mpi_process_group> > Graph;
#else
  typedef adjacency_list<vecS, 
                         distributedS<mpi_process_group, vecS>,
                         directedS, 
                         // Vertex properties
                         property<vertex_distance_t, int,
                         property<vertex_color_t, default_color_type> >,
                         // Edge properties
                         property<edge_weight_t, int> > Graph;
#endif

  typedef graph_traits<Graph>::vertices_size_type vertices_size_type;
  typedef graph_traits<Graph>::edges_size_type edges_size_type;

  RandomGenerator gen;
  
  // Default args
  vertices_size_type n = 100;
  edges_size_type m = 8*n;
  uint64_t seed = 1;
  int maxEdgeWeight = 100, 
      subGraphEdgeLength = 8,
      K4Alpha = 0.5;
  double a = 0.57, b = 0.19, c = 0.19, d = 0.05;
  bool emit_dot_file = false, verify = false, full_bc = true,
    distributed_graph = true, show_degree_dist = false,
    non_distributed_graph = true;

  mpi_process_group pg;

  if (argc == 1) {
    if (process_id(pg) == 0)
      usage();
    exit(-1);
  }

  // Parse args
  for (int i = 1; i < argc; ++i) {
    std::string arg = argv[i];

    if (arg == "--vertices")
      n = boost::lexical_cast<vertices_size_type>( argv[i+1] );

    if (arg == "--seed")
      seed = boost::lexical_cast<uint64_t>( argv[i+1] );

    if (arg == "--full-bc")
      full_bc = (argv[i+1]== "true");

    if (arg == "--max-weight")
      maxEdgeWeight = boost::lexical_cast<int>( argv[i+1] );

    if (arg == "--subgraph-edge-length")
      subGraphEdgeLength = boost::lexical_cast<int>( argv[i+1] );
    
    if (arg == "--edges")
      m = boost::lexical_cast<edges_size_type>( argv[i+1] );

    if (arg == "--k4alpha")
      K4Alpha = boost::lexical_cast<int>( argv[i+1] );

    if (arg == "--dot")
      emit_dot_file = true;

    if (arg == "--verify")
      verify = true;

    if (arg == "--degree-dist")
      show_degree_dist = true;

    if (arg == "--no-distributed-graph")
      distributed_graph = false;

    if (arg == "--no-non-distributed-graph")
      non_distributed_graph = false;

    if (arg == "--scale") {
      vertices_size_type scale  = boost::lexical_cast<vertices_size_type>( argv[i+1] );
      maxEdgeWeight = n = vertices_size_type(floor(pow(2, scale)));
      m = 8 * n;
    }

    if (arg == "--help") {
      if (process_id(pg) == 0)
        usage();
      exit(-1);
    }
  }

  if (non_distributed_graph) {
    if (process_id(pg) == 0)
      std::cerr << "Non-Distributed Graph Tests\n";

    run_non_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d, 
                                    subGraphEdgeLength, show_degree_dist, full_bc, verify);
  }

  if (distributed_graph) {
    if (process_id(pg) == 0)
      std::cerr << "Distributed Graph Tests\n";

    run_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d, 
                                subGraphEdgeLength, show_degree_dist, emit_dot_file, 
                                full_bc, verify);
  }

  return 0;
}