1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0.1 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Boost.MultiIndex Documentation - Performance</title>
<link rel="stylesheet" href="style.css" type="text/css">
<link rel="start" href="index.html">
<link rel="prev" href="compiler_specifics.html">
<link rel="up" href="index.html">
<link rel="next" href="examples.html">
</head>
<body>
<h1><img src="../../../boost.png" alt="boost.png (6897 bytes)" align=
"middle" width="277" height="86">Boost.MultiIndex Performance</h1>
<div class="prev_link"><a href="compiler_specifics.html"><img src="prev.gif" alt="compiler specifics" border="0"><br>
Compiler specifics
</a></div>
<div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br>
Index
</a></div>
<div class="next_link"><a href="examples.html"><img src="next.gif" alt="examples" border="0"><br>
Examples
</a></div><br clear="all" style="clear: all;">
<hr>
<h2>Contents</h2>
<ul>
<li><a href="#intro">Introduction</a></li>
<li><a href="#simulation">Manual simulation of a <code>multi_index_container</code></a></li>
<li><a href="#spatial_efficiency">Spatial efficiency</a></li>
<li><a href="#time_efficiency">Time efficiency</a></li>
<li><a href="#tests">Performance tests</a>
<ul>
<li><a href="#test_1r">Results for 1 ordered index</a>
<ul>
<li><a href="#memory_1r">Memory consumption</a></li>
<li><a href="#time_1r">Execution time</a></li>
</ul>
</li>
<li><a href="#test_1s">Results for 1 sequenced index</a>
<ul>
<li><a href="#memory_1s">Memory consumption</a></li>
<li><a href="#time_1s">Execution time</a></li>
</ul>
</li>
<li><a href="#test_2r">Results for 2 ordered indices</a>
<ul>
<li><a href="#memory_2r">Memory consumption</a></li>
<li><a href="#time_2r">Execution time</a></li>
</ul>
</li>
<li><a href="#test_1r1s">Results for 1 ordered index + 1 sequenced index</a>
<ul>
<li><a href="#memory_1r1s">Memory consumption</a></li>
<li><a href="#time_1r1s">Execution time</a></li>
</ul>
</li>
<li><a href="#test_3r">Results for 3 ordered indices</a>
<ul>
<li><a href="#memory_3r">Memory consumption</a></li>
<li><a href="#time_3r">Execution time</a></li>
</ul>
</li>
<li><a href="#test_2r1s">Results for 2 ordered indices + 1 sequenced index</a>
<ul>
<li><a href="#memory_2r1s">Memory consumption</a></li>
<li><a href="#time_2r1s">Execution time</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#conclusions">Conclusions</a></li>
</ul>
<h2><a name="intro">Introduction</a></h2>
<p>
Boost.MultiIndex helps the programmer to avoid the manual construction of cumbersome
compositions of containers when multi-indexing capabilities are needed. Furthermore,
it does so in an efficient manner, both in terms of space and time consumption. The
space savings stem from the compact representation of the underlying data structures,
requiring a single node per element. As for time efficiency, Boost.MultiIndex
intensively uses metaprogramming techniques producing very tight implementations
of member functions which take care of the elementary operations for each index:
for <code>multi_index_container</code>s with two or more indices, the running time
can be reduced to half as long as with manual simulations involving several
STL containers.
</p>
<h2><a name="simulation">Manual simulation of a <code>multi_index_container</code></a></h2>
<p>
The section on <a href="tutorial/techniques.html#emulate_std_containers">emulation
of standard containers with <code>multi_index_container</code></a> shows the equivalence
between single-index <code>multi_index_container</code>s and some STL containers. Let us now
concentrate on the problem of simulating a <code>multi_index_container</code> with two
or more indices with a suitable combination of standard containers.
</p>
<p>
Consider the following instantiation of <code>multi_index_container</code>:
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>multi_index_container</span><span class=special><</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special><</span>
<span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span>
<span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>>,</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>greater</span> <span class=special>>,</span>
<span class=special>></span>
<span class=special>></span> <span class=identifier>indexed_t</span><span class=special>;</span>
</pre></blockquote>
<p>
<code>indexed_t</code> maintains two internal indices on elements of type
<code>int</code>. In order to simulate this data structure resorting only to
standard STL containers, one can use on a first approach the following types:
</p>
<blockquote><pre>
<span class=comment>// dereferencing compare predicate</span>
<span class=keyword>template</span><span class=special><</span><span class=keyword>typename</span> <span class=identifier>Iterator</span><span class=special>,</span><span class=keyword>typename</span> <span class=identifier>Compare</span><span class=special>></span>
<span class=keyword>struct</span> <span class=identifier>it_compare</span>
<span class=special>{</span>
<span class=keyword>bool</span> <span class=keyword>operator</span><span class=special>()(</span><span class=keyword>const</span> <span class=identifier>Iterator</span><span class=special>&</span> <span class=identifier>x</span><span class=special>,</span><span class=keyword>const</span> <span class=identifier>Iterator</span><span class=special>&</span> <span class=identifier>y</span><span class=special>)</span><span class=keyword>const</span>
<span class=special>{</span>
<span class=keyword>return</span> <span class=identifier>comp</span><span class=special>(*</span><span class=identifier>x</span><span class=special>,*</span><span class=identifier>y</span><span class=special>);</span>
<span class=special>}</span>
<span class=keyword>private</span><span class=special>:</span>
<span class=identifier>Compare</span> <span class=identifier>comp</span><span class=special>;</span>
<span class=special>};</span>
<span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>set</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=identifier>manual_t1</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #0</span>
<span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>multiset</span><span class=special><</span>
<span class=keyword>const</span> <span class=keyword>int</span><span class=special>*,</span>
<span class=identifier>it_compare</span><span class=special><</span>
<span class=keyword>const</span> <span class=keyword>int</span><span class=special>*,</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>greater</span><span class=special><</span><span class=keyword>int</span><span class=special>></span>
<span class=special>></span>
<span class=special>></span> <span class=identifier>manual_t2</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #1</span>
</pre></blockquote>
<p>
where <code>manual_t1</code> is the "base" container that holds
the actual elements, and <code>manual_t2</code> stores pointers to
elements of <code>manual_t1</code>. This scheme turns out to be quite
inefficient, though: while insertion into the data structure is simple enough:
</p>
<blockquote><pre>
<span class=identifier>manual_t1</span> <span class=identifier>c1</span><span class=special>;</span>
<span class=identifier>manual_t2</span> <span class=identifier>c2</span><span class=special>;</span>
<span class=comment>// insert the element 5</span>
<span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it1</span><span class=special>=</span><span class=identifier>c1</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=number>5</span><span class=special>).</span><span class=identifier>first</span><span class=special>;</span>
<span class=identifier>c2</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(&*</span><span class=identifier>it1</span><span class=special>);</span>
</pre></blockquote>
deletion, on the other hand, necessitates a logarithmic search, whereas
<code>indexed_t</code> deletes in constant time:
<blockquote><pre>
<span class=comment>// remove the element pointed to by it2</span>
<span class=identifier>manual_t2</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it2</span><span class=special>=...;</span>
<span class=identifier>c1</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(**</span><span class=identifier>it2</span><span class=special>);</span> <span class=comment>// watch out! performs in logarithmic time</span>
<span class=identifier>c2</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(</span><span class=identifier>it2</span><span class=special>);</span>
</pre></blockquote>
<p>
The right approach consists of feeding the second container not with
raw pointers, but with elements of type <code>manual_t1::iterator</code>:
</p>
<blockquote><pre>
<span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>set</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=identifier>manual_t1</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #0</span>
<span class=keyword>typedef</span> <span class=identifier>std</span><span class=special>::</span><span class=identifier>multiset</span><span class=special><</span>
<span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span><span class=special>,</span>
<span class=identifier>it_compare</span><span class=special><</span>
<span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span><span class=special>,</span>
<span class=identifier>std</span><span class=special>::</span><span class=identifier>greater</span><span class=special><</span><span class=keyword>int</span><span class=special>></span>
<span class=special>></span>
<span class=special>></span> <span class=identifier>manual_t2</span><span class=special>;</span> <span class=comment>// equivalent to indexed_t's index #1</span>
</pre></blockquote>
<p>
Now, insertion and deletion can be performed with complexity bounds
equivalent to those of <code>indexed_t</code>:
</p>
<blockquote><pre>
<span class=identifier>manual_t1</span> <span class=identifier>c1</span><span class=special>;</span>
<span class=identifier>manual_t2</span> <span class=identifier>c2</span><span class=special>;</span>
<span class=comment>// insert the element 5</span>
<span class=identifier>manual_t1</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it1</span><span class=special>=</span><span class=identifier>c1</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=number>5</span><span class=special>).</span><span class=identifier>first</span><span class=special>;</span>
<span class=identifier>c2</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=identifier>it1</span><span class=special>);</span>
<span class=comment>// remove the element pointed to by it2</span>
<span class=identifier>manual_t2</span><span class=special>::</span><span class=identifier>iterator</span> <span class=identifier>it2</span><span class=special>=...;</span>
<span class=identifier>c1</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(*</span><span class=identifier>it2</span><span class=special>);</span> <span class=comment>// OK: constant time</span>
<span class=identifier>c2</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(</span><span class=identifier>it2</span><span class=special>);</span>
</pre></blockquote>
<p>
The construction can be extended in a straightworward manner to
handle more than two indices. In what follows, we will compare
instantiations of <code>multi_index_container</code> against this sort of
manual simulations.
</p>
<h2><a name="spatial_efficiency">Spatial efficiency</a></h2>
<p>
The gain in space consumption of <code>multi_index_container</code> with
respect to its manual simulations is amenable to a very simple
theoretical analysis. For simplicity, we will ignore alignment
issues (which in general play in favor of <code>multi_index_container</code>.)
</p>
<p>
Nodes of a <code>multi_index_container</code> with <i>N</i> indices hold the value
of the element plus <i>N</i> headers containing linking information for
each index. Thus the node size is
</p>
<blockquote>
<i>S<sub>I</sub></i> = <i>e</i> + <i>h</i><sub>0</sub> + +
<i>h</i><sub><i>N</i>-1</sub>, where<br>
<i>e</i> = size of the element,<br>
<i>h</i><sub><i>i</i></sub> = size of the <i>i</i>-th header.
</blockquote>
<p>
On the other hand, the manual simulation allocates <i>N</i> nodes per
element, the first holding the elements themselves and the rest
storing iterators to the "base" container. In practice, an iterator
merely holds a raw pointer to the node it is associated to, so its size
is independent of the type of the elements. Summing all contributions,
the space allocated per element in a manual simulation is
</p>
<blockquote>
<i>S<sub>M</sub></i> = (<i>e</i> + <i>h</i><sub>0</sub>) +
(<i>p</i> + <i>h</i><sub>1</sub>) + +
(<i>p</i> + <i>h</i><sub><i>N</i>-1</sub>) =
<i>S<sub>I</sub></i> + (<i>N</i>-1)<i>p</i>, where<br>
<i>p</i> = size of a pointer.<br>
</blockquote>
<p>
The relative amount of memory taken up by <code>multi_index_container</code>
with respect to its manual simulation is just
<i>S<sub>I</sub></i> / <i>S<sub>M</sub></i>, which can be expressed
then as:
</p>
<blockquote>
<i>S<sub>I</sub></i> / <i>S<sub>M</sub></i> =
<i>S<sub>I</sub></i> / (<i>S<sub>I</sub></i> + (<i>N</i>-1)<i>p</i>).
</blockquote>
<p>
The formula shows that <code>multi_index_container</code> is more efficient
with regard to memory consumption as the number of indices grow. An implicit
assumption has been made that headers of <code>multi_index_container</code>
index nodes are the same size that their analogues in STL containers; but there
is a particular case in which this is often not the case: ordered indices use a
<a href="tutorial/indices.html#ordered_node_compression">spatial optimization
technique</a> which is not present in many implementations of
<code>std::set</code>, giving an additional advantage to
<code>multi_index_container</code>s of one system word per ordered index.
Taking this fact into account, the former formula can be adjusted to:
</p>
<blockquote>
<i>S<sub>I</sub></i> / <i>S<sub>M</sub></i> =
<i>S<sub>I</sub></i> / (<i>S<sub>I</sub></i> + (<i>N</i>-1)<i>p</i> + <i>Ow</i>),
</blockquote>
<p>
where <i>O</i> is the number of ordered indices of the container, and <i>w</i>
is the system word size (typically 4 bytes on 32-bit architectures.)
</p>
<p>
These considerations have overlooked an aspect of the greatest practical
importance: the fact that <code>multi_index_container</code> allocates a single
node per element, compared to the many nodes of different sizes
built by manual simulations, diminishes memory fragmentation, which
can show up in more usable memory available and better performance.
</p>
<h2><a name="time_efficiency">Time efficiency</a></h2>
<p>
From the point of view of computational complexity (i.e. big-O
characterization), <code>multi_index_container</code> and its corresponding manual
simulations are equivalent: inserting an element into
a <code>multi_index_container</code> reduces to a simple combination of
elementary insertion operations on each of the indices, and
similarly for deletion. Hence, the most we can expect is a reduction
(or increase) of execution time by a roughly constant factor. As we
will see later, the reduction can be very significative for
<code>multi_index_container</code>s with two or more indices.
</p>
<p>In the special case of <code>multi_index_container</code>s with only one index,
resulting performance will roughly match that of the STL equivalent containers:
tests show that there is at most a negligible degradation with respect to STL,
and even in some cases a small improvement.
</p>
<h2><a name="tests">Performance tests</a></h2>
<p>
See <a href="../perf/test_perf.cpp">source code</a> used for measurements.
<p>
In order to assess the efficiency of <code>multi_index_container</code>, the following
basic algorithm
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special><...></span> <span class=identifier>c</span><span class=special>;</span>
<span class=keyword>for</span><span class=special>(</span><span class=keyword>int</span> <span class=identifier>i</span><span class=special>=</span><span class=number>0</span><span class=special>;</span><span class=identifier>i</span><span class=special><</span><span class=identifier>n</span><span class=special>;++</span><span class=identifier>i</span><span class=special>)</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>insert</span><span class=special>(</span><span class=identifier>i</span><span class=special>);</span>
<span class=keyword>for</span><span class=special>(</span><span class=identifier>iterator</span> <span class=identifier>it</span><span class=special>=</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>begin</span><span class=special>();</span><span class=identifier>it</span><span class=special>!=</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>end</span><span class=special>();)</span><span class=identifier>c</span><span class=special>.</span><span class=identifier>erase</span><span class=special>(</span><span class=identifier>it</span><span class=special>++);</span>
</pre></blockquote>
<p>
has been measured for different instantiations of <code>multi_index_container</code>
at values of <i>n</i> 1,000, 10,000 and 100,000,
and its execution time compared with that of the equivalent algorithm
for the corresponding manual simulation of the data structure based on
STL containers. The table below describes the test environments used.
</p>
<p align="center">
<table cellspacing="0" cellpadding="5">
<caption><b>Tests environments.</b></caption>
<tr>
<th>Compiler</th>
<th>Settings</th>
<th>OS and CPU</th>
</tr>
<tr>
<td>GCC 3.4.5 (mingw special)</td>
<td><code>-O3</code></td>
<td>Windows 2000 Pro on P4 1.5 GHz, 256 MB RAM</td>
</tr>
<tr class="odd_tr">
<td>Intel C++ 7.1</td>
<td>default release settings</td>
<td>Windows 2000 Pro on P4 1.5 GHz, 256 MB RAM</td>
</tr>
<tr>
<td>Microsoft Visual C++ 8.0</td>
<td>default release settings, <code>_SECURE_SCL=0</code></td>
<td>Windows XP on P4 Xeon 3.2 GHz, 1 GB RAM</td>
</tr>
</table>
</p>
<p>
The relative memory consumption (i.e. the amount of memory allocated
by a <code>multi_index_container</code> with respect to its manual simulation)
is determined by dividing the size of a <code>multi_index_container</code> node
by the sum of node sizes of all the containers integrating the
simulating data structure.
</p>
<h3><a name="test_1r">Results for 1 ordered index</a></h3>
<p>
The following instantiation of <code>multi_index_container</code> was tested:
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special><</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special><</span>
<span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>></span>
<span class=special>></span>
<span class=special>></span>
</pre></blockquote>
<p>
which is functionally equivalent to <code>std::set<int></code>.
</p>
<h4><a name="memory_1r">Memory consumption</a></h4>
<p align="center">
<table cellspacing="0">
<tr>
<th width="33%">GCC 3.4.5</th>
<th width="33%">ICC 7.1</th>
<th width="33%">MSVC 8.0</th>
</tr>
<tr>
<td align="center">80%</td>
<td align="center">80%</td>
<td align="center">80%</td>
</tr>
</table>
<b>Table 1: Relative memory consumption of <code>multi_index_container</code> with 1
ordered index.</b>
</p>
<p>
The reduction in memory usage is accounted for by the optimization technique implemented
in Boost.MultiIndex ordered indices, as <a href="#spatial_efficiency">explained above</a>.
</p>
<h4><a name="time_1r">Execution time</a></h4>
<p align="center">
<img src="perf_1o.png" alt="performance of multi_index_container with 1 ordered index"
width="556" height="372"><br>
<b>Fig. 1: Performance of <code>multi_index_container</code> with 1 ordered index.</b>
</p>
<p>
Somewhat surprisingly, <code>multi_index_container</code> performs slightly
better than <code>std::set</code>. A very likely explanation for this behavior
is that the lower memory consumption of <code>multi_index_container</code>
results in a higher processor cache hit rate.
The improvement is smallest for GCC, presumably because the worse quality of
this compiler's optimizer masks the cache-related benefits.
</p>
<h3><a name="test_1s">Results for 1 sequenced index</a></h3>
<p>
The following instantiation of <code>multi_index_container</code> was tested:
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special><</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special><</span>
<span class=identifier>sequenced</span><span class=special><></span>
<span class=special>></span>
<span class=special>></span>
</pre></blockquote>
<p>
which is functionally equivalent to <code>std::list<int></code>.
</p>
<h4><a name="memory_1s">Memory consumption</a></h4>
<p align="center">
<table cellspacing="0">
<tr>
<th width="33%">GCC 3.4.5</th>
<th width="33%">ICC 7.1</th>
<th width="33%">MSVC 8.0</th>
</tr>
<tr>
<td align="center">100%</td>
<td align="center">100%</td>
<td align="center">100%</td>
</tr>
</table>
<b>Table 2: Relative memory consumption of <code>multi_index_container</code> with 1
sequenced index.</b>
</p>
<p>
The figures confirm that in this case <code>multi_index_container</code> nodes are the
same size than those of its <code>std::list</code> counterpart.
</p>
<h4><a name="time_1s">Execution time</a></h4>
<p align="center">
<img src="perf_1s.png" alt="performance of multi_index_container with 1 sequenced index"
width="556" height="372"><br>
<b>Fig. 2: Performance of <code>multi_index_container</code> with 1 sequenced index.</b>
</p>
<p>
<code>multi_index_container</code> does not attain the performance
of its STL counterpart, although the figures are close. Again, the worst results
are those of GCC, with a degradation of up to 7%, while ICC and MSVC do not
exceed a mere 5%.
</p>
<h3><a name="test_2r">Results for 2 ordered indices</a></h3>
<p>
The following instantiation of <code>multi_index_container</code> was tested:
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special><</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special><</span>
<span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span>
<span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>></span>
<span class=special>></span>
<span class=special>></span>
</pre></blockquote>
<h4><a name="memory_2r">Memory consumption</a></h4>
<p align="center">
<table cellspacing="0">
<tr>
<th width="33%">GCC 3.4.5</th>
<th width="33%">ICC 7.1</th>
<th width="33%">MSVC 8.0</th>
</tr>
<tr>
<td align="center">70%</td>
<td align="center">70%</td>
<td align="center">70%</td>
</tr>
</table>
<b>Table 3: Relative memory consumption of <code>multi_index_container</code> with 2
ordered indices.</b>
</p>
<p>
These results concinde with the theoretical formula for
<i>S<sub>I</sub></i> = 28, <i>N</i> = <i>O</i> = 2 and <i>p</i> = <i>w</i> = 4.
</p>
<h4><a name="time_2r">Execution time</a></h4>
<p align="center">
<img src="perf_2o.png" alt="performance of multi_index_container with 2 ordered indices"
width="556" height="372"><br>
<b>Fig. 3: Performance of <code>multi_index_container</code> with 2 ordered indices.</b>
</p>
<p>
The experimental results confirm our hypothesis that <code>multi_index_container</code>
provides an improvement on execution time by an approximately constant factor,
which in this case lies around 60%. There is no obvious explanation for the
increased advantage of <code>multi_index_container</code> in MSVC for
<i>n</i>=10<sup>5</sup>.
</p>
<h3><a name="test_1r1s">Results for 1 ordered index + 1 sequenced index</a></h3>
<p>
The following instantiation of <code>multi_index_container</code> was tested:
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special><</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special><</span>
<span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span>
<span class=identifier>sequenced</span><span class=special><></span>
<span class=special>></span>
<span class=special>></span>
</pre></blockquote>
<h4><a name="memory_1r1s">Memory consumption</a></h4>
<p align="center">
<table cellspacing="0">
<tr>
<th width="33%">GCC 3.4.5</th>
<th width="33%">ICC 7.1</th>
<th width="33%">MSVC 8.0</th>
</tr>
<tr>
<td align="center">75%</td>
<td align="center">75%</td>
<td align="center">75%</td>
</tr>
</table>
<b>Table 4: Relative memory consumption of <code>multi_index_container</code> with 1
ordered index + 1 sequenced index.</b>
</p>
<p>
These results concinde with the theoretical formula for
<i>S<sub>I</sub></i> = 24, <i>N</i> = 2, <i>O</i> = 1 and <i>p</i> = <i>w</i> = 4.
</p>
<h4><a name="time_1r1s">Execution time</a></h4>
<p align="center">
<img src="perf_1o1s.png"
alt="performance of multi_index_container with 1 ordered index + 1 sequenced index"
width="556" height="372"><br>
<b>Fig. 4: Performance of <code>multi_index_container</code> with 1 ordered index
+ 1 sequenced index.</b>
</p>
<p>
For <i>n</i>=10<sup>3</sup> and <i>n</i>=10<sup>4</sup>, the results
are in agreement with our theoretical analysis, showing a constant factor
improvement of 50-65% with respect to the STL-based manual simulation.
Curiously enough, this speedup gets even higher when
<i>n</i>=10<sup>5</sup> for two of the compilers, namely GCC and ICC.
In order to rule out spurious results, the tests
have been run many times, yielding similar outcoumes. Both test environments
are deployed on the same machine, which points to some OS-related reason for
this phenomenon.
</p>
<h3><a name="test_3r">Results for 3 ordered indices</a></h3>
<p>
The following instantiation of <code>multi_index_container</code> was tested:
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special><</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special><</span>
<span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span>
<span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span>
<span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>></span>
<span class=special>></span>
<span class=special>></span>
</pre></blockquote>
<h4><a name="memory_3r">Memory consumption</a></h4>
<p align="center">
<table cellspacing="0">
<tr>
<th width="33%">GCC 3.4.5</th>
<th width="33%">ICC 7.1</th>
<th width="33%">MSVC 8.0</th>
</tr>
<tr>
<td align="center">66.7%</td>
<td align="center">66.7%</td>
<td align="center">66.7%</td>
</tr>
</table>
<b>Table 5: Relative memory consumption of <code>multi_index_container</code> with 3
ordered indices.</b>
</p>
<p>
These results concinde with the theoretical formula for
<i>S<sub>I</sub></i> = 40, <i>N</i> = <i>O</i> = 3 and <i>p</i> = <i>w</i> = 4.
</p>
<h4><a name="time_3r">Execution time</a></h4>
<p align="center">
<img src="perf_3o.png" alt="performance of multi_index_container with 3 ordered indices"
width="556" height="372"><br>
<b>Fig. 5: Performance of <code>multi_index_container</code> with 3 ordered indices.</b>
</p>
<p>
Execution time for this case is between 45% and 55% lower than achieved with
an STL-based manual simulation of the same data structure.
</p>
<h3><a name="test_2r1s">Results for 2 ordered indices + 1 sequenced index</a></h3>
<p>
The following instantiation of <code>multi_index_container</code> was tested:
</p>
<blockquote><pre>
<span class=identifier>multi_index_container</span><span class=special><</span>
<span class=keyword>int</span><span class=special>,</span>
<span class=identifier>indexed_by</span><span class=special><</span>
<span class=identifier>ordered_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span>
<span class=identifier>ordered_non_unique</span><span class=special><</span><span class=identifier>identity</span><span class=special><</span><span class=keyword>int</span><span class=special>></span> <span class=special>>,</span>
<span class=identifier>sequenced</span><span class=special><></span>
<span class=special>></span>
<span class=special>></span>
</pre></blockquote>
<h4><a name="memory_2r1s">Memory consumption</a></h4>
<p align="center">
<table cellspacing="0">
<tr>
<th width="33%">GCC 3.4.5</th>
<th width="33%">ICC 7.1</th>
<th width="33%">MSVC 8.0</th>
</tr>
<tr>
<td align="center">69.2%</td>
<td align="center">69.2%</td>
<td align="center">69.2%</td>
</tr>
</table>
<b>Table 6: Relative memory consumption of <code>multi_index_container</code> with 2
ordered indices + 1 sequenced index.</b>
</p>
<p>
These results concinde with the theoretical formula for
<i>S<sub>I</sub></i> = 36, <i>N</i> = 3, <i>O</i> = 2 and <i>p</i> = <i>w</i> = 4.
</p>
<h4><a name="time_2r1s">Execution time</a></h4>
<p align="center">
<img src="perf_2o1s.png"
alt="performance of multi_index_container with 2 ordered indices + 1 sequenced index"
width="556" height="372"><br>
<b>Fig. 6: Performance of <code>multi_index_container</code> with 2 ordered indices
+ 1 sequenced index.</b>
</p>
<p>
In accordance to the expectations, execution time is improved by a fairly constant
factor, which ranges from 45% to 55%.
</p>
<h2><a name="conclusions">Conclusions</a></h2>
<p>
We have shown that <code>multi_index_container</code> outperforms, both in space and
time efficiency, equivalent data structures obtained from the manual
combination of STL containers. This improvement gets larger when the number
of indices increase.
</p>
<p>
In the special case of replacing standard containers with single-indexed
<code>multi_index_container</code>s, the performance of Boost.MultiIndex
is comparable with that of the tested STL implementations, and can even yield
some improvements both in space consumption and execution time.
</p>
<hr>
<div class="prev_link"><a href="compiler_specifics.html"><img src="prev.gif" alt="compiler specifics" border="0"><br>
Compiler specifics
</a></div>
<div class="up_link"><a href="index.html"><img src="up.gif" alt="index" border="0"><br>
Index
</a></div>
<div class="next_link"><a href="examples.html"><img src="next.gif" alt="examples" border="0"><br>
Examples
</a></div><br clear="all" style="clear: all;">
<br>
<p>Revised May 9th 2006</p>
<p>© Copyright 2003-2006 Joaquín M López Muñoz.
Distributed under the Boost Software
License, Version 1.0. (See accompanying file <a href="../../../LICENSE_1_0.txt">
LICENSE_1_0.txt</a> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt">
http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</body>
</html>
|